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Abstract 13 

In this study, we have developed a cost effective and one-pot strategy toward the synthesis of 14 

heterogeneous catalyst of Ni nanoparticles- reduced graphene oxide composite for 15 

Sonogashira cross-coupling reaction. Several characterization tools were employed to 16 

characterize the Ni nanoparticle-reduced graphene oxide composites, which indicates that 17 

magnetic Ni nanoparticles of the size range of 1-4 nm are uniformly anchored on the reduced 18 

graphene oxide nanosheets without using any surfactant or stabilizing agent. Different types 19 

of aryl halide and phenyl acetylenes were coupled under optimized reaction condition with 20 

excellent yields to give biphenylacetylenes. The ferromagnetic behaviour of the Ni 21 

nanoparticle-graphene composite demonstrated the easy separable from the reaction mixture 22 

and reusable up to six times without losing its catalytic activity. The fresh as well as reused 23 

catalyst in the Sonogashira cross-coupling reaction was well characterized by analytical 24 

techniques which show that Ni nanoparticles were well dispersed on the reduced graphene 25 

oxide nanosheets without agglomeration and size and morphology of the catalyst remains 26 

unchanged after used in the catalytic reaction. 27 
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Introduction 33 

Carbon nanomaterials in catalytic research have received a great attention by the researchers 34 

of all over the globe for last two decades. The catalytic performance of the catalyst 35 

particularly heterogeneous catalyst is mainly depends on the properties and structure of the 36 

support materials. After receiving the Nobel Prize by Andre Geim and Konstantin Novoselov 37 

in physics in 2010 for the their ground breaking discovery of 2D material graphene,  it is 38 

receiving a prime importance as one of the ideal support among all the carbonaceous 39 

materials in the heterogeneous catalysts area due to its outstanding properties.1 Graphene 40 

sheets possesses unique 2D crystal structure which easily blended with metals, metal oxides 41 

or polymers etc.1, 2  In recent years, heterogeneous catalyst of metal nanoparticles experienced 42 

an enormous progress than homogenous catalyst in terms of stability, selectivity and 43 

reusability. In that case metal nanoparticles supported on graphene have attracted significant 44 

attention due to its high corrosion resistance, large surface to volume ratio and their excellent 45 

dispersive nature. In the last two decades, tremendous efforts have been devoted by the 46 

researcher for the development of metal nanoparticle-graphene composite material with 47 

controlled size, shape, crystallinity and functionality due to their potential applications in a 48 

wide range of fields including supercapacitors,3 field effect transistors,4 hydrogen storage,5 
49 

sensors,6 photocatalysis,7  soalr cells,8 molecular imaging,9 water treatment,10 catalysis 1, 11 50 

and drug delivery. But in the area of catalysis, metal nanoparticle-graphene composites 51 

materials are still to be  explored as other applications.1  The use of metal-graphene 52 

composite material as a heterogeneous catalyst has many advantages: a) the graphene as a 53 

support prevents the agglomeration and leaching of the metal nanoparticles due to the 54 

interaction between the metal atoms and residual oxygen containing functional groups 55 

present on the surface of the graphene which results in increase in the surface to volume ratio, 56 

b)  The presence of 2D structure in graphene results in the superior catalytic performances of 57 
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the catalyst because the reactant molecules can absorb to both faces of the catalyst, c) Due to 58 

the unique electronic properties of graphene, the electron transfer can take place between the 59 

graphene and supported metal nanoparticles which in turn greatly affects the selectivity of the 60 

desired product, d) The π-π interaction between the aromatic moieties of  reactant molecules 61 

and the graphene support enhances the adsorption capacity of the reactant molecules on to the 62 

surface of the catalyst.  63 

 64 

In view of these advantageous properties of metal-graphene composite materials in 65 

heterogenous catalysis, some metal nanoparticles are designed on to the surface of graphene 66 

sheets for their catalytic applications such as CO oxidation, oxidation of alcohols, 67 

degradation of organic pollutants, hydrogentation of C=C and C=O bond, selective reduction 68 

of nitroarenes, fisher-tropsch synthesis and  coupling reactions. 1, 13 However, most of these 69 

reports deal with the problem of the separation of the catalyst from the reaction mixture 70 

which lead to trace amount of metal contaminates on the product. This problem can be easily 71 

overcome by designing magnetically separable heterogeneous catalyst. In this regard, the 72 

development of environmentally friendly, cost effective, practical, and efficient catalytic 73 

processes and its reusability have been attracted worldwide attention in the field of catalysis. 74 

Therefore, in this report, we have decorated magnetic Ni nanoparticles onto the surface of 75 

reduced graphene oxide sheets (rGO) which shows excellent ferromagnetic properties and 76 

thereby results in the effective magnetic separation of the catalyst after completion of the 77 

reaction. The magnetic separation of the catalyst is more effective than the filtration or 78 

centrifugation as it prevents the loss of the catalyst. Magnetic separation of the catalyst from 79 

the reaction system is simple, cost-effective and favorable for industrial applications. The 80 

magnetic Ni nanoparticle-rGO composite material is also a low cost heterogeneous catalyst 81 

compared to the noble metal (Au, Ag, Pt and Pd) anchored on the graphene sheets.  82 
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On the other hand, Sonogashira cross-coupling reaction is one of the most important carbon-83 

carbon bond formation reactions in organic synthesis. This coupling reaction have 84 

extensively used for the synthesis of various pharmaceuticals, bioactive compound, natural 85 

products, molecular organic materials and engineered materials.14,15,16 This reaction has 86 

developed and admirable results can be obtained with Pd-complexes with phosphine ligands. 87 

17-20 However, the most commonly used phosphine ligands are sensitive to air and moisture, 88 

which require inert atmosphere as prerequisite during handling and even a trace amount of 89 

such ligand may act as inhibitor in some metal-catalyzed asymmetric reaction.21 Therefore, 90 

the development of ligand-and additive-free Pd catalyst is of immense interest. On the other 91 

hand, the use of stable and reusable heterogeneous catalyst to replace the homogenous 92 

catalyst for the Sonogashira cross-coupling reaction is of great importance in sustainable 93 

chemistry. Various heterogeneous Pd nanoparticles have been developed and efficiently used 94 

for the Sonogashira cross-coupling reaction.22-24 Although some of these catalysts are highly 95 

efficient, most of them gave low yield of coupling product even in the presence of different 96 

additives.25-27 To enhance the efficiency of the catalyst, bimetallic nanoparticles comprising 97 

Pd metal with other non-noble metals such as copper, nickel, iron and cobalt are used in the 98 

Sonogashira cross-coupling reaction.  Bimetallic nanoparticles such as Ag–Pd@rGO,28 99 

Pd/Co alloy NPs,29 Pd-Co/G alloy NPs,30 Pd/Cu mixed NPs,31 Pd/Ni core shell NPs,32 hollow 100 

Pd-Co nanospheres,33  nano Pd/PdO/Cu system,34 Pd/Cu nano alloys,35 rGO-Cu48Pd52 alloy 101 

nanoparticles 36 are the notable examples which are recently reported for this reaction. 102 

 103 

Nickel is promising and cheaper alternative to the use of Pd-based catalyst for the 104 

Sonogashira cross-coupling reaction. Among the literature found for the Sonogashira cross-105 

coupling reaction of aryl halides with phenyl acetylenes catalyzed by nickel, Yin et al. 106 

reported the use of mesoporous silica supported Ni(II) organometallic complex as reusable 107 

Page 4 of 30RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
3 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
L

et
hb

ri
dg

e 
on

 1
4/

11
/2

01
5 

11
:0

9:
00

. 

View Article Online
DOI: 10.1039/C5RA22601E

http://dx.doi.org/10.1039/c5ra22601e


5 

 

catalyst for Sonogashiracross-coupling reaction.37  Beletskaya et al. reported homogenous 108 

Ni(II) species as efficient catalyst for Sonogashira cross-coupling reaction.38 Farjadian et al. 109 

showed that poly(vinylpyridine)-grafted silica containing Ni nanoparticle is an efficient 110 

catalyst for the Sonogashira cross-coupling reaction of aryl halides and phenyl acetylene.39 111 

Wang et al. reported Ni(0) powder catalysis Sonagashira cross-coupling reaction in presence 112 

of cuprous iodide and triphenylphosphine .40 Recently, Ni-Cu system has developed by 113 

Bakherad and his co-workers for the Sonogashira cross-coupling reaction of terminal 114 

acetylenes with aryl iodides in presence of sodium lauryl sulphate.41 Most of these previous 115 

reports require either the use of phosphine ligand and surfactant or inert atmosphere during 116 

the reaction. 117 

 118 

As a part of our continuous efforts for the synthesis of metal nanoparticle − graphene 119 

composites materials and application in catalytic field,42-44 herein we have reported the 120 

synthesis of magnetically separable Ni nanoparticles on to rGO sheets under ligand free 121 

condition and its application in the Sonogashira cross-coupling reaction in presence of 122 

cuprous iodide. To the best of our knowledge there is no report on the Sonogashira cross-123 

coupling reaction catalyzed by magnetic Ni nanoparticles anchored on rGO.  In view of this 124 

we have developed a heterogeneous catalyst of very cheap, magnetically recoverable and 125 

reusable Ni nanoparticle-rGO composites for the Sonogashira cross-coupling reaction. 126 

 127 

Results and discussion 128 

Characterization of Ni nanoparticles-rGO composites 129 

The formation of Ni nanoparticles on the rGO sheets was confirmed by using analytical tools 130 

like X-ray diffraction (XRD), Fourier transform Infrared spectrocscopy (FTIR), 131 
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Thermogravimetric analyses (TGA), Transmission Electron Microscope (TEM), Scanning 132 

electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDS)  and Vibrating 133 

Sample Magnetometer (VSM) analysis. XRD analysis as shown in Fig. 1 revealed that the 2θ 134 

values 44.73o, 52.13o and 76.84o corresponding to d values 2.02, 1.75 and 1.24 Å are 135 

assigned to the well resolved (111), (200) and (220) crystallographic planes of the Ni 136 

nanoparticles, respectively. The positions and relative intensities of the diffraction peaks 137 

matched well with the standard XRD data of Ni nanoparticle (JCPDS card No. 01-071-4655). 138 

It is also confirm that the absence of the NiO and Ni(OH)2 diffraction peak in the XRD 139 

pattern of the Ni nanoparticle-rGO composites.  It is also noticed that a broad peak at ~25o 140 

suggesting that the GO is completely reduced in presence of the hydrazine hydrate.  141 

 142 

Thermogravimetric analysis (TGA) as shown in Fig. 2 which provided the information about 143 

the reduction of GO to rGO and the formation of Ni nanoparticles onto rGO sheets at the 144 

same time.  The major weight loss of 37.72% occurred at temperature around 200 oC is 145 

attributed to the decomposition of the labile oxygen-containing functional groups present in 146 

GO. The weight loss in this region dramatically decreases upto 9.72% after formation of Ni 147 

nanoparticles-rGO composites material because of the reduction of the oxygen containing 148 

functional groups present in GO such as carbonyl, hydroxyl, epoxy and carboxyl groups. The 149 

weight loss found above 600 oC for both Ni nanoparticles-rGO composites material and GO 150 

are results from the pyrolysis of the carbon skeleton of rGO nanosheets 151 

 152 

The catalytic activity of the catalyst mainly depends on the size and shape of the 153 

nanoparticles distributed on the support in a heterogeneous catalysis system. In this regards 154 

we have examined the morphology of the Ni nanoparticle anchored on the rGO sheets (Fig. 155 

3). The graphene sheets of micron size are clearly visible in the TEM images and Ni 156 
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nanoparticles are uniformly distributed onto those sheets. Ni nanoparticles of the mean 157 

diameter 2.7 nm with narrow particle size distribution are embedded in the rGO sheets and 158 

spherical in nature. The size of our synthesized Ni nanoparticles is very small in comparison 159 

to the other previous reports of the synthesis of Ni nanoparticles.45-49 The small size and 160 

uniform distribution of the synthesized Ni nanoparticles is results from the strong interaction 161 

between the surface of rGO sheets and Ni nanoparticles.50 Lu et. al proposed that the 162 

interaction between the graphene and Ni is attributed to the partially occupied d-orbital which 163 

are localized on to the vicinity of the Fermi level.51 This result clearly fulfils our aim to 164 

prepare very small sized nanoparticles and thereby large surface to volume ratio in order to 165 

get excellent catalytic activity. Xu et al. recently reported the Ni nanoparticle of the average 166 

size 9.7 nm decorated on the graphene sheets with narrow size distribution 52. Wu et al. also 167 

demonstrated that the synthesis of the Ni nanoparticle-graphene composite by solvothermal 168 

method via electrostatic induced spread adsorption. Ni nanoparticle of average size ~55 nm is 169 

well distributed on the graphene sheets.45 Another synthesis method reported by Tian et al. 170 

observed that Ni nanoparticles of the average size 8 nm homogeneously decorated on the 171 

rGO sheets in presence of the poly(N-vinyl-2-pyrolidone) (PVP).48 However, the Ni 172 

nanoparticles of average size of ~27 nm is decorated on the rGO sheets without using 173 

stabilizing agent PVP due to agglomeration of the Ni nanoparticles. The surface morphology 174 

and elemental composition of the composite material was examined by SEM-EDS (shown in 175 

Fig. 4 (a-c)). The crumpled and rippled structure of GO which results from deformation upon 176 

the exfoliation is partially destroyed in the composite material due to the reduction of large 177 

amount of oxygen containing functional groups (Fig. 4a,b). However, the rGO sheets were 178 

layered in structure, it is irregular and folded where the spherical Ni nanoparticles are 179 

uniformly distributed. The EDS analysis (shown in Fig. 4c) clearly confirms the sufficient 180 
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loading of Ni nanoparticles onto the surface of rGO sheets with an insignificant amount of 181 

oxygen which remains due to the presence of unreduced oxygen containing functional group. 182 

 183 

The FTIR spectra of GO and Ni nanoparticles-rGO composite is shown in Fig. 5. As shown 184 

in Fig. 5, the prominent peaks at 3131, 1728, 1583, 1436, and 1042 cm-1 of GO are attributed 185 

to the stretching vibrations of O−H, C=O, C=C, C−O−H and C−O−C, respectively. The 186 

intensities of these peaks decreased significantly after formation of Ni nanoparticles on rGO 187 

sheets due to the reduction of these oxygen containing functional groups present in GO. 188 

 189 

To investigate the magnetic properties of our synthesized Ni nanoparticles−rGO composite 190 

material, magnetic measurements were performed at room temperature in terms of field 191 

dependent magnetization measurement (M-H). The results of saturation magnetization (Ms), 192 

remanent magnetization (Mr) and the coercivity (Hc) are listed inside the Fig.6. The hysteresis 193 

behaviour and the magnetic parameters clearly reveal the ferromagnetic interaction of the 194 

synthesized Ni nanoparticles on rGO nanosheets.53-56 As shown in Fig. 6, the Ni 195 

nanoparticles−rGO composites shows saturation magnetization of 43.54 emu/g and the 196 

reduction of this saturation magnetization value in comparison to bulk  nanoparticle  is due to 197 

the increase in surface to volume ratio resulting from decrease in particle size.54 The 198 

Remanence magnetization (Mr) of the sample is found to be 6.92 emu/g and the coercivity 199 

(Hc) of 197.54 Oe which is greater than the bulk nickel. The increase in coercivity value in 200 

comparison to bulk nickel confirms the rule of HC ∝ 1/D of the multidomain ferromagnetic 201 

nanoparticles.55 Thus, the excellent ferromagnetic behaviour of Ni nanoparticles−rGO 202 

composite fulfils our aim to develop more efficient and easily separable catalyst in catalysis 203 

reaction. 204 

 205 
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Catalytic study 206 

After complete characterization of the Ni nanoparticles-rGO catalyst, it was utilized as an 207 

effective catalyst for the Sonogashira cross-coupling reaction of aryl halides with phenyl 208 

acetylenes in presence of CuI. Initially, we optimized the reaction conditions using 209 

bromobenzene 1e and phenyl acetylene 2a as model substrates. Different solvents as well as 210 

bases were screened and the results are summarized in Table 1. We first examined the effect 211 

of solvents on this coupling reaction by using K2CO3 as a base. The results revealed that N-212 

methyl-2-pyrrolidone (NMP) was the best solvent for this coupling reaction (Table 1, entry 213 

7). Then we examined different bases such as Na2CO3, KOH, NaOH and K3PO4.  The use of 214 

strong bases such as NaOH and KOH gave low yield of the product (Table 1, entry 10, 13), 215 

whereas Na2CO3 and K3PO4 showed almost identical results. Additionally, we run the 216 

coupling reaction at different temperatures and 120 oC was found the optimum reaction 217 

temperature for this reaction.  218 

Table 1: Optimization studies for the Ni nanoparticles-rGO catalyst in the Sonogashira cross-219 

coupling reaction a 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

   228 

 
Entry 

 

Solvent Base Temperature (
O
C) Yield (%) 

b
 

1 H2O K2CO3 110 15 
2 DMF K2CO3 60 40 
3 DMF K2CO3 120 45 
4 Toluene K2CO3 120 30 
5 
6 

NMP K2CO3 60 70 
NMP K2CO3 100 85 

7 NMP K2CO3 120 93 

8 
9 

DMSO K2CO3 100 80 

DMSO K2CO3 120 80 
50 10 NMP KOH 120 

11 NMP Na2CO3 120 92 
12 NMP K3PO4 120 90 
13 NMP      NaOH 120 58 

a Reaction conditions: Bromobenzene (1 mmol), Phenyl acetylene  (1.2  mmol), CuI (0.08 
mmol), catalyst (25 mg, 0.15 mmol Ni), base (3 mmol), Solvent (5 mL), 4 h. b Isolated 
Yield  
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After having the optimized reaction conditions, we explored the versatility and efficiency of 229 

our catalyst for the Sonogashira cross-coupling reaction using different aryl halides with 230 

phenyl acetylenes. The results are shown in Table 2.  As shown in Table 2, the aryl halides 231 

such as bromides and iodides efficiently coupled with phenyl acetylenes to give the excellent 232 

yield of the desired product in spite of electron-rich, electron-poor and electron-neutral nature 233 

of the halides. The reaction conditions are notably compatible with nitro group on the aryl 234 

ring. Having established a range of aryl bromide and aryl iodide as coupling partner, we next 235 

examined the scope of the cross-coupling reaction with aryl chloride (Table 2, entry 14 and 236 

15). Under our optimized conditions, arylchlorides coupled with terminal alkynes and gave 237 

good yield of corresponding products. However, the chloroaryl substrate requires long 238 

reaction time and high reaction temperature as compared to iodides and bromides in order to 239 

get the comparable yield.  Additionally our catalyst system chemoselectively reacts with 240 

bromide, when both chloro- and bromo- groups were present on the same substrate (Table 2, 241 

entry 10).  Our catalyst system was also applied to the heteroaryl halide, 2-bromopyridine and 242 

the coupling products 3i were obtained in 86 % yields (Table 2, entries 16). To further extend 243 

the scope of our Ni nanoparticles-rGO catalyst in the Sonogashira cross-coupling reaction, 244 

we choose a heteroaryl substrate having both bromo and iodo-substituents. In this regard, 2-245 

bromo-5-iodopyridine was treated with three equivalents of phenylacetylene under our 246 

catalytic conditions. The product 3j was obtained with excellent yield (Scheme 1). 247 

 248 

Furthermore, we have compared our Ni nanoparticles-rGO catalyst with other previously 249 

reported heterogeneous as well as homogenous catalyst of Ni to highlight the advantages of 250 

our catalyst in the sonogashira cross-coupling reaction (Table 3). From this comparison 251 

results, we have found that our synthesized catalyst is more advantageous with respect to 252 
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yield and reaction condition. Moreover, in most of these cases, the scope of their catalyst in 253 

Sonogashira cross-coupling reaction is limited to only aryl iodides with phenyl acetylenes. 254 

 255 

Table 2: Sonogashira cross-coupling of various aryl halides and phenyl acetylenes 
a 256 

 

Entry Aryl halide 

1(a-m) 

Alkynes 

2(a-b) 

Product 

3(a-i) 

Yield 
b 

(%) 

1 

                   

95 

2 

               

94 

3 

        

95 

4 

 
            

95 

5 

               

93 

6 

     

91 

7 

                     

93 

8 

        

93 

9 

      

88 

10 

          

91  

11 

 
 

           

93 
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a Reaction conditions: Aryl halide (1 mmol), Phenyl acetylene  (1.2  mmol), CuI (0.08 mmol), 
catalyst (25 mg, 0.15 mmol Ni), K2CO3 (3 mmol), NMP (5 mL, 120 o C, 4 h. b Isolated Yield. C 

The reaction was performed at 140 oC for 16h. NP: nanoparticle 
 
 

 257 

Scheme 1. Ni nanoparticles-rGO catalysed Sonogashira cross-coupling reaction of 2-bromo-258 

5-iodopyridine with phenyl acetylenes.   259 

 

Table 3: Comparison of catalytic activity of Ni nanoparticles-rGO catalyst with other 

homogenous and heterogeneous catalyst of Ni 

 

Catalyst Conditions Yield 

(%) 

Ref 

Ni nanoparticle-rGO K2CO3, NMP, CuI, 120 oC, 4 h 70-95 This work 

Si-P4VPy-Ni0 K2CO3, NMP, CuI, 120 oC, 1.5-10 h 40-90 39 
Pd70Ni30/MWCNTs NaOH, Pyrrolidine, 120 oC, 1h 60-74 57 
Ni(PPh3)2Cl2 K2CO3, [Cu(CH3CN)4]BF4, reflux 57 58 
NiCl2.6H2O- n-Bu4NBr NaOH, Ethylene Glycol, 120 oC,1-12 h 46-91 59 
Ni(PPh3)2Cl2 K2CO3, CuI, Dioxane:H2O, reflux, 4 h 93-100 38 
Ni(0)-CuI-PPh3 KOH, isopropanol, 80-120 oC, 5 h 56-98 40 
Ni(PPh3)2Cl2/CuI Cs2CO3, H2O, Surfactant, 60 oC, 2-6 h 70-92 41 
Ni-PPh2-PMOs(Ph) K2CO3, CuI, Dioxane/H2O, N2 protection 63-75 37 
 260 
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At present, the exact mechanism of the reaction is not clear. However, we proposed here a 261 

plausible mechanism for the Ni nanoparticles-rGO catalyzed Sonogashira cross-coupling 262 

reaction as shown in scheme 2. We believed that, the Ni nanoparticles-rGO undergoes 263 

oxidative addition with aryl halide to form Ni(II) reactive species which readily 264 

transmetalated with Cu-phenylacetylene to form intermediate A. Finally the desired coupling 265 

product is formed from the resulting intermediate A via reductive elimination. 37, 58, 60 
266 

 267 

Scheme 2. Proposed mechanism for the Ni nanoparticles-rGO catalyzed Sonogashira cross-268 

coupling   reaction 269 

 270 
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Reusability of the Ni nanoparticle-rGO heterogeneous catalyst 271 

The reusability of our Ni nanoparticles−rGO catalyst for the Sonogashira cross-coupling 272 

reaction was also investigated. The excellent magnetic behaviour of our synthesized Ni 273 

nanoparticles allows themselves to accumulate onto the magnetic stirring bar as soon as the 274 

magnetic stirring was stopped. Therefore, after completion of the reaction, the reaction 275 

mixture could be simply and efficiently separated from the catalyst without using any 276 

filtration or centrifugation. After separating the catalyst, it was washed with water followed 277 

by acetone (2 to 3 times) and dried in an air oven and then directly used for subsequent 278 

reaction. To check the reusability of the catalyst, bromobenzene 1e and phenyl acetylene 2a 279 

was used as substrates for the Sonogashira cross-coupling reaction. As shown in Fig. 7, the 280 

recovered catalyst was consecutively used for six times without loss of its significant activity.  281 

Although, the different type of heterogeneous catalyst of metal nanoparticles are reported for 282 

Sonogashira cross-coupling reaction as discussed in the introduction part, but to the best of 283 

our knowledge no reports are available of characterization of the catalyst after performing the 284 

reaction. We characterized the Ni nanoparticle-rGO heterogeneous catalyst by XRD and 285 

TEM after performing the catalytic reaction as shown in Fig. 8. The average size of the nickel 286 

nanoparticles after performing the reaction was found to be ~3 nm which is very close to the 287 

2.7 nm, the average size of the nanoparticles before the reaction. Also we have found the 288 

same crystallite size of the Ni nanoparticles for both the fresh and reused catalyst by Sherrer 289 

equation using PDXL software in XRD. Therefore, the XRD as well as TEM analysis clearly 290 

demonstrate that the size and morphology of the Ni nanoparticle-rGO catalyst remain 291 

unchanged after performing the catalytic reaction. Moreover, the nickel content of the 292 

recovered catalyst was also determined by ICP-AES which suggest negligible difference with 293 

the catalyst before using in organic catalysis reaction. 294 
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Since the leaching of the nanoparticles from the support is a common problem in catalysis, 295 

we have examined the leaching of Ni nanoparticles from the rGO support by performing hot 296 

filtration test. For that we have considered the Sonogashira-cross coupling reaction of 297 

bromobnezene 1e with phenylacetylene 2a. After continuing the reaction for 1.5 h, the 298 

catalyst was separated and the conversion to 1,2-diphenylethyne 3a  was determined by GC 299 

and was found to be 45 % yield. After that, the filtrate part was further heated for another 5h 300 

to check the progress of the reaction.  From the results obtained by GC it was found that no 301 

further conversion was observed after separation of the catalyst. This clearly proves that no 302 

Ni nanoparticle was leached from the catalyst after performing the reaction. 303 

 304 

Conclusion 305 

In conclusion, the present works reports the decoration of very small and uniform sized 306 

ferromagnetic Ni nanoparticles onto the surface of rGO sheets. The synthesized composite 307 

material shows excellent catalytic activity for the Sonogashira cross-coupling reaction. The 308 

catalyst could be easily magnetically separable from the reaction mixture without any 309 

leaching of the nanoparticles. The size and morphology of the reused catalyst was again 310 

characterized by TEM and XRD which suggest that size and shape of the Ni nanoparticles 311 

remain unchanged without undergoing any agglomeration of the particles. In addition, the use 312 

of Ni nanoparticle as catalyst for the Sonogashira cross-coupling reaction makes the catalytic 313 

process more cost effective. In view of these advantages, the present work represents a new 314 

protocol for the synthesis of biphenylacetylenes in an efficient way. 315 

Experimental Section 316 

Materials and Methods 317 
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Materials used for synthesis of Ni nanoparticles-rGO composites are graphite powder 318 

(<20µm, Sigma-Aldrich), potassium permanganate (>99 %, E-Merck, India), Sulfuric acid 319 

(AR grade, Qualigens, India), H2O2 (30%, Qualigens, India), hydrochloric acid (AR grade, 320 

Qualigens, India), hydrazine Hydrate (80%, LobaChemie, India) and NiCl2 (>97 %, E-Merck, 321 

India). All the substrates required for Sonogashira cross-coupling reaction were purchased 322 

from sigma Aldrich, USA and used without any further purification. 323 

Characterization techniques 324 

Powder XRD spectra of the samples were taken on a Rigaku, Ultima IV X-ray diffractometer 325 

from 5–100o 2θ using Cu-Ka source (l = 1.54 A˚). TGA of the samples were performed at a 326 

rate of 5 °C rise in temperature per minute by using TA-SDT (model: Q600DT, TA 327 

Instruments, USA). TEM images were taken from JEOL JEM-2011 electron microscope, 328 

Transmission Electron Microscope, Japan.VSM, USA operated at room temperature to 329 

investigate the magnetic properties of the composite material. SEM-EDS analysis was 330 

performed by using Carl ZEISS Field Emission SEM with Oxford EDS to determine the 331 

elemental composition of the composite material. FTIR spectra were recorded in the 332 

frequency range of400−4000 cm−1 on KBr discs in a Perkin–Elmer system 2000 FT-IR 333 

spectrophotometer. All NMR spectra were taken by using Bruker Advance DPX 300 or 500 334 

MHz spectrometer. Chemical shifts are reported on the δ scale (ppm) downfield from 335 

tetramethylsilane (δ=0.0 ppm) using the residual solvent signal at δ=7.26 ppm (1H) or δ=77 336 

ppm (13C) as internal standard. Gas Chromatography  analyses were performed with the help 337 

of Chemito GC-8610, FID gas chromatograph fitted with Porapak Q column (2 m ×  1/8 // O. 338 

D., SS) and data were analyzed by Winchrom GC data processing software.  Ni content in the 339 

nanocomposite catalyst was determined using the EPA 200.7 method of acid digestion 340 

followed by Inductively Coupled Plasma Analysis (ICP-AES, Perkin Elmer, Optima 5300 V).  341 
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Multilevel Calibration of the Ni was performed using Metal Standard of ICP (Sigma). The 342 

calibration curve was linear with R2 value of 0.99999 343 

           344 

Synthesis of Ni nanoparticle-rGO composite materials 345 

NiCl2 (0.338 g) was dissolved in deionised water (10 mL) in a round bottom flask. Then 15 346 

mL of hydrazine hydrate (80%) was mixed with 10 mL of deionised water which was added 347 

to the above solution and heated to 75 oC for 15 min with stirring. Then 20 mL of an aqueous 348 

suspension of GO (0.012 gL-1) was added to above mixture followed by addition of NaOH 349 

(20 mg) and subjected to ultrasonication for 10 min. Finally, the reaction mixture was 350 

vigorously stirred at 80 oC until the black precipitate of the composites material was obtained. 351 

The solid material was separated by simple filtration and washed with ethanol for several 352 

times followed by water (2 to 3 times) and then dried in an air oven at 60 oC for overnight.  353 

General procedure for the Sonogashira cross-coupling reaction 354 

In a round-bottom flask having aryl halide (1 mmol), phenyl acetylene (1.5 mmol), K2CO3 (3 355 

mmol) and CuI (0.08 mmol), a suspension of the catalyst (25 mg, 0.15 mmol of Ni) in N-356 

methyl-2-pyrrolidone (5 mL) was added. The whole reaction mixture was stirred at 120 oC 357 

for 4 h. After completion of the reaction (monitored by TLC), the catalyst was separated from 358 

the reaction mixture by using an external magnet and the reaction mixture was poured into 359 

water. The organic product was extracted with ethyl acetate (3x10 mL). The combined 360 

organic phase were dried over Na2SO4 and concentrated in vacuum. The crude products were 361 

purified by column chromatography using silica gel (60-120 mesh) with EtOAc/hexanes as 362 

eluent to obtain the desired coupling product. 363 

 364 
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Fig. 1 Powder XRD diffractogram of Ni nanoparticles-rGO composites 
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Fig. 2 TGA curve of (a) GO and (b) Ni nanoparticles -rGO composites 
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Fig. 3 TEM images of Ni nanoparticle on rGO nanosheets (a-d). HRTEM image along with 

particle size distribution (a)   
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Fig. 4 SEM images of Ni nanoparticles on rGO nanosheets (a-b); EDS analysis of Ni 

nanoparticles-rGO composite material 
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Fig. 5  FTIR spectra of (a) GO and (b) Ni nanoparticles -rGO composite 
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Fig. 6 Variation of magnetization (M) with magnetic field (H) at room temperature for Ni 

nanoparticles supported on rGO sheets 
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 Fig. 7 Reusability of the Ni nanoparticles-rGO catalyst for the Sonogashira-cross coupling 

reaction 
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Fig. 8 Characterization of the Ni nanoparticles-rGO catalyst after performing the reaction (a) 

XRD pattern, (b-d) TEM images 
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