PREPARATION, REACTIVITY, AND NEUROTOXICITY OF TRYPTAMINE-4,5-DIONE

Ping Cai and John K. Snyder^{*} Department of Chemistry, Boston University 590 Commonwealth Ave., Boston, MA 02215

Jin-Chung Chen, Richard Fine and Ladislav Volicer Departments of Pharmacology and Experimental Therapeutics, and Biochemistry, Boston University Medical Center, Boston, MA 02118

Summary: Tryptamine-4,5-dione protected as the carbamate was prepared in excellent overall yield by the oxidation of serotonin carbamate with benzeneseleninic anhydride. This o-quinone, which was potently neurotoxic, readily added sulfur nucleophiles under basic conditions including cysteine and glutathione in 1,4-fashion, a reactivity pattern which may reflect the mechanism of the neurotoxicity.

Abnormality in the metabolism of the neurotransmitter serotonin has been postulated to be involved in several human pyschotic diseases such as schizophrenia and major depression, as well as neurodegenerative Alzheimer's disease.¹ Several oxidized serotonin derivatives such as 5,7-dihydroxytryptamine² and 5,6dihydroxytryptamine³ are well known neurotoxins. Recently, Dryhurst and Wrona have shown that the primary electrochemical oxidative pathway of serotonin proceeds via the *p*-quinone imine to the unstable tryptamine-4,5-dione, which they more fully characterized as the quinoxaline derivative after successful trapping with *o*phenylene diamine.⁴ It has been reported that tryptamine-4,5-dione is also a potent neurotoxin,⁵ but the instability of this compound casts doubt upon the exact identity of the active species in that study. More recent reports support the identity of tryptamine-4,5-dione as a neurotoxic agent produced by serotonin oxidation,⁶ and suggest that tryptamine-4,5-dione may also interfere with signal transduction through specific interactions with G-proteins.⁷

We now report that tryptamine-4,5-dione can be conveniently prepared by benzeneseleninic anhydride⁸ oxidation of serotonin (1), and that the product o-quinone is stable in the solid state at 0 °C (slowly decomposes in solution) as long as the terminal amino group is protected as the carbamate ester. Treatment of 1 with ethyl chloroformate in the presence of K_2CO_3 yielded the diprotected compound with reaction occurring at both the terminal amino and phenolic groups (Scheme 1). Reaction at the indole N-1 did not occur under these mild conditions. The carbonate group was selectively hydrolyzed under basic conditions, with subsequent benzeneseleninic anhydride oxidation vieldina tryptamine-4.5-dione Nethylcarbamate (2) in 81% overall yield.⁹ This o-guinone was reductively acetylated to diacetate 3, and underwent a Diels-Alder cycloaddition with cyclopentadiene, analogous to a related furano-o-benzoquinone,¹⁰ to give the endo-adduct 4. In preliminary studies, 2 was shown to be neurotoxic using the chicken embryo forebrain neuron bioassay.¹¹ with a level of activity only slightly lower than that of 5.6dihydroxytryptamine.

Scheme 1

The potential interaction of 2 with possible nucleophiles located on the serotonin receptor as well as the binding site of the G-proteins was examined by the reaction of 2 with several thiols (Scheme 2). Reactions were characterized by the loss of the purple color of 2 immediately upon addition of the nucleophile. All reactions proceeded readily at room temperature and were essentially over within a few minutes under ambient conditions. The return of the purple color due to the oauinone unit of the adduct signified the end of the reactions. In control experiments run under argon, the reactions of 2 with thiophenol and mercaptoethanol remained colorless until oxygen was readmitted into the reaction flask, suggesting O2 reoxidation following the conjugate addition. The reactions also proceeded readily in the dark. The 1.4-Michael adducts were indicated by the loss of the low field H-7 resonance and retention of the H-6 resonance in the ¹H NMR spectra. Confirmation of the sulfur nucleophilic addition in 6 (rather than the oxygen) came from selective INEPT¹² experiments which revealed an enhancement of C-7 of the adduct due to three bond polarization transfer upon saturation of the resonance of the methylene protons adjacent to the sulfur.13

The reactions were performed by dissolving 2 (5 mg) in THF (4 mL) and adding the aqueous solution of the nucleophile. Cysteine was insoluble under these conditions, so this reaction was performed using an aqueous solution buffered to pH 9.7. In the reaction with glutathione, no reaction ensued when the aqueous solution was buffered to pH 7 or pH 8. In pH 9.7 buffer, however, the reaction with glutathione was immediate. In contrast, thiophenol reacted with 2 at every pH examined (pH 3, 7, and 9.7). When run on a larger scale (15 mg 2) for an accurate measurement of yield, thio-phenol and mercaptoethanol gave >90% isolated yield of adducts 5 and 6,¹⁴ respectively.

With these results in hand, the reaction with a nitrogen nucleophile, methylamine (40% aqueous solution), was examined. This nucleophile also underwent immediate 1,4-Michael addition to form adduct 10. In conclusion, tryptamine-4,5dione, a reputed neurotoxin formed by the oxidation of serotonin, can be prepared in high yield by the benzeneseleninic anhydride oxidation of serotonin, and is quite

stable when the terminal amino group is protected as the carbamate ester. The *o*quinone portion of **2** functions as an active Michael acceptor toward both sulfur and nitrogen nucleophiles, reactivity which may mimic the mechanism of neurotoxicity.

Addu	ct(M+)	Founda	Calc'd	1 <u>H_NMR</u> b
5	(C ₁₉ H ₁₈ N ₂ O ₄ S)	370.0993	370.0987	7.68 (dd, J=7.7, 2.3 Hz, 2H), 7.62-7.61 (m, 3H), 6.93 (s, 1H), 6.20 (bs, NH), 5.15 (s, 1H), 3.99 (q, J=7.0 Hz, 2H), 3.36 (bq, J=6.8 Hz, 2H), 2.81 (t, J=6.8 Hz, 2H), 1.14 (t, J=7.0 Hz, 3H)
6	(C ₁₅ H ₁₈ N ₂ O ₅ S)	338.0929	338.0936	6.87 (s, 1H), 6.18 (bs, NH), 5.94 (s, 1H), 3.99 (q, J=7.0 Hz, 2H), 3.90 (t, J=6.2 Hz, 2H), 3.36 (bq, J=6.3 Hz, 2H), 3.30 (t, J=6.2 Hz, 2H), 2.81 (t, J=6.3 Hz, 2H), 1.14 (t, J=7.0 Hz, 3H)
7	(C ₁₄ H ₁₆ N ₂ O ₄ S)	308.0831	308.0831	6.86 (s, 1H), 6.21 (bs, NH), 5.82 (s, 1H), 3.98 (q, J=7.0 Hz, 2H), 3.36 (bq, J=6.5 Hz, 2H), 2.87 (t, J= 6.5 Hz, 2H), 2.62 (s, 3H), 1.14 (t, J=7.0 Hz, 3H)
8	(C ₁₆ H ₁₉ N ₃ O ₆ S)	381.1028	381.0994	6.83 (s, 1H), 5.11 (s, 1H), 3.95 (q, J=7.0 Hz, 2H), 3.28 (bq, J=6.8 Hz, 2H), 3.03 (bm, 1H), 2.91 (bm, 2H), 2.73 (t, J=6.8 Hz, 2H), 1.13 (t, J=7.0 Hz, 3H)
9	(C ₂₃ H ₂₉ N ₅ O ₁₀ S)	567.1644	567.1635	6.78 (s, 1H), 5.15 (s, 1H), 4.71 (m, 1H), 4.00 (q, $J=7.0$ Hz, 2H) 3.70-3.74 (m, 3H), 3.31-3.25 (m, 3H), 2.92 (m, 1H), 2.85 (t, $J=6.8$ Hz, 2H), 2.38 (m, 2H), 1.90 (m, 2H), 1.17 (t, $J=7.0$ Hz, 3H)
10) (C ₁₄ H ₁₇ N ₃ O ₄)	291.1217	291.1219	7.78 (bs, NH), 7.08 (bt, J=6.7 Hz, NH), 6.90 (s, 1H), 5.07 (s, 1H), 3.95 (q, J=7.0 Hz, 2H), 3.18 (dt, J=6.7, 6.7 Hz, 2H), 2.89 (s, 3H), 2.74 (t, J=6.7 Hz, 2H), 1.13 (t, J=7.0 Hz, 3H)

Table 1. Characterization of Conjugate Adducts.

a) HRMS were run using EI (70 eV), direct insertion. b) Spectra of 5, 6, and 7 recorded in acetoned₆; spectra of 8 and 10 recorded in DMSO-d₆. Spectrum of 9 was recorded in D₂O/methanol-d₄. All spectra were recorded at 93.93 kG, 400 MHz for ¹H. Signals for N-H not observed if exchange with water is too rapid.

- References -

- (a) Kaplan, R.; Mann, J. *Life Sci.* 1983, *31*, 583. (b) Bowen, D.M.; Allen, S.J.; Benton, J.S.; Goodhardt, M.J.; Haan, E.AA.; Palmer, A.M.; Sims, N.R.; Smith, C.C.T.; Spillane, J.A.; Neary, D.; Snowdon, J.S.; Wilcock, G.K.; Davison, A.N. *J. Neurochem.* 1983, *41*, 266. (c) Volicer, L.; Langlais, P.; Matson, W.; Mark, K.; Gamache, P. *Arch. Neurol.* 1985, *42*, 1158.
- (a) Creveling, C.; Rotman, A. Ann. N.Y. Acad. Sci. 1978, 305, 57. (b) Baumgarten, H.; Klemm, H.; Sievers, J.; Schlossberger, H. Brain Res. Bull. 1982, 9, 131. (c) Wrona, M.; Lemordant, D.; Lin, L.; Blank, C. Dryhurst, G. J. Med. Chem. 1986, 29, 499. (d) Dryhurst, G.; Anna, A.; Wrona, M.; Lemordant, D. J. Am. Chem. Soc.. 1989, 111, 719. (e) Sinhababu, A.; Borchardt, R. J. Am. Chem. Soc. 1989, 111, 2230.
- (a) Commins, D.; Axt, K.; Vosmer, G.; Seiden, L. Brain Res. 1987, 403, 7. (b) Commins, D.; Axt, K.; Vosmer, G.; Seiden, L. Brain Res. 1987, 419, 253. (c) Wolf, W.; Bobik, A. J. Neurochem. 1988, 50, 534.
- 4. Wrona, M.Z.; Dryhurst, G. J. Org. Chem. 1987, 52, 2817.
- (a) Baumgarten, H.G.; Bjorklund, A.; Nobin, A.; Rosengren, E.; Schlossberger, H.G. Acta Physiol. Scan. 1975, Supplementary 429, 1. (b) Bjorklund, A.; Hern, A.S.; Baumgarten, H.G.; Nobin, A.; Schlossberger, H.G. Acta Physiol. Scan. 1975, Supplementary 429, 31.
- 6. Crino, P.B.; Vogt, B.A., Chen, J.-C.; Volicer, L. Brain Res.1989, In Press.
- 7. Fishman, J.B.; Rubins, J.B.; Chen, J.-C.; Dickey, B.F.; Volicer, L. Science 1989, Submitted.
- 8. Barton, D.H.R.; Brewster, A.G.; Ley, S.V.; Read, C.M.; Rosenfield, M.N. J. Chem. Soc., Perk. Trans. 1 1981, 1473.
- Spectral data for 2; IR (KBr) 3340, 3213, 1691, 1636, 1540, 1507, 1457, 1384, 1248 cm⁻¹; ¹H NMR (DMSO-*d₆*, 400 MHz) δ 7.29 (d, J=10 Hz, H-7), 7.08 (bt, J = 7.0 Hz, NH), 6.81 (s, H-2), 5.88 (d, J=10 Hz, H-6), 3.95 (q, J=7 Hz, -OCH₂-), 3.19 (bq, J=7 Hz, H-2'), 2.71 (t, J=7 Hz, H-1'), 1.13 (t, J=7 Hz, -CH₃); ¹³C NMR (DMSO-*d₆*, 100 MHz) δ 184.0 (C-5), 173.9 (C-4), 156.2 (C=O, carbamate), 136.6 (C-7a), 134.0 (C-7), 126.0 (C-3), 123.2 (C-6), 122.0 (C-2), 119.5 (C-3a), 59.5 (-OCH₂-), 38.9 (C-2', overlapped with DMSO, revealed by HETCOR), 26.2 (C-1'), 14.7 (CH₃); HRMS (EI, 70 eV) *m/z* 262.0953 (M+, calcd C₁₃H₁₄N₂O₄, 262.0953); UV (MeOH) λ_{max} 234 nm (ε 37 541), 353 (3 885), 542 (2 647).
- 10. Lee, J.; Tang, J.; Snyder, J.K. Tetrahedron Lett. 1987,28, 3427.
- 11. Aizenman, Y.; Weichoel, M. Jr.; de Vellis, J. Proc. Natl. Acad. Sci., USA 1986, 83, 2263. Full details of the neurotoxicity assays will be reported at a later date.
- 12. Bax, A. J. Magn. Res. 1984, 57, 314.
- ¹³C NMR data for 6 (DMSO-*d₆*, 100 MHz) δ 179.2 (C-5), 175.0 (C-4),156.2 (C=O, carbamate), 150.1 (C-7), 134.2 (C-7a), 125.1 (C-3), 122.3 (C-2), 118.8 (C-3a) 3a),114.2 (C-6), 59.5 (-OCH₂-), 58.5 (-CH₂OH), 38.9 (C-2', overlapped with DMSO, revealed by HETCOR), 33.5 (-SCH₂-), 26.0 (C-1'), 14.7 (CH₃).
- ¹³C NMR data for 5 (DMSO-*d₆*, 100 MHz) δ 179.4 (C-5), 174.7 (C-4),156.2 (C=O, carbamate), 151.4 (C-7), 135.7 (C-2", C-6"), 133.6 (C-7a), 131.1 (C-1"), 130.5 (C-3", C-5"), 125.7 (C-3), 125.6 (C-4"), 122.9 (C-2), 118.9 (C-3a), 114.8 (C-6), 59.5 (OCH₂), 38.9 (C-2', overlapped with DMSO, revealed by HETCOR), 26.1 (C-1'), 14.8 (CH₃).