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A series of N,N0-mono substituted acyclic thiourea ligands are found to be highly active phosphine-free
catalysts for palladium catalyzed Heck reaction of aryl iodides and bromides with olefins. We have
achieved high turnover numbers for aryl iodides with olefins (TONs up to 970,000 for the reaction of
iodobenzene with styrene).
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Introduction

The palladium-catalyzed arylation of olefins is an important
method for the C–C bond formation in many organic transforma-
tions, finding several applications in the synthesis of natural prod-
ucts and fine chemicals.1–5 This reaction was usually performed
with 1–5 mol % of palladium catalyst in the presence of the phos-
phine ligands.6,7 However, the phosphine ligands are generally
expensive and air sensitive. A number of phosphine-free cata-
lysts8–13 have been employed in the Heck reaction, among them
N-heterocyclic carbene ligands,14,15 and palladacycle catalysts16,17

have shown excellent activity. Therefore, the development of phos-
phine-free catalysts is an important topic of research. Thioureas
are air and moisture stable solids and have been employed as
ligands in organometallic chemistry.18–24 These ligands act as effi-
cient catalysts in palladium catalyzed Heck and Suzuki–Miyaura
cross coupling reaction.25–28

Compared to other phosphine-free ligands, steric and electronic
properties of thiourea or urea ligands allow a variety of possible
coordination modes when bonding to a metal. The catalytic activ-
ities of thiourea ligands can be varied by a variety of substitutions
on nitrogen and their structure. Dan Yang and co-workers reported
bulky thiourea–Pd complex and acyclic bis (thiourea) ligands for
Heck and Suzuki reaction of aryl halides. The Pd complex of NH
moiety containing acyclic mono thioureas shows no catalytic activ-
ity in the Heck reaction.27,28 Recently Khairul has reported NH
containing palladium(II) thiourea complex for the Heck cross-
coupling reaction.29

Previously, we have reported homogeneous and heterogeneous
thiopseudourea palladium(II) complexes as catalysts for Sonogashira,
Suzuki–Miyaura, Heck, and Hiyama and Larock heteroannulation
cross-coupling reactions.30–32

Herein, we report that NH featuring N,N0-mono substituted acy-
clic thioureas are highly efficient ligands for the Pd-catalyzed Heck
reaction of aryl iodides and bromides with olefins, which achieved
very high turnover numbers for aryl iodides as well as aryl
bromides.

Results and discussion

All the acyclic N,N0-mono substituted thioureas (Fig. 1) can be
easily synthesized in one step as shown in Scheme 1.33 Ligands
1a–d were prepared from in situ generated benzoyl derivatives
such as aroyl isothiocyanates and aryl amines in acetone at 0 �C
to afford products in quantitative yields under nitrogen
atmosphere, which are obtained as white solids after purification
by column chromatography. The resulting compounds were
characterized by NMR, IR, and Mass spectroscopic techniques.
Subsequently, the acyclic simple thiourea ligand 1e was prepared
by the reaction of commercially available phenyl isothiocyanate
with picolyl amine in dichloromethane (DCM) (Scheme 2).34

Further, we studied the catalytic activity of various N,N0-mono
substituted thioureas for the Heck reaction between 4-bromoani-
sole and styrene at 130 �C (Table 1). The reactions were performed
in the presence of 0.01 mol % of catalyst35 (1:2 ratio of Pd(OAc)2/
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Figure 1. Structures of thiourea ligands.

Cl

O
1. NH4SCN
Acetone, 0 °C
2. amine

N
H

N
H
R

O S

1a-d
R R1

a = picolyl H
b = ph H
c = 4-bromophenyl Br
d = pyridyl Me

R1 R1
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Scheme 2. Synthesis of N,N0-mono substituted acyclic thiourea ligand (1e).

Table 1
Heck reaction between 4-bromoanisole and styrenea

+
Pd(OAc)2 / ligand

LiOH.H2O, DMF
Ph

PhBr

MeO MeO

Entry Ligand Base Time (h) Yieldb (%)

1 1a NaOAc 10 62
2 1a K2CO3 10 90
3 1a K3PO4 10 32
4 1a LiOH�H2O 10 98
5 1b LiOH�H2O 10 82
6 1c LiOH�H2O 10 86
7 1d LiOH�H2O 10 —
8 1e LiOH�H2O 15 94
9 1f LiOH�H2O 24 34

10 1g LiOH�H2O 24 —

a Reaction conditions: 4-bromoanisole 1 mmol, styrene 2 mmol, base 2.0 mmol,

0.01 mol % of catalyst (Pd(OAc)2/ligand = 1:2) in 2 mL DMF, reaction temperature
130 �C.

b Isolated yield.
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thiourea ligand (1a) in 2 mL DMF, using a variety of bases (2 mmol)
for about 10 h (entries 1–4). Among these (entry 4), the LiOH�H2O
base gave the best results. In the series of thiourea ligands (1a–d)
studied, the picolyl group containing ligand 1a (entry 4) resulted in
excellent yields. When the picolyl group is replaced with the phe-
nyl group (1b &1c), the yields were slightly lower (entries 5 & 6).
No activity was observed for the ligand 1d, as the pyridine group
was directly attached to nitrogen atom (entry 7). The ligand 1e
(entry 8) gave an excellent yield, whereas 1f (commercially avail-
able) gave very low yield (entry 9). The ligand 1e is similar to
the earlier reported one, wherein we exchanged the oxygen atom
with sulfur.36 We also examined the simple thiourea 1g system
and found to be completely inactive (entry 10). According to Guo
and co-workers an additional substituent on nitrogen atom in
N-phenyl urea may cause steric hindrance, which we have also
observed in case of 1f ligand.37 The ligand 1d was completely
inactive in the Heck reaction, which can be explained by the
possible formation of highly stable bis-complex, wherein the
formation of strongly coordinating sulfur and nitrogen bonds with
Pd was expected.

Earlier, it was reported that N,N0-mono substituted acyclic N–H
featuring thiourea ligands are completely inactive in Pd catalyzed
Heck reaction.26 But in our case, we highlight that the N–H
featuring thiourea ligands (1a–c) act as good catalysts in the Heck
reaction due to the presence of the carbonyl functional group
adjacent to nitrogen atom. From the above results, it is clear that
the position of heterocyclic ring and the carbonyl functional group
on nitrogen atom in each thiourea ligand plays an important role in
the catalytic activity of Pd(OAc)2 in the Heck reaction.

The Heck coupling reaction of various aryl halides and olefins
has been investigated in the presence of Pd(OAc)2/1a (1:2). The
results are summarized in Table 2.38 Deactivated and activated aryl
bromides were reacted with different aromatic olefins to give
moderate to excellent yields of the coupled products
(0.001 mol % of Pd, 2 equiv LiOH�H2O, DMF, 130 �C) (entries 1–7
& 10–15). Sterically hindered 2-bromoanisole and 2-bromotoluene
could also be coupled in moderate yields by increasing the catalyst
loading (0.01 mol % of Pd) (entries 16 and 17). Furthermore, aryl
iodides were also excellent substrates suitable for our reaction
conditions (entries 18–21). We have achieved high turnover
numbers (6.6 � 105 and 4.7 � 105) with electron rich aryl bromides
(entries 8 & 9) and aryl iodides (9.7 � 105 and 9.5 � 105) using as
low as 0.0001 mol % of Pd (entries 18 & 19). The above optimized
reaction conditions were less effective for the Heck reaction of aryl
chlorides (entry 22).

Encouraged by these results, further we have examined the cou-
pling reaction of aryl halides with n-butyl acrylate using Pd(OAc)2/
1a (1:2) (Table 3).39 When aryl iodides were used as substrates,
excellent yields were obtained (entries 1–5). Aryl bromides
resulted in moderate to excellent yields with n-butyl acrylate
(entries 6–9). Poor yields were observed in case of aryl chlorides
(entry 10).

In conclusion, we have accomplished phosphine-free N,N0-mono
substituted acyclic thiourea ligands for Pd catalyzed Heck cross-
coupling reactions. Compared to the earlier reports on thiourea
ligands, ours is better for Heck reactions of deactivated aryl bro-
mides. We have achieved high turnover numbers for both aryl
iodides and aryl bromides. Since these ligands are inexpensive
and easy to prepare, the present protocol has potential application
for the synthesis of Heck products. Work is in progress in our
laboratory to extend the application of these ligands to other
palladium-catalyzed transformations.



Table 2
Heck reaction of aryl halides and styrenesa

+
Pd(OAc)2 / ligand (1:2)

LiOH.H2O, DMF, 130 oC
RArX

Ar
R

Entry ArX R Pd/
mol %

Time
(h)

Yieldb

(%)

1
Br

MeO
0.001 10 97

2
Br

MeS
0.001 10 90

3
Br

MeS
0.001 10 94

4

Br

Me2N
0.001 48 60

5
Br

0.001 10 97

6
Br

0.001 10 95

7
Br

MeO
0.001 10 94

8
Br

MeO
0.0001 15 66

9
Br

MeS
0.0001 20 47

10
Br

0.001 10 95

11
BrMeO

0.001 10 90

12
BrMeOC

0.001 12 84

13
N

Br

0.001 12 96

14
Br

N 0.001 10 64

15
Br

0.001 10 98

16
Br

0.01 10 82

17
Br

OMe
0.01 10 76

18
I

0.0001 10 97c

19
I

0.0001 10 95c

20
I

0.001 10 98c

21
I

OMe
0.001 10 95c

22

Cl

O2N
1 10 42

a Reaction conditions: aryl halide 1 mmol, olefine 2 mmol, LiOH�H2O 2.0 mmol,

0.001 mol % of Pd, DMF 2 mL.
b Isolated yield.
c Reaction temperature 120 �C.

Table 3
Heck reactions of aryl halides and n-butyl acrylatea

+
Pd(OAc)2 / ligand (1:2)

NaOAc, DMF, 130 oC

CO2nBuX
CO2nBuR R

Entry R Pd/mol % Time (h) Yieldb (%)

1
I

0.001 10 99c

2
I

0.001 10 96c

3

I

Cl
0.001 10 94c

4
I

0.001 10 90c

5

I

OMe
0.001 10 87c

6
Br

0.001 10 86

7

Br

EtOOC
0.01 12 90

8

Br

MeO
0.01 12 74

9
Br

0.01 12 90

10
Cl

1 24 21

a Reaction conditions: aryl halide 1 mmol, n-butyl acrylate 2 mmol, NaOAc
2.0 mmol, 0.01 mol % of Pd catalyst in 2 mL DMF.

b Isolated yield.
c Reaction temperature 120 �C.
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