

Catalytic Asymmetric Synthesis of *anti-\alpha,\beta-Diamino Acid Derivatives*

Sanae Izumi, Yusuke Kobayashi, and Yoshiji Takemoto*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Supporting Information

ABSTRACT: A novel approach to chiral *anti-\alpha_{,\beta}*-diamino acid derivatives through tandem orthogonal organocatalysis has been developed. Chiral phosphoric acid catalysts control the chemo-, regio-, and stereoselective addition of hydroxylamines to alkylideneox-azolones, while a phosphine catalyst promotes the isomerization of *Z*-alkylideneoxazolones to the more reactive *E*- alkylideneoxazolones.

 α,β -Diamino acid derivatives have attracted much attention as important building blocks for the synthesis of various bioactive molecules.¹ In particular, mureidomycins and napsamycins are peptidylnucleoside antibiotics that contain *anti-* α,β -diamino acid residues and show potent antibacterial activity against strains of *Pseudomonas aeruginosa* (Figure 1).^{1,2} One of the

most useful strategies for the synthesis of α,β -diamino acid derivatives is an asymmetric Mannich reaction using an α substituted oxazolone.¹ However, in this type of reaction, the product is limited to α,β -diamino acids with an α -tetrasubstituted carbon stereocenter.^{3,4} We planned a novel strategy for a catalytic synthesis of chiral *anti*- α,β -diamino acid derivatives with an α -trisubstituted carbon stereocenter⁵ using 4alkylideneoxazolones **A** and hydroxylamine derivatives as substrates (Scheme 1).

The salient features of this method are as follows. (i) The stereochemistry of the two vicinal chiral centers would be controlled via aza-Michael adduct **B**, where a subsequent ringopening reaction⁶ of the *anti*-isomer should be favored, affording the *anti*-isoxazolidinone **C**. Epimerization of *syn*isomer to the more stable *anti*-isomer would also be expected. (ii) Intermediate **C** could also be used for peptide ligation to give adduct **D**, whose hydroxylamine moiety could be further elaborated for another peptide ligation.⁷ (iii) In the first step, competitive oxa-Michael reaction and 1,2-addition⁸ of the hydroxylamine would be fully regulated by a catalyst, resulting in only the desired aza-Michael reaction.

Scheme 1. Synthetic Strategy

We initially sought efficient catalysts that promoted the aza-Michael reaction of alkylideneoxazolone (Z)-1a with BocN-HOH (2) (Table 1). No reaction occurred in the absence of a catalyst (Table 1, entry 1). Unfortunately, thiourea catalyst 5⁹ that our laboratory had previously developed promoted the undesired O-1,2-addition reaction (Table 1, entry 2),¹⁰ presumably owing to activation of the more acidic OH8 group of 2 with the tertiary amine moiety of the catalyst. We then screened various organocatalysts without tertiary amine moieties and found that racemic phosphoric acid catalyst 7a provided the desired product, 5-oxoisoxazolidine (anti-4a), whose structure was determined by X-ray crystallographic analysis.¹⁰ This indicated that the aza-Michael reaction had occurred, followed by ring opening of oxazolone intermediate B (Table 1, entry 4). Interestingly, other possible products such as the oxa-Michael and 1,2-addition adducts were not observed, and only syn-4a was detected as a minor component. After

Received: December 26, 2015

Table 1. Screening of the Reaction Conditions

^{*a*}Isolated yields. ^{*b*}No reaction. ^{*c*}53% of **3a** was obtained. ^{*d*}5 mol % of **6** was used as catalyst. ^{*e*}**3a** was not observed. ^{*f*}The ratio was determined on the basis of isolated yields of **4a**. ^{*g*}Not determined. ^{*h*}The ratio was determined based on isolated yields of **8a**.

several attempts at isolation, product **4a** was shown to be unstable in silica gel, which led to investigations into derivatizing **4a**. Eventually, we successfully obtained stable *anti-\alpha,\beta-diamino acid derivative 8a via a ring-opening reaction of 4 using methanol (Table 1, entry 5).*

Encouraged by these results, we next attempted an asymmetric reaction using chiral phosphoric acid 7b (Scheme 2). We were interested in the differing reactivity between the *E*-and *Z*-isomers,^{11,12} so (*Z*)-1a and (*E*)-1a¹⁰ were investigated under the same reaction conditions. In the presence of 4 mol % of 7b, the reaction of (*Z*)-1a proceeded slowly to furnish the desired compound 8a in 72% yield (*anti/syn* = 74:26) with 25%

ee (major anti isomer) after ring opening with methanol. The absolute configuration of both anti-4a and syn-4a was determined by derivatization to known compounds.¹³ Very interestingly, the reaction of (E)-1a occurred much faster than (Z)-1a to give ent-8a in higher enantioselectivity. To confirm the reaction rate of each of the isomers, time course analysis of product formation by ¹H NMR was conducted, indicating that the reactivity of (E)-1 was much higher.¹⁰ More importantly, the isomerization of each isomer occurred under the reaction conditions, leading to an equilibrium mixture (Z/E = ca. 89:11).¹⁰ This made us revise our strategy to achieve high yield and stereoselectivity: (i) *E*-isomers would be a suitable substrate for achieving excellent stereoselectivity, although suppression of the reaction from the *Z*-isomers would be necessary (Table 2); and (ii) the more stable *Z*-isomers could

Table 2. Phosphoric Acid Catalyzed Aza-Michael/Ring Opening of Propylideneoxazolone (E)-1

Et N O Ar ¹ (<i>E</i>)-1	1) 2 , 7b CH ₂ C 2) Et ₃ N, rt, 12	0 (4 mol % Cl ₂ , temp , MeOH 2 h	Boc , 24 h _ Et ⁻	N OH H N O Ar ¹ ent-8	$Ar^{1} = -Ph \qquad 1b, f$ $ar^{1} = -Ph \qquad 1d, f$ $Ar^{1} = 1d, f$ $Ar^{1} = 0Me \qquad b$ $ar^{0} = 0Me \qquad b$	$Ar^{1} =$ $Ar^{1} =$ $Ar^{1} =$ F $Ar^{1} =$ CI
entry	1	cat.	temp	<i>ent-</i> 8 (yield, %)ª	8 , anti/syn ^b	8 , ee ^c (%)
1	la	7b	rt	ent- 8a (50)	65:35	58
2	1a	7c	rt	ent- 8a (70)	65:35	10
3	1a	7d	rt	ent- 8a (67)	64:36	15
4	1a	7e	rt	ent- 8a (50)	76:24	68
5	1a	7f	rt	ent- 8a (53)	75:25	76
6	1a	7 f	0 °C	ent- 8a (56)	76:24	90
7	1b	7 f	0 °C	ent- 8b (48)	81:19	98
8	1c	7 f	0 °C	ent- 8c (59)	71:29	91
9	1d	7 f	0 °C	ent- 8d (44)	75:25	94
10	1e	7 f	0 °C	ent- 8e (46)	70:30	85
		Ar D∑P ^{∠O} OH Ar	7c, Ar = 0 7d, Ar = 3 7e, Ar = 2	C ₆ F ₅ 3,5-(CF ₃) ₂ C ₆ H ₃ 2,4,6-(<i>i</i> -Pr) ₃ C ₆ H	2 2 7f	SiPh3 D_P_O D^P_OH SiPh3

^aIsolated yields of *ent-8* in two steps. ^bThe ratio was determined by isolated yields. ^cDetermined by chiral HPLC analyses.

be used as substrates if an additional catalyst could enable isomerization to the *E*-isomers during the reaction, maintaining high stereoselectivities (Table 3).

Thus, we moved on to investigate the reaction of *E*-isomers (Table 2). First, we screened several chiral phosphoric acids 7b-f at room temperature (Table 2, entries 1-5) and found that 7f gave the product in 53% yield with 76% ee (Table 2, entry 5). Lowering the reaction temperature improved the enantioselectivity to 90% ee, possibly because of suppression of the isomerization of (*E*)-1 to (*Z*)-1 and the direct reaction of (*Z*)-1 (Table 2, entry 5 vs 6). We next investigated the effect of the aryl substituent on the oxazolone (Table 2, entries 7-10).¹ Although the reaction rate was not affected by the presence of either electron-donating or -withdrawing groups, 4-methoxy

Table 3. Phosphoric Acid Catalyzed Aza-Michael/RingOpening of Propylideneoxazolone (Z)-1 with 2

^{*a*}Isolated yields of *ent-***8** over two steps. ^{*b*}The ratio was determined by isolated yields. ^{*c*}Determined by chiral HPLC analyses. ^{*d*}The reaction (first step) was performed at 0 °C for 120 h. ^{*e*}10 mol % of 7f was used.

analogue (*E*)-**1b** was found to be an excellent substrate in terms of enantioselectivity (98% ee, Table 2, entry 7), and the diastereoselectivities were slightly improved as well (anti/syn = 81:19).

Although high enantioselectivities were achieved using the Eisomers as substrates (Table 2), unfortunately these were difficult to prepare.¹¹ A method using readily available (Z)-1 would therefore be attractive. To solve this problem, we focused on finding a co-catalyst that promoted isomerization of the alkylideneoxazolone (Table 3).^{14,15} After testing various organic molecules, iodine was found to promote the reaction. However, ¹H NMR experiments showed that iodine itself also catalyzed the racemic aza-Michael/ring opening reaction, which led to only modest enantioselectivities.^{10,16} Further investigations into the orthogonal tandem catalysts led to the discovery that phosphines such as (4-MeOC₆H₄)₃P and CyPh₂P catalyzed not only the isomerization but also the undesired 1,2-addition reaction. However, Ph₃P only catalyzed the isomerization reaction, and was chosen as the catalyst for the reaction, affording ent-8b in 52% yield and in 78% ee (Table 3, entry 1 vs 2).¹⁰ This result strongly suggests that the reaction proceeded mainly through (E)-1b, which was produced by phosphine-catalyzed isomerization of (Z)-1b. After optimization of the reaction temperature, this orthogonal tandem reaction was shown to proceed faster at room temperature than at 0 °C without much loss of ee (Table 3, entry 1 vs 3), probably because the isomerization reaction catalyzed by Ph₃P occurred smoothly at room temperature. The substrate scope of (Z)-1 was then examined under the optimized conditions. Substrates with bulky substitution were likely to provide relatively high enantioselectivity, albeit with slightly decreased yields (Table 3, entries 3-7). The reactivity of (Z)-1f itself was high enough to react with 2 without $Ph_3P_1^{1}$ which decreased the selectivity although the yield of ent-8f was excellent (Table 3, entry 4). (Z)-1j–l with phenyl, alkenyl, and

alkynyl groups were also tolerated in this reaction (Table 3, entries 8-10).

Finally, the coupling reaction of *ent*-**4b** with an α -amino acid was investigated (Scheme 3).¹⁷ In this reaction, **1b** was used

Scheme 3. Coupling Reaction

without separating the Z- and E-isomers (Z/E = 81:19). As *ent*-4b has a tendency to yield racemic crystals, the filtrate obtained by trituration with ether provided *ent,anti*-4b with high ee. In this case, 95% ee of *ent*-4b was obtained and was used for the coupling reaction. Instead of MeOH, 2 equiv of phenylalanine methyl ester hydrochloride was used in the ring-opening reaction and gave the desired product 9 in 82% yield (dr =9 7.4:2.6) without any epimerization, indicating that 4 can be used as a substrate for peptide ligations.

In conclusion, we have developed a novel method for the asymmetric synthesis of $anti-\alpha,\beta$ -diamino acid derivatives with an α -trisubstituted carbon stereocenter using alkylideneoxazolones 1 and a hydroxylamine as substrates through chiral phosphoric acid catalyzed¹⁸ tandem aza-Michael/ring-opening reaction. We investigated the difference in the reactivity of both *E*- and *Z*-isomers of 1. To overcome the low reactivity of (*Z*)-1, a phosphine was used to catalyze the isomerization of (*Z*)-1 to (*E*)-1. We believe that the present reaction offers an efficient method for the synthesis of peptide-based bioactive compounds through ligation. This is now under investigation and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b03666.

Experimental details, compound characterization data for all new compounds, and complete NMR and HPLC spectra (PDF) X-ray data for *anti*-4a (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: takemoto@pharm.kyoto-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge a Grant-in-Aid for Scientific Research (Y.T.) on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" and a Grant-in-Aid for Challenging Exploratory Research (Y.K.) from MEXT, Japan.

REFERENCES

(1) (a) Viso, A.; Fernández de la Pradilla, R.; García, A.; Flores, A. *Chem. Rev.* **2005**, *105*, 3167. (b) Viso, A.; Fernández de la Pradilla, R.; Tortosa, M.; García, A.; Flores, A. *Chem. Rev.* **2011**, *111*, PR1.

(2) Okamoto, K.; Sakagami, M.; Feng, F.; Togame, H.; Takemoto, H.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2012, 77, 1367.

(3) For catalytic asymmetric Mannich reactions using α -substituted oxazolone nucleophiles, see: (a) Ávila, E. P.; Justo, R. M. S.; Gonçalves, V. P.; Pereira, A. A.; Diniz, R.; Amarante, G. W. J. Org. Chem. **2015**, 80, 590. (b) Zhang, W.-Q.; Cheng, L.-F.; Yu, J.; Gong, L.-Z. Angew. Chem., Int. Ed. **2012**, 51, 4085. (c) Shi, S.-H.; Huang, F.-P.; Zhu, P.; Dong, Z.-W.; Hui, X.-P. Org. Lett. **2012**, 14, 2010. (d) Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. **2011**, 133, 3517. (e) Liu, X.; Deng, L.; Jiang, X.; Yan, W.; Liu, C.; Wang, R. Org. Lett. **2010**, 12, 876. (f) Uraguchi, D.; Ucki, Y.; Ooi, T. J. Am. Chem. Soc. **2008**, 130, 14088. (4) Uraguchi, D.; Koshimoto, K.; Ooi, T. Chem. Commun. **2010**, 46, 300.

(5) (a) Liang, G.; Tong, M.-C.; Tao, H.; Wang, C.-J. Adv. Synth. Catal. 2010, 352, 1851. (b) Shang, D.; Liu, Y.; Zhou, X.; Liu, X.; Feng, X. Chem. - Eur. J. 2009, 15, 3678. (c) Hernández-Toribio, J.; Gómez Arrayás, R.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 16150.
(d) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362.

(6) For Michael addition/ring-opening reactions with other nucleophiles, see: (a) Cui, B.-D.; Zuo, J.; Zhao, J.-Q.; Zhou, M.-Q.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2014, 79, 5305. (b) Geng, Z.-C.; Li, N.; Chen, J.; Huang, X.-F.; Wu, B.; Liu, G.-G.; Wang, X.-W. Chem. Commun. 2012, 48, 4713.

(7) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem., Int. Ed. 2006, 45, 1248.

(8) For competitive oxa-Michael reactions, see: (a) Noël, R.; Gembus, V.; Levacher, V.; Brière, J.-F. Org. Biomol. Chem. 2014, 12, 1245. (b) Matoba, K.; Kawai, H.; Furukawa, T.; Kusuda, A.; Tokunaga, E.; Nakamura, S.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2010, 49, 5762. (c) Pohjakallio, A.; Pihko, P. M. Chem. - Eur. J. 2009, 15, 3960. (d) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G.-L.; Córdova, A. Chem. Commun. 2007, 849. For a competitive 1,2-addition, see: (e) Vijay Kumar, S.; Saraiah, B.; Misra, N. C.; Ila, H. J. Org. Chem. 2012, 77, 10752.

(9) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (b) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593.

(10) See the Supporting Information for details of the product characterization data. CCDC 1442977 (*anti*-4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(11) Rao, Y. S.; Filler, R. Synthesis 1975, 749.

(12) (a) Blanco-Lomas, M.; Funes-Ardoiz, I.; Campos, P. J.; Sampedro, D. *Eur. J. Org. Chem.* **2013**, 2013, 6611. (b) Blanco-Lomas, M.; Campos, P. J.; Sampedro, D. *Org. Lett.* **2012**, *14*, 4334.

(13) Robinson, A. J.; Stanislawski, P.; Mulholland, D.; He, L.; Li, H.-Y. J. Org. Chem. **2001**, *66*, 4148.

(14) Lohr, T. L.; Marks, T. J. Nat. Chem. 2015, 7, 477.

(15) Pellissier, H. Tetrahedron 2013, 69, 7171.

(16) Ahmed, N.; Babu, B. V. Synth. Commun. 2013, 43, 3044.

(17) (a) Azumaya, I.; Aebi, R.; Kubik, S.; Rebek, J., Jr. *Proc. Natl. Acad. Sci. U. S. A.* **1995**, *92*, 12013. (b) Obrecht, D.; Karajiannis, H.;

Letter

Lehmann, C.; Schönholzer, P.; Spiegler, C.; Müller, K. Helv. Chim. Acta 1995, 78, 703.

(18) (a) For reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
(c) Terada, M. Chem. Commun. 2008, 4097. (d) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539. (e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.