

Communication

Subscriber access provided by UNIV LAVAL

Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds

Liye Chen, Peng Ren, and Brad P. Carrow

J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 10 May 2016

Downloaded from http://pubs.acs.org on May 10, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds

Liye Chen, Peng Ren, and Brad P. Carrow*

Department of Chemistry, Princeton University, Princeton, NJ 08544, United States Supporting Information Placeholder

ABSTRACT:We report here the remarkable properties of PAd₃, a crystalline air-stable solid accessible through a scalable S_N1 reaction. Spectroscopic data reveal that PAd₃, benefiting from the polarizability inherent to large hydrocarbyl groups, exhibits unexpected electron releasing character that exceeds other alkylphosphines and falls within a range dominated byN-heterocyclic carbenes. Dramatic effects in catalysis are also enabled by PAd₃duringSuzuki-Miyaura reactions of chloro(hetero)arenes (40 examples) at low Pd loading, including the late-stage functionalization of commercial drugs. Exceptional space-time yieldsare demonstrated for the syntheses of industrial precursors to valsartan and boscalid from chloroarenes with ca. 2×10^4 turnoversin 10 min.

The capacity of ancillary ligands to tune the activity, selectivity, and stability of homogeneousmetal catalystshas played a central role in the development of many modern synthetic methods.¹Phosphines constituteone of the most utilized among various ligand types due in large part to thesensitivity of the electron density and steric environment about phosphorus towardssubstituent perturbations. The many areas of synthetic chemistrythat utilize organophosphines, including emerging fields such organocatalysis,²bioorthogonal reactions,³ as nanomaterials,⁴ polymerization,⁵ and frustrated Lewis pairs, ⁶ could thus benefit from expansion of accessible stereoelectronic properties beyond classical boundaries. Several recent discoveries that highlight this potential include Alcarazo's phosphine cations' ability to greatly accelerate π -acid catalysis,⁷Radosevich's T-shaped phosphines' oxidative additions,⁸ and Dielmann's imidazolin-2-ylidenaminophosphines' reversible CO2 fixation.9

Another enabling aspect of organophosphine chemistry has been the development of quantitative descriptors oftheir electronicand steric properties such as Tolman's electronic parameter (TEP) and cone angle, respectively,¹⁰which aids both inmechanistic understanding and predictionof reactivity. A typical response of the TEP to

increased α -carbon branching in the homoleptic series $P{C[(H)_{3-n}(CH_3)_n]}_3$ (n = 0-3) can be seen in Figure 1a (open circles). Tolman rationalized such a trend as arising from steric repulsion of larger substituents, whichraises the HOMO energy as phosphorus adopts a more planar geometry (Figure 1b). However, a curious enhancement in donor strengththat is not readily explained by geometric effects is evident for phosphines that possessalkyl substituents at the more distant β -position(e.g. PBu₃ and PCy₃) rather than β -methylgroups (e.g. PEt₃) and $P(i-Pr)_3$). We report here the first synthesis of tri(1adamantyl)phosphine (PAd₃), which appears to capitalize on this effect more than existing phosphinesto access electron-releasing properties exceeding a boundary for organophosphines that has persisted over many decades.11

Figure 1.Examples of β -substituent effects on the (a) TE-Pand (b) geometry of homoleptic phosphines. ^a $\chi = v_{CO}(A_1)$ -2056.1 cm⁻¹ for Ni(CO)₃(PR₃). ^bFrom solid-state data for Au(PR₃)Cl.¹²

Numerous syntheses of phosphines with two 1adamantyl (Ad) substituents have been developed, many of which have found wide success in catalysis.¹³Installation of a third hindered Adgroup, however, has remained challenging. In fact, any tri-*tert*alkylphosphine for which all β -carbon positions are alkyl rather than methyl groupsisto the best of our knowledge unprecedented. We found that reaction of ClPAd₂ and AdMgBr in the presence of a CuI/LiBr catalyst¹⁴ led to complete consumption of the electrophile over 15 h but gave only trace amounts of PAd_3 (1). This is consistent with a non-catalyzed S_N2 route attempted by Whitesides.¹⁵An alternative strategy (Scheme 1a) to forge the final hindered P-C bond in PAd₃ that proved surprisingly facile involved instead an S_N1 reaction withAd cation.^{16,17}A mixture of the commercial reagent HPAd₂,AdOAc (1.1 equiv), and Me₃SiOTf (1.2 equiv) cleanly generated protonated PAd₃ over 24 h at rt. Neutralization of 1'HOTf with Et₃Nformed a colorless precipitate, pure PAd₃, that was simplyfilteredunder air in good yield (63 %)on a multi-gram scale. We were surprised to then discover that negligible oxidation of solid PAd₃occurred during storage under air over a period of three months as determined from periodic analysis of aliquots by ³¹P NMR spectroscopy.¹⁸ This behavior contrasts starkly with many other alkylphosphines that are air-sensitive and in the case of $P(t-Bu)_3$, pyrophoric.

Scheme 1. Synthesis and properties of PAd₃ (1).

Comparison of the Charton steric parameter (v) for the Adgroup (1.33) compared to, for instance, a *t*-Bu group (1.24) intuitively suggests that PAd₃ should be more sterically hindered than other trialkylphosphines.¹⁹We thus synthesized (PAd₃)AuCl (2) (Scheme 1b) and the airstable cationic complex 4, prepared in one step by coordination of 1 to palladacycle 3(Scheme 1c),²⁰to quantitatively establish the steric properties of PAd₃. Thecone angle (θ) calculated from the solid state structure of $2(179^{\circ})$ is similar to the reported value for $P(t-Bu)_3$ (182°).^{10b} Similarly, the buried volume parameter (%V_{bur}) of PAd₃in 2 (40.5) calculated using the SambVca program²¹ is close to that for P(*t*-Bu)₃(40.0) in an analogous gold complex.^{10b,22} Values for PAd₃ in4(40.3) versus $P(t-Bu)_3$ inPd[$P(t-Bu)_3$](Ph)(Br) (39.3)²³ are also similar. We thus conclude PAd₃and P(t-Bu)₃are best described as isosteric, which contrasts common proposals about the differences of Ad- and t-Bu-phosphine congeners.²⁴

The electronic properties of PAd₃ (Scheme 1d) were next established from the carbonyl stretching frequency of **5** (v_{CO} 1948.3 cm⁻¹), which occurs at a uniquely low frequency among alkylphosphines. Analogous Rh complexes (**S3-S5**) ligated by P(*t*-Bu)₃(v_{CO} 1956.4 cm⁻¹

¹),PAd₂(*n*-Bu) (v_{CO} 1956.9 cm⁻¹), or PCy₃ (v_{CO} 1958.7 cm⁻¹ ¹) all exhibit distinctly higher frequencies indicative ofreduced electron releasing ability of these compared to PAd₃.²⁵ The TEP for PAd₃(2052.1 cm⁻¹), indirectly calculated from the relationship between ν_{CO} for $Ni(CO)_3(L)$ and Rh(acac)(CO)(L) complexes (Figure S5),²⁶ is significantly red shifted compared to P(t- $Bu_{3}(2056.1 \text{ cm}^{-1})$ and other alkylphosphines.^{10a,10c} In fact, PAd₃approachesarange typical of N-heterocyclic carbenes(e.g. IPr; 2051.5 cm^{-1})²⁷ that are generally regarded as superiors donors to transition metals.²⁸Additional theoretical and experimental data that corroborate this spectroscopic datainclude ahigher calculated HOMO energy for PAd₃(+0.20 eV)relative to P(t-Bu)₃, a larger pK_{α}^{THF} of the conjugate acid of PAd₃(11.6) compared to $P(t-Bu)_3(10.7)$,²⁹ and a small $er^{1}J(^{31}P-^{77}Se)$ coupling constant for Ad₃PSe (669.9 Hz) than for $(t-Bu)_3$ PSe (688.2 Hz).³⁰

Several effectswere considered that might account for the unique electronic properties of PAd₃. The average C_{α} - C_{β} bond length of PAd₃ in **2** (1.551(4) Å) is slightly longer than the average C_{β} - C_{γ} and (1.537(4) Å)and C_{γ} - C_{δ} (1.530(4)Å) bond lengths, respectively. A hyperconjugative effect would be expected to contract the C_{α} - C_{β} bonds,³¹ which is clearly not the case. The sum of the C-P-Cangles about PAd₃(332.6(4)°) determined from solid state data for2 areslightlylesscompared to P(t-Bu)₃in the analogous gold complex (335(3)°).^{12a}The C-P-Cangles in 4andthe known complex Pd[P(t-Bu)₃](Ph)(Br) are also similar.²⁰These data show that planarization of phosphorus also does not account for the properties of PAd₃. However, London dispersion could explain the slight contraction of theC-P-Cbond angles in PAd₃,¹¹and this possibility led us to further consider van der Waals forces.^{11,32}The larger Taft polarizability parameter (σ_{α}) of Ad(- 0.95) compared to t-Bu(-0.75) indicates the former is better able to facilitate electron donation from phosphorus by stabilizing a more polarizedP-M dative bond.³³In fact, a general correlation is observed between σ_{α} and the TEP of a series of homoleptic alkylphosphines(Eq 1). This correlation suggests to us that van der Waals forces mightaccount for the trendthatphosphines possessing largeß-alkyl groupsare more electron-releasing than the β -methyl analogues (Figure 1a).¹¹

$$\nu_{\rm CO}(A_1) = (20.234 \times \sigma_{\alpha}) + 2071.5; \ R^2 = 0.995 \ (1)$$

Because transition states are generally more polarizable than are ground states,³⁴ we wanted to assess effects ofPAd₃within a catalytic manifold. We chose as a challenging test case the room temperature Suzuki-Miyaura cross-coupling (SMC) of *p*-chloroanisole (0.50 mmol), 1-napthylboronic acid (0.55 mmol) and KOH (1.1 mmol) in the presence of palladacycle **3** and a phosphine (0.05 mol% Pd; L:Pd = 1:1 in all cases) in THF/toluene (Eq2). The use ofP(*t*-Bu)₃, PAd₂(*n*-Bu), or PCy₃, each of which is used extensively for SMC,³⁵led to low yields(<10%) of 1-(*p*-anisyl)naphthalene (**6**)over 8 h

(Figure 2).In contrast, the reaction catalyzed by the combination of 3 and PAd₃ under identical conditions proceeded to 99% yield within 4 h. The yield of 6 at 10 min (99%) using 0.25 mol%3 and 0.5 mol% PAd₃ corresponds to a turnover frequency (TOF) of $1.2 \times$ 10^4 h⁻¹ at reven with this guintessential deactivated substrate for SMC; an analogous reaction using P(*t*-Bu)₃was slower andstalled at ca. 33% yield (Figure S3). The reactivity of 3 and PAd₃ compared favorably even head-tohead againststate-of-the-art precatalystssuch as SPhos-Pd G2, XPhos-Pd G3, and PEPPSI-IPr.³⁶Note that these data only sample the ensemble of ligand effects on catalyst initiation, innate reactivity, and stabilitythat affect the overall catalyst performance. We do believe the high reactivity of the PAd₃-Pd catalyst in this SMC reflects the donicity and polarizability of PAd₃, but a related PAd₃-Pd complex (S1) was also found to beverystable towards cyclometalation (Figure S1). Thus, catalyst stability differences might also contribute to these observations.

Figure 2.Yield of **6** from reactions in Eq 2.L/Pd = 1 in all cases.

The stark contrast of the catalytic effects of PAd₃ versus, for instance, PAd₂(*n*-Bu)in this SMC is surprising given the structural similarities. We considered that Tolman's proposal of substituent additivity (Eq 3)^{10a} could be used to evaluate if in fact the number of Ad groups exerts a proportional effect on the phosphine properties. We thus determined χ_{Ad} (Eq 4) in PAd₃ (- 1.3 cm⁻¹), PAd₂(*n*-Bu)(- 0.20 cm⁻¹), and PAd₂Bn(-1.0cm⁻¹) using known χ_{R} and TEP values.^{10a} The variance in χ_{Ad} indicates that, contrary to Tolman's proposal, ^{10c} the influence of the Ad group is actually dependent on the exact phosphine structure and also that phosphorus apparently gains more electron density per Ad group in the case of PAd₃.

$$v_{\rm CO}(A_1) - 2056.1 \text{ cm}^{-1} = \chi = \sum_{i=1}^{3} \chi_i(3)$$

For P(Ad)₂R: $\chi_{\rm Ad} = \frac{(\chi - \chi_{\rm R})}{2}(4)$

Lastly, we broadenedour investigation of the SMCto establish if PAd₃-Pd catalysts might be broadly applicable at low Pd loading ($\leq 0.1 \mod \%$),³⁷ which is desirable for industrial applications yet remains challenging using chloroarenes.³⁸A limited selection of solvents (THF, toluene, or *n*-BuOH) and bases (K_3PO_4 or K_2CO_3) using 4as catalyst was sufficient to achieve high yields across 40 diverse combinations of chloro(hetero)arene and organoboronic acid. Representative examples are shown in Scheme 2 with the remainder listed in the Supporting Information (Figure S4). Complex 4 retained high activity in the presence of N-heteroaryl substrates including pyridine, pyrrole, pyrazine, pyrimidine, isoxazole, triazine, and thiadiazole fragments giving high yields within 1-12 h using 0.05-0.1 mol% Pd. Products from reactions with organoboron compounds that are notoriously sensitive to protodeboronation such as 2-pyrrolyl, 2-furyl,2thienyl, and 2,6-difluorophenyl boronic acids alsoformed in high yields even at low catalyst loadings.³⁹Reactions that formed industrial precursors (7, 8) to valsartan and boscalid proceeded to high yield (95-97 %) within 10 minat 100 °C using 0.005 mol% Pd.^{37b}These turnover numbers (TON) of ca. 2×10^4 and exceptionalTOFsexceeding 1×10^{5} h⁻¹ highlight that high space-time yield are accessible using less reactive chloroarenes and low Pd loading. High TON within1-5 h are also observed for reactions of *N*-heterocycles (9-11). Lastly, functionalization by SMC of the C-Cl bond in haloperidol, fenofibrate, montelukast, glibenclamide, and 5-R-rivaroxaban with methyl, cyclopropyl, heteroaromatic, or fluoroaromatic fragments occurred in uniformly good yields (65-92%). We were very encouraged by the observations that PAd₃, a simple compound readily prepared from inexpensive reagents, engenders catalytic properties rivaling some of the most important methods developed for SMC reactions.

Scheme 2. Illustrative examples of 4 as a general catalyst for Suzuki-Miyaura coupling of chloro(hetero)arenes.^a

^aSee Supporting Information for 28 additional examples and full experimental details. ^bYield determined by NMR.

In conclusion, a facile and scalable synthesis of PAd₃ has been developed. Spectroscopic data reveal PAd₃is significantly more donating than $P(t-Bu)_3$, thus redefining the limit of electron-releasing characteraccessible to alkylphosphines that has persisted for half a century.Preliminary investigations to establish how the electronic properties and chemical stability of PAd₃might be leveraged revealed that a PAd₃-palladacycle catalyzes Suzuki-Miyaura coupling of chloro(hetero)arenes with exceptionalTOF and high TON. A strong correlation between the Tolman electronic and Taft σ_{α} parametersargues the special properties of PAd₃originate from the substantialpolarizabilityinherent to large hydrocarbyl groups like adamantyl. These results support the hypothesis that access to phosphine steric or electronic properties beyond historical limits can enableunique reactivity in catalysis and also contribute to a growing number of examples for whichweak van der Waals forces can in fact contribute significantly to both structure and reactivity.¹¹

ASSOCIATED CONTENT

Details of experimental conditions and characterization, crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

bcarrow@princeton.edu

Notes

The authors declare the following competing financial interest: a patent application was filed by Princeton University.

ACKNOWLDEGMENT

Financial support was provided by Princeton University. We thank Long Wang for efforts to characterize complexes of **1**.

REFERENCES

(1) Selected reviews and preeminent examples of phosphine effects in catalysis:(a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. *Chem. Rev.***2011**, *111*, 1713-1760; (b) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. *Angew. Chem. Int. Ed.***1998**, *37*, 1703-1707; (c) Surry, D. S.; Buchwald, S. L. *Chem. Sci.***2011**, *2*, 27-50; (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. *J. Am. Chem. Soc.***2005**, *127*, 4685-4696; (e) Gorin, D. J.; Toste, F. D. *Nature***2007**, *446*, 395-403; (f) Helmchen, G.; Pfaltz, A. *Acc. Chem. Res.***2000**, *33*, 336-345; (g) Sanford, M. S.; Love, J. A.; Grubbs, R. H. *J. Am. Chem. Soc.***2001**, *123*, 6543-6554; (h) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. *J. Am. Chem. Soc.***2007**, *119*, 3887-3897; (i) van der Boom, M. E.; Milstein, D. *Chem. Rev.***2003**, *103*, 1759-1792.

(2) (a) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005-1018; (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535-544.

(3) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666-676.

(4) (a) Mihaljevic, T.; Kim, S.; Lim, Y. T.; Lee, J.; Nakayama, A.; Parker, J. A.; Laurence, R. G.; Soltesz, E. G.; De Grand, A. M.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. *Nat. Biotechnol.***2004**, *22*, 93-97; (b) Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. *Proc. Natl. Acad. Sci. U. S. A.***2008**, *105*, 9157-9162.

(5) Myers, M.; Connor, E. F.; Glauser, T.; Möck, A.; Nyce, G.; Hedrick, J. L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 844-851.

(6) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed.2010, 49, 46-76.

(7) Petuškova, J.; Patil, M.; Holle, S.; Lehmann, C. W.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc.2011, 133, 20758-20760.

(8) Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012, 134, 11330-11333.

(9) (a) Buß, F.; Mehlmann, P.; Mück-Lichtenfeld, C.; Bergander, K.; Dielmann, F. *J. Am. Chem. Soc.***2016**, *138*, 1840-1843; (b) Wünsche, M. A.; Mehlmann, P.; Witteler, T.; Buß, F.; Rathmann, P.; Dielmann, F. *Angew. Chem. Int. Ed.***2015**, *54*, 11857-11860.

(10) (a) Tolman, C. A. *J. Am. Chem. Soc.***1970**, *92*, 2953-2956; (b) Tolman, C. A. *Chem. Rev.***1977**, *77*, 313-348; (c) Bartik, T.; Himmler, T.; Schulte, H. G.; Seevogel, K. *J. Organomet. Chem.***1984**, *272*, 29-41.

(11) Wagner, J. P.; Schreiner, P. R. Angew. Chem. Int. Ed.2015, 54, 12274-12296.

(12) (a) Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. *Chem. Ber.***1992**, *125*, 2705-2710; (b) Angermaier, K.; Zeller, E.; Schmidbaur, H. *J. Organomet. Chem.***1994**, *472*, 371-376; (c) Tiekink, E. *Acta Crystallogr. Sect.* **C1989**, *45*, 1233-1234; (d) Muir, J. A.; Muir, M. M.; Pulgar, L. B.; Jones, P. G.; Sheldrick, G. M. *Acta Crystallogr. Sect.* **C1985**, *41*, 1174-1176; (e) Bowen, R. J.; Caddy, J.; Fernandes, M. A.; Layh, M.; Mamo, M. A. Polyhedron2004, *23*, 2273-2280.

(13) (a) Fleckenstein, C. A.; Plenio, H. *Chem. Soc. Rev.*2010, *39*, 694-711; (b) Agnew-Francis, K. A.; Williams, C. M. *Adv. Synth. Catal.*2016, *358*, 675-700.

(14) (a) Rampf, F.; Militzer, H.-C. EP 1354886 A1, October 22, 2003; (b) Maehara, S.; Iwazaki, H. Int. Pat. WO 2003066643 A1, August 14, 2003.

(15) Hackett, M.; Whitesides, G. M. Organometallics 1987, 6, 403-410.

(16) Prabagar, J.; Cowley, A. R.; Brown, J. M. Synlett2011, 2351-2354.

(17) (a) No, B. I.; Zotov, Y. L.; Karev, V. N. Zh. Obshch. Khim.1990,
60, 1795-1799; (b) Goerlich, J. R.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat. Elem.1993, 81, 141-148; (c) Sasaki, T.; Nakanishi, A.; Ohno,
M. J. Org. Chem.1982, 47, 3219-3224.

(18) The stability of pure **1** may be related to its crystallinity (m.p. $357 \,^{\circ}$ C, dec), because a solution of **1** does oxidized when exposed to air.

(19) Charton, M. In *Steric Effects in Drug Design*; Springer Berlin Heidelberg: 1983; Vol. 114, p 57-91.

Journal of the American Chemical Society

(20) Giri, R.; Lam, J. K.; Yu, J.-Q. *J. Am. Chem. Soc.***2010**, *132*, 686-693. (21) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.;

Scarano, V.; Cavallo, L. *Eur. J. Inorg. Chem.*2009, 2009, 1759-1766.
 (22) (a) Müller, T.; Mingos, D. M. *Transition Met. Chem.*1995, 20, 533-

539; (b) Clavier, H.; Nolan, S. P. *Chem. Commun.*2010, *46*, 841-861.
 (23) Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am.

(25) Stanbull, J. F., Intarvilo, C. D., Bull, M., Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184-1194.

(24) (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc.1999, 121, 4369-4378; (b) an der Heiden, M.; Plenio, H. Chem. Commun.2007, 972-974; (c) Sergeev, A. G.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc.2008, 130, 15549-15563; (d) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc.2010, 132, 11592-11598; (e) Su,

M.; Buchwald, S. L. Angew. Chem. Int. Ed.2012, 51, 4710-4713.
(25) (a) Kühl, O. Coord. Chem. Rev.2005, 249, 693-704; (b) Rahman, M.
M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics1989, 8, 1-7.

(26) Serron, S.; Huang, J.; Nolan, S. P. Organometallics1998, 17, 534-539.

(27) Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev.2013, 42, 6723-6753.

(28) (a) Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. *Organometallics***2012**, *31*, 8478-8481; (b) Mohr, B.; Lynn, D. M.; Grubbs, R. H. *Organometallics***1996**, *15*, 4317-4325.

(29) (a) Allman, T.; Goel, R. G. *Can. J. Chem.***1982**, *60*, 716-722; (b) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. *J. Am. Chem. Soc.***2000**, *122*, 9155-9171.

(30) Pinnell, R. P.; Megerle, C. A.; Manatt, S. L.; Kroon, P. A. J. Am. Chem. Soc. 1973, 95, 977-978.

(31) Laube, T. Angew. Chem. Int. Ed. Engl. 1986, 25, 349-350.

(32) Lyngvi, E.; Sanhueza, I. A.; Schoenebeck, F. Organometallics2015, 34, 805-812.

(33) (a) Hehre, W. J.; Pau, C. F.; Headley, A. D.; Taft, R. W.; Topsom, R.

D. J. Am. Chem. Soc.**1986**, 108, 1711-1712; (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev.**1991**, 91, 165-195.

(34) Ngola, S. M.; Dougherty, D. A. J. Org. Chem. 1996, 61, 4355-4360.
(35) (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555-1564; (b) Zapf, A.;

Ehrentraut, A.; Beller, M. *Angew. Chem. Int. Ed.***2000**, *39*, 4153-4155. (36) See Supporting Information for a comparison of PAd₃ and XPhos

under conditions optimized for the later. (37) (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027-3043;

(b) de Vries, J. G. *Top. Organomet. Chem.***2012**, *42*, 1-34.

(38) (a) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. *Angew. Chem. Int. Ed.***2002**, *41*, 4120-4122; (b) Handa, S.; Andersson, M. P.; Gallou, F.;

Reilly, J.; Lipshutz, B. H. Angew. Chem. Int. Ed. 2016, 55, 4914-4918.
 (39) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,

14073-14075.

