

Available online at www.sciencedirect.com

INORGANIC CHEMISTRY COMMUNICATIONS

Inorganic Chemistry Communications 10 (2007) 506-509

www.elsevier.com/locate/inoche

First example of pyrrole-2-carbaldehyde thiosemicarbazone as tridentate dianion in $[Pd(\eta^3-N^4,N^3,S-ptsc)(PPh_3)]$ complex

Tarlok S. Lobana^{a,*}, Gagandeep Bawa^a, Alfonso Castineiras^b, Ray J. Butcher^c

^a Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

^b Departamento de Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782 Santiago, Spain

^c Department of Chemistry, Howard University, Washington, DC 20059, USA

Received 16 November 2006; accepted 20 December 2006 Available online 12 January 2007

Abstract

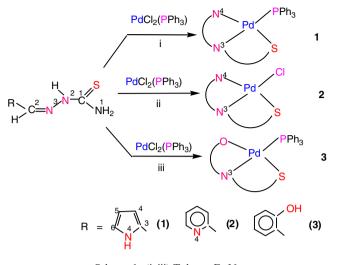
Reaction of pyrrole-2-carbaldehyde thiosemicarbazone (H_2ptsc) with $PdCl_2(PPh_3)_2$ in 1:1 mol ratio in presence of Et₃N leads to complete dechlorination to generate square planar complex, $[Pd(\eta^3 - N^4, N^3, S-ptsc)(PPh_3)]$ (1), existing as three independent molecules in the same unit cell, and H₂ptsc behaves in an unusual dinegative tridentate mode. Salicylaldehyde thiosemicarbazone (H₂stsc) formed similar compound, $[Pd(\eta^3 - O, N^3, S-stsc)(PPh_3)]$ (3).

© 2007 Elsevier B.V. All rights reserved.

Keywords: Pyrrole-2-carbaldehyde thiosemicarbazone; Palladium(II); Triphenyl phosphine; Dechlorination

Pyrrole-2-carbaldehyde thiosemicarbazone (H₂ptsc) has several potential donor sites, and thus binds to metals as a neutral ligand in η^1 -S terminal [1,2], or η^2 - N^3 ,S-chelating bonding modes [3]. Further, it acts as N^3 ,S-chelating anionic ligand after loss of hydrazinic ($-N^2$ H) proton [3–5]. In all the cases reported, pyrrole ring at C² carbon remains pendant, and there is no example to date in which a metal activates pyrrole (–NH) hydrogen to form M–N bonds [1– 5], except removal of this hydrogen by a strongly basic alkyl group of a metal alkyl [6]. On the other hand, pyridine substituent at C² carbon is well known to coordinate to metals, such as in [Pd(η^3 - N^4 , N^3 ,S-pytsc)Cl] (2) (Hpytsc = pyridine-2-carbaldehyde thiosemicarbazone), prepared by the reaction of Li₂PdCl₄ with Hpytsc in methanol [7].

Reaction of $[PdCl_2(PPh_3)_2]$ with Hpytsc in 1:1 and 1:2 ratios in presence of Et₃N, designed to prepare stepwise $[PdCl(pytsc)(PPh_3)]$, and $[Pd(pytsc)_2]$ complexes, invariably formed compound $[Pd(\eta^3-N^4,N^3,S-pytsc)Cl]$ **2**. It showed


strong tendency of pytsc⁻ ligand to act as a tridentate with removal of both phosphine ligands. These observations increased our curiosity to study the comparative behaviour of pyrrole-2-carbaldehyde thiosemicarbazone, which has pendant $(-N^4H)$ nitrogen, and could be a N^4 -donor, if deprotonation occurs at this center. Interestingly, reaction of [PdCl₂(PPh₃)₂] with H₂ptsc in toluene in presence of Et₃N in 1:1 and 1:2 mol ratios, invariably formed compound of stoichiometry, $[Pd(ptsc)(PPh_3)]$ (1). This is an unusual reaction in which both halogens and one PPh₃ ligand are removed along with deprotonation of hydrazinic $(-N^{2}H)$ and pyrrole ring $(-N^{4}H)$ protons, the comparative behaviour of salicylaldehyde thiosemicarbazone is also described and these findings are reported in this communication. In literature, pyrrole ring is known to undergo deprotonation and subsequently bind to a metal center in porphyrins and some other class of ligands [8].

Scheme 1 depicts the formation of compound 1, alongwith formation of compounds 2 and 3. Reaction of $PdCl_2(PPh_3)_2$ [9] with one mole of H_2ptsc , in presence of Et_3N base, in toluene gave complex $[Pd(ptsc)(PPh_3)]$ (1); same product resulted with two moles of H_2ptsc ligand.

^{*} Corresponding author. Fax: +91 183 2 258820.

E-mail address: tarlokslobana@yahoo.co.in (T.S. Lobana).

^{1387-7003/\$ -} see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2006.12.024

Scheme 1. (i-iii) Toluene Et₃N.

The crystal structure of complex 1 (Fig. 1) reveals that Pd is coordinated to one thiosemicarbazone ligand via N^4, N^3 and S donor atoms after deprotonation of $-N^2H$ and $-N^4H$ protons. The reaction appears to occur in a systematic manner in presence of Et₃N base, resulting in removal of both Cl⁻ ions as insoluble Et₃NH⁺Cl⁻ salt in toluene. Due to tridentate binding of the thiosemicarbazone ligand, one of the $-PPh_3$ group is also removed from the metal center. Complex 1 is soluble in toluene, methanol, dichloromethane and chloroform. Compound 3 with salicylaldehyde thiosemicarbazone (H₂stc) was prepared similarly.

Compound 1 showed three types of molecules (A, B, C) with different bond parameters (Table 1). In molecule (A), palladium(II) is bonded to two N atoms at bond distances of

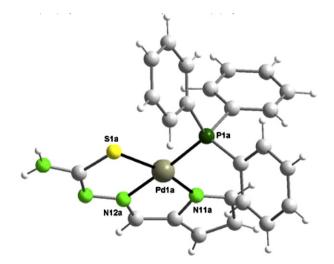


Fig. 1. Structure of complex 1 (molecule A) with atomic numbering scheme. Selected bond lengths (Å) and angles (°): Pd(1A)-N(12A) 2.005(4), Pd(1A)-N(11A) 2.029(4), Pd(1A)-P(1A) 2.2364(13), Pd(1A)-S(1A) 2.2566(13) and N(12A)-Pd(1A)-N(11A) 80.79(16), N(12A)-Pd(1A)-P(1A) 176.53(11), N(11A)-Pd(1A)-P(1A) 99.90(12), N(12A)-Pd(1A)-S(1A) 83.44(11), N(11A)-Pd(1A)-S(1A) 164.22(12), P(1A)-Pd(1A)-S(1A) 95.82(4).

Table 1
Bond parameters {bond distances (Å) and bond angles (°)} of three
molecules (A B C) of compound 1

notecutes (A, B, C) of compound 1					
	А	В	С		
Pd-N12, Pd- N11	2.005(4), 2.029(4)	2.009(4), 2.037(4)	2.016(4), 2.039(4)		
Pd–P, Pd–S	2.2364(13),	2.2596(13),	2.2617(11),		
	2.2566(13)	2.2577(13)	2.2543(14)		
N12-Pd-N11	80.79(16)	80.13(16)	80.10(17)		
N12–Pd–P	176.53(11)	177.37(12)	177.90(11)		
N11–Pd–P	99.90(12)	102.09(11)	98.36(12)		
N12-Pd-S	83.44(11)	83.34(12)	83.30(13)		
N11–Pd–S	164.22(12)	163.46(11)	163.39(12)		
P–Pd–S	95.82(4)	94.45(5)	98.23(5)		

2.005(4) (Pd-N12_{azomethine}) and 2.029(4) Å (Pd-N11_{pvrrole}), with Pd-P bond distance of 2.2364(13) Å. In molecules (B) and (C), the corresponding distances are marginally longer; however, Pd-S distances are almost identical for the three molecules. These distances are comparable with analogous Pd^{II} complexes with tridentate pyridine-2-carbaldehyde thiosemicarbazones $\{N^4, N^3, \text{ S-donors}\}$ [10,7]. The bite angles N12-Pd-N11 and N12-Pd-S marginally decrease from molecules A to C. The trans N12-Pd-P bond angles, ca. 177-178° are close to linearity, while N11-Pd-S angles ca. 164° significantly deviate from linearity. The difference in bond parameters is attributed to different hydrogen bond interactions. For example, molecule A forms centrosymmetric dimers with two identical N-H···N hydrogen bonds, whereas molecules B and C interact mutually and form different types of hydrogen bonds.

In compound 3, Pd^{II} is coordinated to O, N^3 and S atoms of salicylaldehyde thiosemicarbazone ligand, and the fourth site is occupied by PPh₃ ligand (Fig. 2). The Pd–N {2.0190(13) Å}, Pd–S {2.2453(4) Å} and Pd–P {2.2756(4) Å} distances are comparable to those of com-

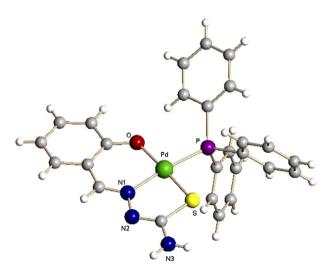


Fig. 2. Structure of complex **3** with atomic numbering scheme. Selected bond lengths (Å) and angles (°) : Pd–O, 2.0170(13), Pd–N(1) 2.0190(13), Pd–S 2.2453(4), Pd–P 2.2756(4) and O–Pd–N(1) 92.99(5), O–Pd–S 177.14(4), N(1)–Pd–S 84.16(4), O–Pd–P 91.08(4), N(1)–Pd–P 173.99(4), S–Pd–P 173.99(4).

plex 1. The N12A–Pd–S bite angle in complexes 1 and N1– Pd–S angle of 3 are similar, whereas N12A–Pd–N11A $\{80.79(16)^\circ\}$ bite angle of 1 and O–Pd–N1 $\{92.99(5)^\circ\}$ angle of 3 are quite different. This may be attributed to the fact that in 1 the N donor atom is part of the five membered pyrrole ring, whereas in complex 3 the O atom is exocyclic. Thus system 1 is more strained as compared to 3, this also explains the difference in *trans* angles N11A– PdA–S1A $\{164.22(12)^\circ\}$ and O–Pd–S $\{177.14(4)^\circ\}$.

¹H NMR spectrum of compounds 1 and 3 were recorded in CDCl₃. In the spectrum of complex 1, the absence of - $N^{2}H$ and $-N^{4}H$ hydrogens, at 11.28 and 11.34 ppm respectively for free ligands [4], confirmed their deprotonation, followed by coordination to Pd center as a dianion. Other characteristic peaks of the thiosemicarbazone ligand are: $C^{2}H$ 5.65(s), $C^{5}H(q)$ 5.80, $C^{4}H(dd)$ 6.49, $C^{6}H(d)$ 7.18 ppm. In addition, PPh₃ ring peaks also appear in the spectra in the region, 7.48–7.67 ppm. The ³¹P NMR spectrum shows a single peak at -79.2 ppm with a coordination shift, $\Delta \delta(\delta_{\text{complex}} - \delta_{\text{ligand}}) = 33.9 \text{ ppm}$, supporting coordination of P atom to Pd. In the IR spectrum, the v(N-H) band due to $-N^2H$ - moiety appears at 3152 cm⁻¹ in the free ligand, which is absent in complex 1. Similarly for complex 3, the spectrum showed the absence of -OH and $-N^2H$ proton signals {cf. -OH, 9.87 and $-N^2H$, 11.38 ppm, free ligand}, confirming double deprotonation. ³¹P NMR also showed a single peak with a coordination shift of 30.08 ppm.

As depicted in Scheme 1, the deprotonation of acidic hydrogen such as $-N^4H$ and -OH in rings at C² carbon facilitates tricoordination by the thiosemicarbazone as dianions in 1 and 3, thus retaining one PPh₃ ligand, while lack of acidic hydrogen as in 2, retains one Cl and not PPh₃ in view of overall charge balance. The Cl in 2 is not appearing as anion such as in anticipated, [Pd(η^3 - N^4 , N^3 ,S-pytsc) (PPh₃)]Cl, thus presumably {Pd(η^3 - N^4 , N^3 , S-pytsc)} species has strong affinity to bring Cl in coordination sphere, leading to exit of PPh₃.

In conclusion, an acidic hydrogen in the ring has important role in determining coordination modes of thiosemicarbazones, and tricoordination by pyrrole-2-carbaldehyde thiosemicarbazone (H_2 ptsc) is first example.

Compound 1: Mp. 240–242 °C (dec.), yield: 0.025 g, 62%. C, H, N, analysis for $C_{24}H_{21}N_4PPdS$: C, 53.9; H, 3.92; N, 10.48; Found: C, 53.5; H, 3.64; N, 9.51. Main IR Peaks (KBr, cm⁻¹): v(N-H), 3463m, 3342m, 3280m (-NH₂); v(C-H), 3072w; $\delta(NH_2) + v(C=N) + v(C-C)$, 1600m, 1566s, 1517s; v(C=S) + v(C-N), 1033s, 1000w, 850w (thioamide moiety). **3**: Mp. 230–232 °C, yield: 0.025 g, 60%; C, H, N, analysis for $C_{26}H_{22}N_3OSPPd$: C, 55.61; H, 3.92; N, 7.50; Found: C, 55.74; H, 3.89; N, 7.81. Main IR peaks (KBr, cm⁻¹), v(NH) 3438s, v(C-H) 3101m, $v(C=N) + \delta NH_2 + v(C=C)$ 1635m, 1591s, 1529s, v(C=S) 939w, v(P-C) 1097s ¹H NMR data (δ , ppm; CDCl₃), 8.25 (d, 1H, C²H), 4.71 (s, 2H, NH₂), 6.60–6.69 (m, 1H, C⁵H), 7.40–7.78 (17H, Ph-H + C^{4.6}) ppm. ³¹P NMR data (δ , ppm, CDCl₃), -83.073 ppm, $\Delta\delta(\delta_{complex})$

 δ_{ligand}) = 30.08 ppm (³¹P NMR spectra were recorded by taking TMP {(MeO)₃P} as external reference taken at zero position).

Crystallographic data for 1: C₂₄H₂₁N₄PPdS, M = 534.88, triclinic, a = 10.307(2) Å, b = 14.962(3) Å, c = 24.351(5) Å, $\alpha = 100.908(4)^{\circ}$, $\beta = 99.508(4)^{\circ}$, $\gamma = 107.255(3)^{\circ}$, V = 3422.0(12) Å³, T = 293(2) K, space group $P\bar{1}$ (No. 2), $\rho_{calcd} = 1.557$ g cm⁻³, Z = 6, μ (Mo K α) = 0.994 mm⁻¹, 21,136 reflections measured on a Bruker SMART CCD-1000 diffractometer unique 15,007 ($R_{int} = 0.0382$). The final R_1 0.0490 was for 10,152 reflections $[I > 2\sigma(I)]$ and w R_2 was 0.1233. Crystals 3. C₂₆H₂₂N₃OPPdS', M = 561.90, Triclinic, a = 7.5551(2), b = 10.2388(3), c = 17.0045(5) Å, $\alpha = 77.04$, $\beta = 80.8980$ (10), $\gamma = 71.54^{\circ}$, V = 1210.52(6) Å³, T = 298(2) K, space group $P\bar{1}$ (No. 2), $\rho_{calcd} = 1.542$ g cm⁻³, Z = 2, μ (Mo K α) = 0.943 mm⁻¹, 13,980 reflections measured on a Bruker SMART CCD-1000 diffractometer unique 6826 ($R_{int} = 0.0146$). The final R_1 0.0246 was for 6203 reflections [$I > 2\sigma(I$] and w R_2 was 0.0639.

Acknowledgement

Financial support from CSIR, New Delhi, to one of us (Gagandeep) is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 627413 and 627414 contain the supplementary crystallographic data for 1 and 3. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ conts/retrieving.htmlor from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.inoche.2006.12.024.

References

- E. Bermejo, A. Castineiras, T. Perez, R. Carballo, W. Hitler, Z. Anorg. Allg. Chem. 627 (2001) 2377.
- [2] T.S. Lobana, Rekha, R.J. Butcher, Transi. Met. Chem. 29 (2004) 291.
- [3] R. Alonso, E. Bermejo, R. Carballo, A. Castineiras, T. Perez, Z. Naturoforsch. B. Chem. Sci. 56 (2001) 219.
- [4] T.S. Lobana, A. Sanchez, J.S. Casas, A. Castineiras, J. Sordo, M.S. Garcia-Tasende, E.M. Vazquez-Lopez, J. Chem. Soc. Dalton Trans. (1997) 4289.
- [5] (a) R. Alonso, E. Bermejo, A. Castineiras, T. Perez, R. Carballo, Z. Anorg. Allg. Chem. 623 (1997) 818;
 (b) R. Carballo, A. Castineiras, T. Perez, Z. Naturoforsch. B. Chem. Sci. 56 (2001) 881.
- [6] Y. Kang, N. Yang, S.O. Kang, J. Ko, C.-H. Lee, Y.-H. Lee, Organometallics 16 (1997) 5522.
- [7] D. Kovala-Demertzi, J.R. Miller, N. Kourkoumelis, S.K. Hadjikakou, M.A. Demertzis, Polyhedron 18 (1999) 1005.

- [8] (a) C.W. Bird, C.W.H. Cheeseman (Eds.), Comprehensive Heterocyclic Chemistry, vol. 4, Pergamon Press, London, 1984;
 (b) J. Lewinski, M. Dranka, I. Kraszweska, W. Sliwinski, I. Justynark, Chem. Commun. (2005) 4935;
 (c) S. Basu, I. Pal, R.J. Butcher, G. Rosair, S. Bhattacharya, Proc. Indian Acad. Sci., (Chemical Sciences) 117 (2005) 167.
- [9] W.L. Steffen, G.J. Palenik, Inorg. Chem. 15 (1976) 2432.
- [10] (a) D. Kovala-Demertzi, A. Domopoulou, M.A. Demertzis, J. Valdez-Martinez, S. Hernandez-Ortega, G. Espino-Perez, D.X. West, M.M. Salberg, G.A. Bain, P.D. Bloom, Polyhedron 15 (1996) 2587;
 (b) D. Kovala-Demertzi, M.A. Demertzis, P.N. Yadav, A. Castineiras, D.X. West, Transi. Met. Chem. 24 (1999) 642;
 (c) D. Kovala-Demertzi, M.A. Demertzis, A. Castineiras, D.X. West, Polyhedron 17 (1998) 3739.