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Abstract

Enantiomerically pure key intermediates for the synthesis of constanolactones A and B and solandelactones A,
B, E and F, the hydroxy-protected$532)-undec-1-yn-5-en-3-ol and 3LE,52)-1-iodoundec-1,5-dien-3-ol, have
been obtained in nine steps starting fraBrfnalic acid. © 1998 Elsevier Science Ltd. All rights reserved.

The metabolism of fatty acids by marine organisms provides a unique source of novel and di-
verse compounds, the so-called oxylipind.Cyclopropyl lactone seems to be an often encountered
motif among them, as judged from the isolation of hydridalacfoenstanolactones halicho- and
neohalicholacton® and more recently solandelactorfeslthough still unknown, the biological activities
of these cyclopropyl compounds might be important and useful in physiology and medicine owing
to their structural and biogenetic similarities with the bioactive mammalian eicosaroiéth the
goal of providing enough materials and analogs, we have developed a general approach towards these
cyclopropyl oxylipins®1° In this communication, we present two routes starting fr@angalic acid
toward two key intermediates for the synthesis of constanolactones A-B (CL A-B) and solandelactones
A-B and E-F (SL A-B and E-F).

CL A-B and SL A-B and E—F are diastereoisomeric at the carbinol position adjacent to the cyclopropyl
lactone motif, and they both exhibit a common end chain with and anE double bond and an
allylic alcohol having theS absolute configuration. Therefore, they should both be obtainable in a
convergent way by addition of a $3E,52)-3-hydroxyundeca-1,5-dienyl organometallic to a formyl
cyclopropyl lactone (west and east fragments respectively in Scheth&uizh an organometallic would
be conveniently obtained by hydrometallation of the corresponding acetylenic deriva8#)¢{8ndec-
5-en-1-yn-3-0I6, or by halogen—metal exchange of the correspondigdlE352)-1-haloundec-1,5-dien-

3-ol 512 (Scheme 2). Both compounds could be obtained from the same aldéhygl@omologation

to either an acetylenic group or a 1-haloalkene. This aldehy8dZp2-hydroxydec-4-ena#'? could

in turn be obtained from the naturaB){malic acid through a reduction—oxidation sequence and a
stereoselective Wittig reaction (Scheme 2).
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The sequences toward the aldehytlare described in Scheme ¥){Malic acid was first totally
reduced to the corresponding trib** The 1,2-diol unit in this compound was then protected as an
acetonide and the third alcohol oxidized through a Swern reatli@ue to the instability of the so-
obtained aldehyde, the oxidation and the subsequent stereoselective Wittig reaction were performed
in a one-pot procedure which led to the alke? with a good overall yield® The conditions of
the Wittig step ensured the exclusive formation of the requetbuble bond” We then planned to
use the Rychnovsky proceddfewhich should have achieved a selective deprotection of the enediol
acetonide2a, liberating the free primary alcohol while maintaining the secondary protected. This
methodology, however, proved to be inefficient in our hands. Therefore, we turned to more conventional
methods. Complete deprotection, reprotection of the diokesamethoxyphenyl methylene ketéland
subsequent ketal reductfprovided the required enedi8limonoprotected at the secondary alcohol. To
avoid such protection—deprotection steps, we experimented an alternative route to the corresponding
alcohol 3. Starting from the dimethylester o8f-malic acid, the Moriwake’s procediffeprovided the
monoreduced ester. Protection of the so-obtained 1,2-diopassanethoxyphenyl methylene ketal was
achieved:®2The remaining ester was then reduced and the corresponding aldobxidized. A Wittig
reaction in the conditions mentioned above affordedZrakene2b. Regioselective openii§ of the
para-methoxybenzylidene ketal provided the alcoBoDxidation of the free primary alcohol Bithen
led to the required aldehyde intermedidt&hich was directly used without purification in the next step.

This key aldehyde4 must then be homologated either to a terminal acetylene or a 1-haloalkene
(Scheme 4). Different procedures have been described to achieve such transforfiaBone a
(E)-1-haloalkene was required, the Takai reactfoknown to be highlyE stereoselective was used.
Condensation of the aldehydewith iodoform in the presence of chromium dichloride yielded the
expected (S,1E,52)-3-para-methoxyphenylmethoxy-1-iodoundec-1,5-diebeas the major isomer in
good yield when the Evans modification was u$ed.he terminal acetylene can be obtained either
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directly from the aldehyd@ or in a two-step proceduré. Although the two-step procedure also
provides an alternative to the Takai reaction for the formation of a 1-haloafkeme, chose the
direct homologation of the aldehyde to the terminal acetylene. Addition of dimethyl diazophosphonate,
generated in situ using the Hohira conditidAsp the aldehydd gave the expected acetylefén good

yields.
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Scheme 4. (a) Yields over two steps starting fldm

The enantiomeric excess of bdihand 6 was secured after deprotection of gh@ra-methoxybenzyl
group® and comparison of their specific rotations with literature vakieBwo key enantiomerically
pure intermediates for the synthesis of constanolactones A-B and solandelactones A-B and E-F as well
as other eicosanoithave thus been obtained in nine steps fr@anpalic acid with good overall yield
(22 or 28%,6 or 5 respectively).
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