Tetrahedron Letters 53 (2012) 4747-4750

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Highly enantioselective hydrogenation of new 2-functionalized quinoline derivatives

Anna M. Maj^{a,c}, Isabelle Suisse^{a,b,c}, Catherine Méliet^{a,c}, Christophe Hardouin^e, Francine Agbossou-Niedercorn^{a,c,d,*}

^a Université Lille Nord de France, F-59000 Lille, France

^b Université Lille1 Sciences et Technologies, F-59655 Villeneuve d'Ascq, France
^c ENSCL, CCM-CCCF, F-59652 Villeneuve d'Ascq, France
^d CNRS, UCCS UMR 8181, F-59655 Villeneuve d'Ascq, France
^e Oril Industrie, 13, rue Auguste Desgenétais, 76210 Bolbec, France

oni industrie, 15, rue nagaste Desgenetais, roz to bolbee, trane

ARTICLE INFO

Article history: Received 23 May 2012 Revised 25 June 2012 Accepted 26 June 2012 Available online 2 July 2012

Keywords: Asymmetric catalysis Hydrogenation Quinolines Iridium

Optically active substituted tetrahydroquinolines constitute the principal structural unit of many natural alkaloids which display a wide range of physiological activities.¹ In addition, they are very useful synthetic intermediates for the preparation of biologically active compounds for pharmaceutical, agrochemical, and fine chemical industries.² (–)-Angustureine and (–)-Galipinine (Fig. 1) which show, for example, antiplasmodial and cytotoxic activities, respectively, are two members of the array of chiral 2-substituted tetrahydroquinolines of interest.^{2,3} The catalytic asymmetric hydrogenation of quinolines provides a very convenient and straightforward access to non-racemic substituted tetrahydroquinolines.⁴⁻⁸ Successful asymmetric hydrogenation of quinoline derivatives with iridium catalysts modified by chiral diphosphines and assisted by iodine has been demonstrated.⁵ Other efficient chiral iridium⁶ as well as ruthenium⁷ hydrogenation catalysts and organometallic and organic based transfer hydrogenation processes⁸ have also been reported. Regardless of the recent progresses, highly enantioselective hydrogenation of various functionalized quinolines still remains a challenge. Previous reports have focused generally on aryl, alkyl, and benzyl 2-substituted quinolines. However, a

* Corresponding author. Tel.: +33 (0)320674927; fax: +33 (0)320674488.

ABSTRACT

The asymmetric hydrogenation of a new series of 2-functionalized quinolines has been developed in the presence of in situ generated catalysts obtained from $[Ir(cod)Cl]_2/(R)$ -bisphosphine/I₂ combinations. The enantioselectivity levels were as high as 84–94% ee for the synthesis of 1,2,3,4-tetrahydroquinolines. © 2012 Elsevier Ltd. All rights reserved.

Figure 1. Selected bioactive quinoline derivatives isolated from Galipea officinalis.

Scheme 1. Synthesis of the new substrates.

E-mail addresses: anna.maj@ensc-lille.fr (A.M. Maj), isabelle.suisse@ensc-lille.fr (I. Suisse), meliet@ensc-lille.fr (C. Méliet), christophe.hardouin@fr.netgrs.com (C. Hardouin), agbossou@ensc-lille.fr (F. Agbossou-Niedercorn).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.06.114

larger substrates scope is desirable in order to increase the promise applications of this methodology.

Following our interest in the asymmetric hydrogenation of aromatic heterocycles,⁹ we sought to examine new 2-substituted quinolines which would present a high synthetic potential for further elaboration into valuable molecules. For this purpose, we explored 2-substituted quinolines bearing esters (**1–4**), hydroxymethyl (**5**), bromomethyl (**6**), and protected amine (**7**) groups which represent especially convenient functionalities for organic synthesis.

The syntheses of the new 2-functionalized quinolines are shown in Scheme 1. They have been performed from commercial

Table 1

Asymmetric hydrogenation of quinoline-2-carboxylates 1-4^a

Substrate	Ligand	Conv. ^b (%)	Yield ^c (%)	ee ^c (%)
R = Me, 1	L1	100	88	66
	L1	100	88	53
	L2	98	97	49
	L3	75	70	38
	L4	99	99	21
	L5	97	91	50
	L6	100	98	25
	L7	100	95	74
	L8	88	82	72
	L8	94	89	72
	L9	95	87	55
R = Et, 2	L7	99	94	94
	L8	99	94	88
	L7	100	100	85
R = <i>n</i> -Pr, 3	L7	100	100	90
R = <i>i</i> -Pr, 4	L7	100	100	75
	Substrate R = Me, 1 R = Et, 2 R = <i>n</i> -Pr, 3 R = <i>i</i> -Pr, 4	Substrate Ligand R = Me, 1 L1 L2 L3 L4 L5 L6 L7 L8 L9 R = Et, 2 L7 L8 L9 R = n-Pr, 3 L7 R = i-Pr, 4 L7	Substrate Ligand Conv. ^b (%) R = Me, 1 L1 100 L1 100 L2 98 L3 75 L4 99 L5 97 L6 100 L7 100 L8 88 L8 94 L9 95 R = Et, 2 L7 99 L7 100 R = n-Pr, 3 L7 100 R = <i>i</i> -Pr, 4 L7 100	Substrate Ligand Conv. ^b (%) Yield ^c (%) R = Me, 1 L1 100 88 L1 100 88 L2 98 97 L3 75 70 L4 99 99 L5 97 91 L6 100 98 L7 100 95 L8 88 82 L8 94 89 L9 95 87 R = Et, 2 L7 99 94 L7 100 100 R = n-Pr, 3 L7 100 100 R = i-Pr, 4 L7 100 100

 a All reactions were performed on a 1 mmol scale; S/lr/L/l_2 = 100/1/1.1/5; P_{H2} = 50 bar; 20 °C; toluene 7 mL; 17 h.

^b Conversion determined by GC and RMN.

^c Yield determined by HPLC analysis on Chiralcel OJ-H column (hexane/*i*-PrOH 70:30, 1 mL/min).

^d 30 h.

^e The catalyst was prepared under air.

methyl quinoline 2-carboxylate **1**. The *n*-propyl quinoline 2-carboxylate **3** and *iso*propyl quinoline 2-carboxylate **4** esters were obtained by transesterification of methyl ester **1** in the presence of a catalytic amount of cesium carbonate in the appropriate alcohol. As already described, quinolin-2-yl methanol **5** was obtained by classical reduction of methyl ester **1** in the presence of sodium borohydride.^{5a} Substitution of the hydroxy moiety by a bromide in the presence of PBr₃ led to 2-(bromomethyl)quinoline **6**. The synthesis of the amino protected quinoline **7** has been performed from 2-(bromomethyl)quinoline **6** by reaction with di*-tert*-butylimino-dicarboxylate in the presence of potassium carbonate affording the *N*.*N*-diBoc-quinolin-2ylmethanamine **7**.

For our preliminary hydrogenation experiments, we chose methyl quinoline 2-carboxylate 1 as the substrate and varied the chiral ligand under the standard reaction conditions (toluene as the solvent, I_2 as the additive, 50 bar H_2 , 20 °C) (Table 1).^{5a,5l} Among the large array of ligands employed for screening, members of MeO-Biphep family L1-L5, Synphos L6, Difluorphos L7, and P-Phos L8 and L9 furnished the most promising results (Fig. 2, Table 1). The reactions proceeded smoothly with high conversions. The highest enantioselectivities of 72-74% ee were achieved by applying ligands L7 and L8 (entries 8 and 9). The transfer of the chiral information is related to the dihedral angle of the biaryl and the stereoelectronic properties of the P-substituents of the ligands. As already highlighted by Chan,^{5g} the catalysts bearing P-Phos ligand L8 could be prepared under air without pre-degassing and drying of the solvent, it displayed similar activity and enantioselectivity as if prepared under inert atmosphere (entry 10 vs 9). However, an erosion of the enantioselectivity was observed when the catalyst bearing L1 was prepared under air (entry 2 vs 1).5g,5l

Next, we examined the hydrogenation of three other esters **2–4** with bulkier groups in the presence of Difluorphos **L7** and P-Phos **L8** ligands (entries 12–16). The selectivity of hydrogenation of ethyl ester **2** increased significantly compared to results obtained with the methyl congener **1** (from 74 to 94% ee in the presence of **L7**) (entries 8 and 12). Nonetheless, a further increase of the bulkiness of the ester from ethyl to propyl groups resulted in a substantial erosion of the enantioselectivity. Actually, the hydrogenation of *n*- and *i*-propyl esters **3** and **4** proceeded with 90% and 75% ee, respectively (entries 15 and 16).

It is important to mention that for methyl (8) and ethyl (9) ester hydrogenation products, we observe the slow dehydrogenative

Figure 2. Bisphosphine ligands used.

Table 2Asymmetric hydrogenation of 5^a

Entry	Ligand	Solvent	Conv. (%) ^b	Yield (%) ^c	ee (%) ^c
1	L7	Toluene	4	4	nd
2 ^d		Toluene	100	100	83
3		Toluene/MeOH	100	100	75
4		Toluene/i-PrOH	97	97	84
5 ^e		Toluene/i-PrOH	77	77	81
6 ^f	L9	Toluene/i-PrOH	100	100	70
7	L2	Toluene/i-PrOH	99	99	70
8 ^f	L8	Toluene/i-PrOH	97	97	78
9 ^f	L10	Toluene/i-PrOH	100	100	80

^a All reactions were performed on a 1 mmol scale; S/Ir/L/I₂ = 100/1/1.1/5; P_{H2} = 50 bar; 20 °C; 17 h; solvent 7 mL, toluene/MeOH or toluene/i-PrOH = 8/1. ^b Conversion determined by GC and RMN.

^c Yield determined by HPLC analysis on a Chiralcel OD column (hexane/i-PrOH 90:10. 1 ml/min).

^d 20 °C, 10 days;

^e 10 °C, 17 h;

^f 30 °C: 17 h

aromatization of the nitrogen heterocycle leading back to substrates $\mathbf{1}$ and $\mathbf{2}$ when the products were stored in solution under the light.¹⁰

Afterward, we considered the asymmetric hydrogenation of 2hydroxymethyl quinoline **5** under our standard reaction conditions (Table 2).

Due to the low solubility of 5, the hydrogenation in neat toluene was sluggish and required about 10 days to go to completion. The hydrogenation product was however obtained with 83% ee (entry 2 vs 1). The addition of methanol allowed improving the solubility of 5 and consequently the efficiency of the hydrogenation into 12 (entry 3). Thus, when varying the ratio of toluene and methanol, we found an optimal combination of 8:1. Even if the reaction could go to completion within 17 h, the selectivity into 12 dropped from 83 to 75% ee compared to results obtained in neat toluene (entry 3 vs 2). The substitution of MeOH by iPrOH allowed an increase of the enantioselectivity from 75% to 84% ee (entry 4). This result is the best among all attempts while varying further the chiral ligand (entries 6-9 vs 4). The hydrogenation of 5 has been reported only once by Zhou in neat *i*PrOH but with a lower enantioselectivity (75% ee).^{5a} A lowering of the reaction temperature to 10 °C had a slight influence on the enantioselectivity and the reaction slowed

Table 3

Asymmetric hydrogenation of 6^a

down as 77% yield was obtained within 17 h (entry 5). It is not straightforward to observe a likely harmful effect on the stability of the catalyst especially in the presence of *iso*propanol as the yield and ee remained high.^{5a,5e}

We then explored the hydrogenation of the 2-bromomethyl substituted quinoline **6** (Table 3). Beside the expected hydrogenation product **13**, we observed the formation of the 2-methyl-1,2,3,4-tetrahydroquinoline **14** resulting from bromide cleavage. The result exhibiting the best compromise between yield and enantioselectivity into **13** was obtained in the presence of ligand **L8** (entry 2). The reaction provided **13** in 100% yield and with 81% of ee. The constant higher ee obtained for **14** suggests that the cleavage of the bromide is occurring most probably prior to hydrogenation of the quinoline heterocycle. Indeed, the results are close to those obtained for the hydrogenation of 2-methyl substituted quinoline.^{5k} When using the corresponding 2-chloroethyl substituted quinoline as a substrate, we observed a systematic cleavage of the chloride and could not find conditions providing selectively the hydrogenated chloroethyl product.

Finally, we concentrated on the nitrogen substituted quinoline **7** which could be of interest for preparing chiral aminoquinolines (Table 4). The *N*,*N*-diBoc protected substrate **7** was easily synthesized from the bromo substituted quinoline **6** (Scheme 1) and provides a direct access to the corresponding amino tetrahydroquinoline after hydrogenation and deprotection. The hydrogenations were carried out under our standard conditions with different ligands. Thus, the hydrogenation of **7** could be performed

Table 4Asymmetric hydrogenation of 7^a

	[Ir(cod)Cl] ₂ chiral ligand	*
R = CH ₂ NBoc ₂ 7	l ₂ toluene	$\overrightarrow{R} = CH_2NBoc_2 $ 15

Entry	Substrate	Ligand	Conv. (%) ^b	Yield (%) ^c	ee (%) ^c
1	7	L7	100	100	83
2		L8	100	100	85
3		L10	100	100	87
4^d			100	100	91

 a All reactions were performed on a 1 mmol scale; S/lr/L/l_2 = 100/1/1.1/5; P_{H2} = 50 bar; 20 °C; toluene 7 mL; 17 h.

^b Conversion determined by GC and RMN.

^c Yield determined by HPLC analysis: Chiralcel OD column (hexane/*i*-PrOH 98:2, 0.2 mL/min).

0 °C, 80 bar.

		N N N	Br I2 solvent	A Br + N * N * N * N * N * N * N * N * N * N		
Entry	Ligand	Conv. (%) ^b	Yield 13 (%) ^c	Yield 14 (%) ^c	ee 13 (%) ^c	ee 14 (%) ^c
1 ^{<i>d</i>}	L7	100	65	30	69	90
2	L8	100	100	_	81	-
3 ^e		100	55	45	45	82
4	L10	100	44	56	79	84

^a All reactions were performed on a 1 mmol scale; $S/Ir/L/I_2 = 100/1/1.1/5$; $P_{H2} = 30$ bar; 20 °C; 17 h; toluene/i-PrOH 8:1; 7 mL.

^b Conversion determined by GC and RMN.

^c Yield determined by HPLC analysis on Chiralcel OD column (hexane/*i*-PrOH 98:2, 1.5 mL/min).

^d 50 bar H_2 .

^e 20 bar H₂.

in an excellent yield (100%) and with a high enantioselectivity of 87% with Segphos **L10** (entry 3). By lowering temperature to 0 °C, the ee could be increased up to 91% with always a complete conversion (entry 4).

In conclusion we have developed the highly enantioselective asymmetric hydrogenation of a range of 2-functionalized quinolines using Ir/bisphosphine/ I_2 based catalytic systems. It has been shown that this type of catalytic system tolerates esters and hydroxy groups. We demonstrate here that it is also the case for nitrogen and bromide substituents. This methodology provides an access to synthetically useful chiral tetrahydroquinolines with excellent enantioselectivities especially for substrates **2** and **7**, the latter providing interesting building blocks for synthesis. Further investigations on 2-functionalized quinolines will be reported in due course.

Acknowledgments

This work was supported by Oril Industries (A.M.M.). The authors thank J.-P. Lecouvé, N. Pinault, L. Vaysse-Ludot for fruitful discussions, and Justine Lucet for some experiments. The Conseil Régional Nord - Pas de Calais and PRIM SP are thanked for founding of the ELEMENTAR, vario MICRO equipment for the elemental analyses. Mrs N. Duhal (CUMA, Pharm. Dept., Univ. Lille Nord de France) is thanked for the mass analysis.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.06.114.

References and notes

- (a) Rokotoson, J. H.; Fabre, N.; Jacquemond-Collet, I.; Hannedouche, S.; Fouraste, I.; Moulis, C. *Planta Med.* **1998**, *64*, 762–763; (b)Comprehensive *Natural Products Chemistry*; Barton, D. H. R., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Oxford, 1999; Vols 1-9, (c) Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fourasté, I.; Moulis, C. *Phytochemistry* **1999**, *51*, 1167–1169; (d) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med. **1999**, *65*, 250–254; (e) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. **2004**, *104*, 3341.
- (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**, 48, 15031– 15070; (b) Scott, J. D.; Williams, R. M. *Chem. Rev.* **2002**, *102*, 1669–1730; c Key, J. D. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, pp 579–601.
- (a) Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. Tetrahedron: Asymmetry 2005, 16, 827–831; (b) Jacquemond-Collet, I.; Benoit-Vical, F.; Mustofa, A.; Valentin, A.; Stanislas, E.; Mallié, M.; Fourasté, I. Planta Med. 2002, 68, 68–69; (c) Yang, P.-Y.; Zhou, Y.-G. Tetrahedron: Asymmetry 2004, 15, 1145– 1149.
- For recent reviews, see: (a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557–2590; (b) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171–4175; (c) Kuwano, R. Heterocycles 2008, 76, 909–922; (d) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357; (e) Fleury-Brégeot, N.; De La Fuente, V.; Castillon, S.; Claver, C. ChemCatChem 2010, 2, 1346–1371.

- 5. Examples of Iridium catalyzed hydrogenation of quinolines assisted by I2: (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536–10537; (b) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909-912; (c) Reetz, M. T.; Li, X. Chem. Commun. 2006, 2159-2160; (d) Chan, S.-H.; Lam, K.-H.; Li, Y.-M.; Xu, L.-J.; Tang, W.-J.; Lam, F. L.; Lo, W. H.; Yu, W. Y.; Fan, Q.-H.; Chan, A. S. C. Tetrahedron: Asymmetry 2007, 18, 2625-2631; (e) Lam, K. H.; Xu, L.-J.; Feng, L. C.; Fan, Q.-H.; Lam, F. L.; Lo, W.-H.; Chan, A. S. C. Adv. Synth. Catal. 2005, 347, 1755-1759; (f) Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.-H.; Chan, A. S. C. Chem. Commun. 2007, 613-615; (g) Xu, L.-J.; Lam, K.-H.; Ji, J.; Wu, J.; Fan, Q.-H.; Lo, W.-H.; Chan, A. S. C. Chem. Commun. 2005, 1390-1392; (h) Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, T.; Kataoka, Y.; Ratovelomanana-Vidal, V.; Genet, J.-P.; Mashima, K. Organometallics 2006, 25, 2505-2513; (i) Tang, W.-J.; Tan, J.; Xu, L.-J.; Lam, K.-H.; Fan, Q.-H.; Chan, A. S. C. Adv. Synth. Catal. 2010, 352, 1055–1062; (j) Wang, D.-S.; Zhou, J.; Wang, D.-W.; Guo, Y.-L.; Zhou, Y.-G. Tetrahedron Lett. 2010, 51, 525–528; (k) Tang, W.-J.; Sun, Y.; Xu, L.-J.; Wang, T.; Fan, Q.-H.; Lam, K.-H.; Chan, A. S. C. Org. Biomol. Chem. 2010, 8, 3464-3471; (1) Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74, 2780-2787; (m) Wang, X.-B.; Zhou, Y.-G. J. Org. Chem. 2008, 73, 5640-5642; (n) Wang, Z.-J.; Deng, G.-J.; Li, Y.; He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett. 2007, 9, 1243-1246; (o) Deport, C.; Buchotte, M.; Abecassis, K.; Tadaoka, H.; Ayad, T.; Ohshima, T.; Genêt, J.-P.; Mashima, K.; Ratovelomanana-Vidal, V. Synlett 2007, 2743–2747; (p) Gou, F.-R.; Li, W.; Zhang, X.; Liang, Y.-M. Adv. Synth. Catal. 2010, 352, 2441-2444; (q) Wang, D.-W.; Wang, D.-S.; Chen, Q.-A.; Zhou, Y.-G. Chem. Eur. J. 2010, 16, 1133-1136; (r) Eggenstein, M.; Thomas, A.; Theurkauf, J.; Francio, G.; Leitner, W. Adv. Synth. Catal. 2009, 351, 725-732; (s) Jahjah, M.; Alame, M.; Pellet-Rostaing, S.; Lemaire, M. Tetrahedron: Asymmetry 2007, 18, 2305–2312; (t) Zhang, D.-Y.; Wang, D.-S.; Wang, M.-C.; Yu, C.-B.; Gao, K.; Zhou, Y.-G. Synthesis 2011, 17, 2796-2802; (u) Zhang, D. Y.; Yu, C.-B.; Wang, M.-C.; Gao, K.; Zhou, Y.-G. Tetrahedron Lett. 2012, 53, 2556-2559
- Other Iridium based asymmetric hydrogenation of quinolines: (a) Lu, S.-M.; Bolm, C. Adv. Synth. Catal. 2008, 350, 1101–1105; (b) Rubio, M.; Pizzano, A. Molecules 2010, 15, 7732–7742; (c) Mrsic, N.; Lefort, L.; Boogers, J. A. F.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2008, 350, 1081– 1089; (d) Rueping, M.; Koenigs, R. M. Chem. Commun. 2011, 47, 304–306; (e) Li, Z.-W.; Wang, T.-L.; He, Y.-M.; Wang, Z.-J.; Fan, Q.-H.; Pan, J.; Xu, L.-J. Org. Lett. 2008, 22, 5265–5268; (f) Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260–2263; (g) Wang, D.-S.; Zhou, Y.-G. Tetrahedron Lett. 2010, 51, 3014–3017; (h) Tadaoka, H.; Cartigny, D.; Nagano, T.; Gosavi, T.; Ayad, T.; Genêt, J.-P.; Ohshima, T.; Ratovelomanana-Vidal, V.; Mashima, K. Chem. Eur. J. 2009, 15, 9990–9994; (i) Dobereiner, G. E.; Nova, A.; Schley, N. D.; Hazari, N.; Miller, S. J.; Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc. 2011, 133, 7547–7561.
- Ruthenium based asymmetric hydrogenation of quinolines: (a) Zhou, H.; Li, Z.; Wang, Z.; Wang, T.; Xu, L.-J.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.; Chan, A. S. C. *Angew. Chem., Int. Ed.* **2008**, 47, 8464–8467; (b) Wang, T.; Ouyang, G.; He, Y.-M.; Fan, Q.-H. Synlett **2011**, 7, 939–942; (c) Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C. *J. Am. Chem. Soc.* **2011**, *133*, 9878–9891; (d) Wang, Z.-J.; Zhou, H.-F.; Wang, T.-L.; He, Y.-M.; Fan, Q.-H. Green Chem. **2009**, *11*, 767–769; (e) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. *J. Am. Chem. Soc.* **2012**, *134*, 2442–2448.
- Asymmetric transfer hydrogenation of quinolines: (a) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. **2008**, 47, 759–762; (b) Wang, C.; Li, C.; Wu, X.; Pettman, A.; Xiao, J. Angew. Chem., Int. Ed. **2009**, 48, 6524–6528; (c) Parekh, V.; Ramsden, J. A.; Wills, M. Tetrahedron: Asymmetry **2010**, 21, 1549–1556; (d) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. **2008**, 350, 1001–1006; (e) Rueping, T.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. **2006**, 45, 3683–3686.
- 9. Maj, A. M.; Suisse, I.; Méliet, C.; Agbossou-Niedercorn, F. Tetrahedron: Asymmetry 2010, 21, 2010–2014.
- (a) Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R. H. New J. Chem. 2006, 30, 1675– 1678; (b) Dean, D.; Davis, B.; Jessop, P. G. New J. Chem. 2011, 35, 417–422.