

Inorganica Chimica Acta 257 (1997) 49-58

Influence of free and chelating phosphine on the NiS₂P₂ planar chromophore. Synthesis and single crystal structure determination of bis(triphenylphosphine)(*N*,*N*'-iminodiethylenebis(phthalimide)dithiocarbamato)nickel(II) perchlorate, methanol and water solvate and [1,2-bis(diphenylphosphino-*k*.*P*,*P*')ethane]-(*N*,*N*'-iminodiethylenebis(phthalimide)dithiocarbamato)nickel(II) tetraphenylborate water solvate

Venkattan Venkatachalam a, Kuppukkanu Ramalingam a.*, Gabriele Bocelli b, Andrea Cantoni b

* Department of Chemistry, Annamalai University, Annamalainagar 608 002, India

Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

Received 26 March 1996; revised 8 July 1996

Abstract

Syntheses and crysta¹ structures of [Ni(padtc)(PPh₃)₂]ClO₄·CH₃OH·H₂O (1) and [Ni(padtc)(dppc)]BPh₄·H₂O (2) (padtc = *NN*⁻ iminodicity]cnebis(phthalimide)dithiocarbamate, dppc = 1.2-bis(diphenylphosphino)ethanc) are reported. Crystal parameters: complex 1, space group *P2*₁/*n*, *a* = 26.388(3), *b* = 12.862(4), *c* = 17.815(2) Å, *B* = 106.03(3)⁶, *V* = 5811.3(2) Å³, Z = 4, *R* = 0.067 for 1150 reflections with *I* > 2*a*(*I*); complex 2, space group *P2*₁/*c*, *a* = 19.722(2), *b* = 34.931(3), *c* = 20.373(3) Å, *B* = 114.54(3)⁶, *V* = 12767.4(4) Å³, *Z* = 4, *R* = 0.067 for 112012 reflections with *I* > 2*a*(*I*). The bulky dithiccarbamate padtc is an umbrella shaped molecule flanking the NiS₂P₂ chromophore. Complex 2 is a molecule with the chelating phosphine dpee. Both the complexes have planar NiS₂P₂ chromophores in keeping with the observed diamagnetism. A relatively short Ni-P distance is observed in the dppe complex 2. The chelating dppe forces the Ni-S distances to be symmetric (2.200(2), 2.204(2) Å) unlike PPh₃ which induces asymmetry (2.227(3), 2.198(2) Å). Shortening of the thioureide C--N bonds (1.307(10) Å in 1, 1.323(7) Å in 2, 1.339(3) Å in free padtc⁻) in the complexes is clear indication of the localisation of the nitrogen electrons between C and N. Thioureide stretching bands in Ni(padtc), [Ni(padtc)(PPh₃)₂]⁺ and [Ni(padtc)(dppc)]⁺ occur at 1494, 1509 and 1512 cm⁻¹, respectively, in keeping with the significant reduction in C-N bond distances.

Keywords: Crystal structures; Nickel complexes; Chromophore complexes; Dithiocarbamate complexes

1. Introduction

Group VIII dithiolates containing planar MS_4 chromophores show interesting variations in their reactions with Lewis bases [1,2]. Soft Pd(II) and Pt(II) dithiolates preferably interact with soft phosphines to give rise to planar MS_2P_2 chromophores [3,4]. In solution, the MS_3P_2 chromophore with square pyramidal geometry has also been reported for M = Pd(II), Pt(II). Detailed structural studies on a variety of MS_3P_2 chromophores have also been made [5,6]. Unlike its congeners, Ni(II) is a border line acceptor. Nickel(II) complexes containing NiS₄ chromophores in the planar dithiocarbamates refer to react with soft Lewis bases such as phosphines rather than hard nitrogenous bases such as NH₃ and pyridine, due to the symbiotically induced softness [7,8]. On their reaction with PPh₃ or dppe they form complexes of the chromophore NiS₂P₂ which are diamagnetic in nature [9-11]. Mixed ligand complexes of the type [Ni(S₂CNR₂)XPR₃] have been prepared by the interaction of dithiocarbamate with PR₃ in the presence of NiK₂ [12]. Syntheses and crystal structures of Ni(dtc)Cl(PPh₃)₂[ClO₄,dtc⁻ = [S₂CN(C₂H₃)₂]⁻, [S₂CNH-(C₂H₄OH)]⁻, [S₂CN(C₂H₄OH)₂]⁻, [S₂CN(C₄H₆O]]⁻ and [S₂CN(C₃H₁₀)]⁻ have been reported from our laboratory [13]. Recently a single crystal study of [1,2bis(diphenylphosphino-k.P,P') ethane](4-morpholincar-

^{*} Corresponding author.

^{0043-1648/37/\$17.00 © 1997} Published by Elsevier Science S.A. All rights reserved PII \$0020-1693(96)05447-3

bodithioato)nickel(II)perchlorate dichloromethane solvate showed an interesting thioureide distance [14]. In continuation of our interest on the planar NiS₂P₂ chromophores, the present study was undertaken to understand (i) the influence of increased bulkiness of the dithiocarbamate ligand on the thioureide distance, and (ii) the effect of coordination of free and chelating phosphines on the structure of the chromophore. We report the syntheses and crystal structures of [Ni(padtc)(PPh₃)₂]ClO₄·CH₃OH·H₂O (1) and [Ni-(padtc)(dppe)]BPh₄·H₂O (2) (padtc=(*N*,*N'*-iminodiethylene)bis(pthtalimide)dithiocarbamate) in this paper.

2. Experimental

All the reagents and solvents employed were commercially available high-grade purity materials (E-merck) which were used as such without further purification. Physical measurements: IR spectra were recorded on a JASCO IR-700 spectrophotometer (range 4000-400 cm⁻¹) as KBr pellets; UV-Vis spectra in CHCl₃ were recorded on a JASCO UVIDEC double beam spectrophotometer.

2.1. Bis(N,N'-iminodiethylenebis(phthalimide)dithiocarbamato)nickel(II), Ni(padtc)z

Amine pa [15] (725 mg, 2 mmol) was dissolved in acctonitrile (75 cm³) and carbon disulfide (2 cm³, 40 mmol) was added with continuous stirring under ice cold conditions. To the freshly prepared padtc⁻ solution, an aqueous solution of nickel chloride (240 mg, 1 mmol) was added and stirred

Laple	el			
Data	collection	and	refinement	parameters

well. The green precipitate formed was filtered, washed with water and acetonitrile, and finally dried in an oven at 100°C. The complex was insoluble in common organic solvents (yield 70%; decomp. 280°C).

2.2. Bis(triphenylphosphine-k.P,P')(N,N'-iminodiethylenebis(phthalimide)dithiocarbamato)nickel(II)perchlorate, [Ni(padtc)(PPh₁)₂]ClO₄·CH₁OH·H₂O(1)

A mixture of Ni(padtc)₂ (930 mg, 1 mmol), PPh₃ (520 mg, 2 mmol), NiCl₂·6H₂O (120 mg, 0.5 mmol) and NaClO₄ (125 mg, 1 mmol) in methanol-chloroform (75 cm³) was refluxed for about 3 h. Even though the parent complex was insoluble initially, near the boiling point the colour of the suspension changed from green to reddish orange. On concentrating the mother liquor after filtration to 40 cm³ and allowing it to settle for 2 days, a reddish orange compound separated. The compound was filtered and dried over anhydrous calcium chloride. Single crystall satiable for X-ray work were obtained by recrystallisation from chloroform-methanol (yield 60%; m.p. 170°C).

2.3. [1,2-Bis(diphenylphosphino-k.P,P')ethane](N,N'iminodiethylenebis(phthalimide)dithiocarbamato)nickel(II) tetraphenylborate, [Ni(padtc)(dppe)]BPh₄·H₂O (2)

A mixture of Ni(padtc)₂ (930 mg, 1 mmol), dppe (400 mg, 1 mmol) and NaBPh₄ (360 mg, 1 mmol) was refluxed in acetonitrile (75 cm³) for about 3 h and the resulting redorange solution was concentrated to \sim 30 cm³ after filtration and allowed to settle for 3 days. The wine red coloured solid

	1	2
Empirical formula	C ₅₈ H ₅₂ ClN ₃ O ₁₀ P ₂ S ₂ Ni	C71H47B1N3O4P3S2Ni
M	1161.3	1232.9
Crystal dimensions (mm)	0.19×0.24×0.32	$0.17 \times 0.22 \times 0.39$
Crystal system	monoclinic	monoclinic
Space group	P2/n	P2,/c
a (Å)	26.388(3)	19.722(2)
ь (Å)	12.862(4)	34.931(3)
c (Å)	17.815(2)	-0.373(3)
β(°)	106.03(3)	114.54(3)
V (Å ³)	5811.3(2)	12767 4(4)
Z	4	8
D _c (g cm ⁻³)	1.281	1.264
F(000)	2320	5072
μ (cm ⁻¹)	25.234	18.976
Scan type	ω-2θ	ω-20
Scan range (°)	3-70	3-70
Index ranges $(\pm h, \pm k, \pm l)$	-28/0, -14/14, -19/20	-23/21, $-2/42$, $-1/24$
Reflections collected	11816	25445
Observed reflections, $I > 2\sigma(I)$	4150	11967
Weighting scheme	$w = 1.226/(\sigma^2 F^2 + 0.03431F^2)$	$w = 1/[\sigma^2 F^2 + (0.154P)^2 + 6.44P]$
		$P = (\max(F_{1,2}, 0) + 2F_{2,2})/3$
No. parameters refined	344	2011
Final R, Rw	0.067, 0.073	0.069. 0.188

Table 2 Atomic fractional coordinates and U_{eq} (×10⁴ Å²) for [Ni(padtc)-(PPh₃)₂]ClO₄·CH₃OH·H₂O (1)

Atom	x	у	z	Ueq
Nil	0.4205(1)	0.4639(1)	0.1501(1)	48(5)
S1	0.3363(1)	0.4775(2)	0.0814(1)	60(9)
S2	0.4179(1)	0.3607(2)	0.0507(1)	54(8)
CI	0.3509(3)	0.3843(7)	0.0219(5)	51(3)
N2	0.3169(3)	0.3363(5)	- 0.0349(4)	55(3)
C3	0.2592(4)	0.3545(9)	~0.0513(7)	69(4)
C4	0.2385(5)	0.4102(10)	-0.1267(8)	85(5)
N5	0.2596(3)	0.5154(7)	-0.1260(5)	75(4)
C6	0.2396(4)	0.5993(9)	-0.0941(7)	79(5)
C7	0.2650(4)	0.6946(10)	-0.1156(6)	76(5)
C8	0.2567(6)	0.7969(10)	-0.1003(8)	100(6)
C9	0.2843(7)	0.8670(14)	-0.1329(11)	120(9)
C10	0.3147(6)	0.8369(12)	-0.1806(1)	110(7)
C11	0.3218(5)	0.7324(12)	0.1958(8)	90(6)
C12	0.2966(4)	0.6620(9)	-0.1604(6)	72(4)
C13	0.2943(4)	0.5475(10)	- 0.1675(6)	77(5)
014	0.2068(3)	0.5910(6)	-0.0586(5)	102(4)
015	0.3173(3)	0.4881(7)	-0.2013(5)	103(5)
C16	0.3338(4)	0.2584(8)	- 0.0850(6)	71(4)
C17	0.3242(5)	0.1461(9)	- 0.0621(8)	90(5)
N18	0.3606(4)	0.1148(6)	0.0127(6)	77(4)
C19	0.4090(4)	0.0668(7)	0.0187(7)	72(5)
C20	0.4322(4)	0.0453(7)	0.1011(6)	65(4)
C21	0.4787(6)	- 0.0030(8)	0.1360(8)	86(6)
C22	0.4948(7)	- 0.0078(10)	0.2207(9)	108(7)
C23	0.4607(9)	0.0307(12)	0.2608(9)	123(9)
C24	0.4131(8)	0.0770(12)	0.2187(10)	117(9)
C25	0.4004(5)	0.0845(8)	0.1411(7)	81(5)
C26	0.3532(5)	0.1296(8)	0.0866(8)	83(5)
027	0.4249(3)	0.0491(5)	-0.0371(5)	95(4)
O28	0.3157(3)	0.1728(7)	0.0993(5)	117(5)
PI	0.5063(1)	0.4431(2)	0.1982(1)	48(7)
C30	0.5304(2)	0.2617(4)	0.1331(3)	61(5)
C31	0.5499(2)	0.2014(4)	0.0822(3)	67(4)
C32	0.5758(2)	0.2488(4)	0.0327(3)	67(4)
C33	0.5822(2)	0.3565(4)	0.0342(3)	65(4)
C34	0.5627(2)	0.4168(4)	0.6851(3)	54(3)
C29	0.5368(2)	0.3694(4)	0.1346(3)	44(3)
C36	0.5782(2)	0.3569(5)	0.3311(4)	74(1)
C37	0.5907(2)	0.2969(5)	0.3989(4)	103(6)
C38	0.5508(2)	0.24/8(5)	0.4231(4)	120(7)
C39	0.4983(2)	0.2388(3)	0.3793(4)	94(5)
C40 C25	0.4658(2)	0.3166(3)	0.3110(4)	60(4) 61(2)
C33	0.5256(2)	0.3079(3)	0.2674(4)	52(5)
C42	0.5195(2)	0.0340(4)	0.1439(3)	70(4)
C43	0.5409(2)	0.7555(4)	0.1436(3)	70(4)
C44	0.5812(2)	0.7070(4)	0.2079(3)	69(4)
C45	0.5782(2)	0.6024(4)	0.2720(3)	61(3)
C41	0.5702(2)	0.5690(4)	0.2079(3)	47(3)
P7	0.3377(2)	0.5611(2)	0 2440(1)	55(8)
C48	0.3474(3)	0.3907(5)	0.2716(3)	75(5)
C49	0.3179(3)	0.3348(5)	0.3118(3)	103(6)
C50	0.3088(3)	0.3761(5)	0.3792(3)	139(8)
C51	0.3292(3)	0.4734(5)	0.4065(3)	121(6)
C52	0.3587(3)	0.5293(5)	0.3663(3)	89(5)
C47	0.3679(3)	0.4879(5)	0.2988(3)	62(3)
C54	0.4699(3)	0.7276(4)	0.3160(3)	73(4)
C55	0.5121(3)	0.7698(4)	9.3733(3)	84(5)
C56	0.5405(3)	0.7079(4)	0.4349(3)	91(5)

(continued)

Table 2 (continued)

Atom	x	у	z	U _{eq}
C57	0.5268(3)	0.6038(4)	0.4392(3)	92(6)
C58	0.4847(3)	0.5615(4)	0.3820(3)	76(4)
C53	0.4562(3)	0.6234(4)	0.3204(3)	61(3)
C60	0.3785(2)	0.7356(5)	0.1494(4)	71(4)
C61	0.3449(2)	0.8134(5)	0.1094(4)	80(5)
C62	0.2938(2)	0.8218(5)	0.1170(4)	107(6)
C63	0.2764(2)	0.7524(5)	0.1647(4)	129(7)
C64	0.3100(2)	0.6746(5)	0.2047(4)	94(5)
C59	0.3610(2)	0.6662(5)	0.1970(4)	62(4)
CI	0.3364(1)	1.0473(3)	-0.3818(2)	112(2)
OIP	0.3087(5)	0.9800(9)	-0.4386(6)	200(7)
O2P	0.3881(5)	1.0551(11)	-0.3735(8)	216(8)
03P	0.3271(9)	1.0421(14)	-0.3131(10)	329(15)
04P	0.3199(7)	1.1453(12)	-0.4101(12)	373(14)
01W	0.2500(0)	0.1715(10)	0.7500(0)	131(6)
CIM	0.0498(5)	-0.0060(11)	0.0269(9)	86(6)
02M	0.1067(12)	0.0810(15)	0.0762(11)	238(20)

which separated from the mother liquor was filtered and dried over anhydrous calcium chloride. Crystals suitable for X-ray structural analysis were obtained by repeated crystallisation from acetonitrile (yield 60%; m.p. 190°C). Both the nickel complexes were found to be diamagnetic.

2.4. X-ray crystallography

Details of the crystal data, data collection and refinement parameters for complexes 1 and 2 are summarised in Table 1. The intensity data were collected at ambient temperature on a Siemens AED diffractometer using graphite monochromated Cu K α radiation ($\lambda = 1.5418$ Å). The unit cell parameters were obtained from 48 (0 range: 10.8-17.2°) and 29 (0 range: 11.34-41.2°) well centred reflections for 1 and 2. respectively. Intensity of a standard reflection, recorded for every 100 reflections showed no significant change for both the complexes. The reflections were corrected for Lorentz and polarisation effects. Both the structures were solved by direct methods with the SIR92 [16] program; the refinement procedures were performed by block-matrix using SHELX400 [17] for complex 1 and by full-matrix leastsquares with SHLEX93 [18] for complex 2. All the nonhydrogen atoms were refined anisotropically. The hydrogen atoms were located from ΔF map and refined isotropically. All the calculations were performed on a DELL 486 PC with the CRYSRULER package [19] and PARST program [20]. Atomic coordinates of the non-hydrogen atoms are presented in Tables 2 and 3. Selected bond distances and angles are presented in Tables 4-7.

3. Results and discussion

IR spectra of complexes 1 and 2 show ν C-N bands at 1509 and 1512 cm⁻¹, respectively. The shift in ν C-N values to higher wave number compared to the parent Ni(padtc)₂

Table 3
Atomic fractional coordinates ($\times 10^4$) and U_{eq} ($\times 10^4$ Å ²) for[Ni(padtc)(dppe)BPh ₄ ·H ₂ O (2)

Atom	Unprimed mo	Unprimed molecule				Primed molecule			
	x	у	z	U _{eq}	x	у	z	Ueq	
Nil	4858(5)	- 4999(2)	2474(5)	453(4)	9347(5)	- 7570(2)	1563(5)	461(4)	
S1	4177(9)	- 5459(4)	- 3189(9)	564(7)	9951(9)	- 8060(4)	2229(9)	601(7)	
S2	5448(9)	- 5509(4)	- 1863(9)	559(6)	8820(9)	- 8047(4)	814(9)	602(6)	
P1	4301(8)	-4515(4)	- 3155(9)	501(6)	8778(9)	-7100(4)	837(9)	518(7)	
P2	5528(8)	-4582(4)	- 1685(8)	471(6)	9890(8)	-7142(4)	2386(9)	496(6)	
Cl	4591(38)	-4076(17)	- 2596(40)	561(32)	8951(40)	- 6666(17)	1401(38)	602(33)	
C2	5405(39)	-4115(17)	- 2139(44)	592(32)	9745(41)	-6678(17)	1920(44)	629(34)	
C3	4783(34)	- 5765(15)	- 2546(33)	465(24)	9403(35)	-8337(16)	1500(35)	512(26)	
N4	4732(27)	-6145(12)	-2580(27)	500(21)	9415(30)	- 8715(13)	(480(30)	627(25)	
C5	5279(49)	-6387(21)	-2035(45)	632(37)	9957(47)	- 8934(19)	2095(47)	744(41)	
C6	5859(44)	-6544(18)	- 2270(48)	685(33)	10622(57)	-9062(22)	1931(59)	811(42)	
N7	6276(31)	- 6245(15)	-2412(32)	666(27)	10992(33)	- 8743(15)	1776(34)	701(28)	
<u>(8</u>	6069(41)	- 6066(20)	- 3084(47)	696(36)	11515(43)	-8503(21)	2292(52)	776(40)	
~	6632(43)	- 5769(21)	- 2985(47)	738(38)	11680(40)	- 8195(20)	1886(47)	737(37)	
C10	6702(59)	- 5511(26)	- 3466(65)	917(54)	12142(50)	- 7886(29)	2132(66)	977(53)	
C10	7212(57)	- 5267(20)	- 3776(85)	1128(60)	12192(50)	- 7637(37)	1617(00)	1202(78)	
	7515(07)	- 3207(30)	- 3220(83)	120(07)	11752(64)	- 7705(32)	990(02)	1202(78)	
C12	7814(77)	- 5270(34)	- 2343(93)	1179(69)	11/32(04)	- 9015(37)	649(93)	1018(55)	
	7773(01)	- 3330(34)	- 2037(83)	11/6(00)	11292(32)	- 8013(32)	046(00)	1018(33)	
C14	/159(43)	- 3783(22)		023(41)	10234(40)	- 8200(23)	101(47)	700(37)	
CIS	6931(44)	-6087(22)	- 1901(33)	852(39)	10813(44)	- 8009(22)	10/1(50)	/01(30)	
016	5522(32)	-6151(16)	- 3612(30)	8/3(28)	11/62(32)	- 856/(1/)	2944(33)	996(30)	
017	7241(35)	-6201(18)	- 12//(36)	1129(34)	10373(32)	- 8/69(18)	535(31)	983(31)	
C18	4143(40)	- 6339(18)	- 3199(41)	608(30)	8892(48)	- 8924(22)	863(54)	804(40)	
C19	3511(42)	- 6481(17)	- 3027(48)	623(32)	8259(63)	- 9082(26)	1006(80)	1048(58)	
N20	3140(28)	-6168(13)	- 2827(30)	571(23)	7855(41)	- 8790(19)	1175(46)	884(37)	
C21	3347(40)	6051(19)	-2113(43)	642(36)	7330(58)	- 8550(34)	681(77)	1115(67)	
C22	2900(38)	- 5706(18)	-2147(41)	633(32)	7136(59)	- 8256(30)	1068(84)	1137(65)	
C23	2875(51)	- 5476(26)	- 1606(57)	888(44)	6690(72)	- 7936(45)	817(120)	1612(**)	
C24	2404(62)	- 5165(28)	- 1826(72)	1010(64)	6649(125)	- 7694(58)	1366(187)	2254(**)	
C25	1970(65)	- 5086(24)	-2531(76)	984(60)	7005(115)	- 7790(50)	2060(155)	1845(**)	
C26	1983(48)	- 5318(22)	- 3074(55)	821(43)	7492(82)	- 8090(42)	2323(103)	1321(92)	
C27	2462(37)	- 5631(17)	- 2863(43)	637(35)	7540(58)	-8332(26)	1785(76)	1031(63)	
C28	2598(39)	- 5925(18)	- 3328(46)	654(31)	8032(58)	- 8661(27)	1880(67)	970(52)	
029	3805(30)	- 6221(15)	- 1605(29)	870(28)	7100(40)	- 8596(25)	21(51)	1468(49)	
O30	2316(29)	- 5973(15)	- 3974(29)	831(24)	8502(42)	-8801(20)	2410(42)	1164(39)	
C31	4664(34)	- 4440(17)	- 3828(35)	571(26)	9175(34)	-6987(16)	202(36)	583(26)	
C32	5204(52)	-4672(26)	- 3860(50)	902(48)	9800(51)	-7173(24)	233(52)	879(46)	
C33	5506(61)	-4596(32)	-4364(62)	1148(55)	10127(63)	7075(29)	- 223(60)	1081(54)	
C34	5279(60)	-4284(30)	- 4791(56)	1023(54)	9811(74)	-6792(34)	- 721(66)	1136(64)	
C35	4752(62)	- 4051(30)	-4761(52)	976(53)	9192(58)	-6600(25)	- 764(48)	912(48)	
C36	4422(47)	-4121(23)	-4286(44)	812(37)	8875(47)	- 6699(21)	- 295(43)	781(36)	
C41	3298(34)	-4513(17)	- 3609(34)	573(24)	7784(35)	-7133(18)	292(37)	620(26)	
C42	2849(47)	-4286(25)	- 3405(56)	844(43)	7261(46)	-6932(26)	444(58)	950(44)	
C43	2079(54)	-4306(33)	- 3761(66)	1000(55)	6504(52)	- 6973(34)	-5(69)	1187(61)	
C44	1746(47)	- 4551(30)	- 4296(54)	929(39)	6273(54)	- 7208(33)	- 595(61)	1093(47)	
C45	2173(50)	- 4775(31)	-4528(55)	898(43)	6789(56)	- 7404(32)	- 731(55)	1018(47)	
C46	2940(40)	-4762(21)	-4186(42)	706(34)	7533(47)	-7374(25)	- 310(48)	854(42)	
C51	5156(33)	-4508(16)	- 1018(34)	540(25)	10871(34)	-7207(17)	2953(36)	593(28)	
C52	4534(40)	- 4709(22)	- 1064(41)	685(35)	11073(47)	- 7492(23)	3490(44)	758(39)	
C53	4216(57)	-4636(29)	- 586(54)	965(49)	11822(52)	- 7572(29)	3910(48)	931(43)	
C54	4526(60)	-4367(30)	- 58(52)	979(53)	12262(53)	-7376(34)	3806(59)	1044(54)	
C55	5156(56)	-4169(27)	8(49)	893(48)	12172(50)	- 7094(36)	3289(68)	1048(58)	
CS6	5479(42)	- 4236(21)	- 470(42)	702(35)	11428(43)	- 7014(23)	2862(48)	787(30)	
C61	6525(33)	- 4663(16)	- 1209(34)	525(28)	9445(33)	- 7081(16)	2998(12)	518(27)	
C62	6820(45)	- 4811(25)	- 524(45)	838(38)	8868(52)	~ 7307(26)	2960(51)	951(47)	
C63	7586(55)	-4865(31)	- 174(57)	1046(48)	8511(60)	- 7253(33)	3416(50)	1218(50)	
C64	8043(45)	- 4783(23)	- 495(56)	843(40)	8737(62)	-6963(30)	3899(54)	1033(\$4)	
C65	7746(46)	- 4641(24)	- 1175(59)	874(45)	9320(59)	-6737(28)	3063(40)	046(40)	
-05	(140(40)	- 4041(24)	- (1/5(59)	0/4(43)	7320(37)	-0151(28)	3903(49)	940(49)	

(continued)

Atom	Unprimed m	Unprimed molecule				Primed molecule			
	x	y	z	U _{eq}	x	у	z	U _{eq}	
C66	6991(42)	- 4589(23)	- 1534(47)	760(38)	9670(53)	-6798(24)	3514(48)	862(46)	
BI	5661(39)	- 2893(19)	-1552(45)	606(35)	9900(45)	- 5442(20)	1985(48)	679(40)	
C71	5752(38)	- 2482(17)	-1111(37)	621(30)	9878(34)	- 5027(17)	1580(37)	634(28)	
C72	6442(45)	- 2310(20)	- 764(43)	765(35)	10293(45)	-4950(22)	1195(53)	915(43)	
C73	6553(62)	- 1976(22)	- 365(47)	919(43)	10223(53)	- 4607(28)	824(61)	1084(53)	
C74	5975(68)	- 1799(22)	- 287(48)	918(52)	9741(56)	-4333(24)	834(58)	1036(49)	
C75	5285(63)	- 1958(23)	- 633(56)	945(54)	9306(56)	-4395(21)	1212(50)	908(45)	
C76	5183(48)	- 2293(20)	- 1030(49)	841(44)	9388(42)	- 4740(19)	1569(42)	732(35)	
C77	5758(33)	- 2827(17)	2305(37)	608(27)	9049(42)	- 5626(16)	1543(52)	759(38)	
C78	5823(42)	- 2465(21)	-2571(45)	717(35)	8569(56)	- 5749(22)	1836(79)	1043(63)	
C79	5841(45)	- 2400(25)	- 3225(47)	816(42)	7875(72)	- 5884(28)	1467(128)	1492(**)	
C80	5779(46)	-2705(26)	- 3682(53)	862(42)	7607(70)	- 5904(35)	725(128)	1773(++)	
C81	5725(51)	- 3067(27)	- 3441(52)	918(46)	8036(72)	- 5788(28)	369(85)	1437(69)	
C82	5712(46)	- 3120(20)	- 2775(49)	803(38)	8740(54)	- 5640(24)	787(67)	1118(48)	
C83	4825(35)	- 3080(16)	- 1772(38)	609(30)	10566(39)	-5718(17)	1947(42)	680(34)	
C84	4623(42)	- 3316(20)	- 1324(45)	712(35)	11274(47)	- 5717(26)	2497(55)	899(44)	
C85	3912(49)	- 3459(22)	- 1528(56)	828(43)	11863(59)	- 5931(36)	2505(73)	1166(60)	
C86	3352(46)	- 3368(23)	-2173(57)	871(44)	11731(81)	-6170(33)	1918(91)	1249(82)	
C87	3526(46)	- 3141(25)	- 2643(60)	906(41)	11055(76)	-6172(25)	1342(79)	1076(64)	
C88	4233(42)	- 3000(22)	-2431(50)	818(37)	10477(52)	- 5951(22)	1356(51)	858(43)	
C89	6312(34)	- 3170(16)	-963(42)	641(29)	10056(38)	-5391(17)	2841(42)	710(31)	
C90	6839(43)	- 3386(22)	- 1095(53)	831(42)	10083(70)	-5712(23)	3259(58)	1223(70)	
C91	7373(48)	- 3617(27)	- 576(67)	1009(58)	10181(73)	5687(27)	3990(61)	1263(78)	
C92	7405(54)	- 3639(27)	116(67)	1066(48)	10311(50)	- 5341(27)	4332(56)	979(44)	
C93	6919(48)	- 3425(24)	292(55)	863(43)	10299(60)	- 5028(25)	3928(62)	1156(55)	
C94	6386(45)	- 3201(22)	-239(49)	766(39)	10198(51)	- 5057(21)	3215(52)	923(43)	
01W	2586(61)	4347(38)	4515(46)	2166(51)					

(1494 cm⁻¹) is due to the mesomeric drift of electrons from the dithiocarbamate moiety to the metal centre. The vC-S bands appear around 1000 cm⁻¹ without splitting supporting the near isobidentate coordination of the dithiocarbamate moiety [21]. In addition to vC-N and vC-S bands, the spectra showed strong absorption bands at 1100 and 1438 cm⁻¹ due to the presence of ClO₄⁻ and BPh₄⁻ ions, respectively. Electronic spectra of complexes 1 and 2 show three absorption bands at 440, 480 and 495 nm. The 440 nm band is attributed to the charge transfer transitions and the other bands are due to the d-d transitions [13]. Both the complexes are diamagnetic and hence must be in a planar environment with the NiS₂P₂ chromophores which is confirmed by the structural studies presented. The electronic spectra of the two complexes show similarities to the analogous planar, diamagnetic nickel(II) complexes [13].

The molecular structure of complex 1 is shown in Fig. 1. The complex is a discrete $[Ni(padic)(PPh_3)_2]^*$ unit indicating that it is monomeric with no significant intermolecular contacts. Four molecules are present in the unit cell. The molecule is not of perfect square geometry because of the small bite angle (78.5(1)°) associated with the dithiocarbamate ligand. The Ni, S(1), S(2), P(1) and P(2) atoms are coplanar. The planarity of the molecule is in keeping with the observed diamagnetism of the complex. The two Ni–S (2.227(3), 2.198(2) Å) and Ni–P (2.204(3), 2.224(3) Å) bonds are significantly different. Asymmetry in Ni–P bonds is reflected in the Ni–S bond distances. The related C–S bond distances (1.713(9) and 1.726(8) Å) are however symmetric. A similar trend was observed in the [Ni(dedtc)-(PPh₃)₂]⁺ complex [13]. The bond parameters of the dithiocarbamate moiety are normal as observed in the earlier studies.

The phenyl rings show normal bond parameters. Two of the phenyl rings in PPh₃ are pitched to the same extent whereas the third one is almost perpendicular to the Ni-P-C-C plane as a requirement for the packing of the molecules in the unit cell. The oxygen atoms of the ClO₄⁻ ion show large thermal parameters even though there are no short contacts suggesting the presence of disorder. The mean Cl-O distance (1.35(2) Å) is close to the reported value [22]. The O-Cl-O bond angles show large variations indicating distortion from the tetrahedral geometry as observed earlier [14,23]. Similar distortions of the ClO₄ ion in complexes are well known. The solvent molecule CH₃OH in the structure is highly disordered.

Complex 2 is monomeric with eight molecules per unit cell. The molecular structure is given in Fig. 2. The two molecules in the asymmetric unit have different bond parameters, as a packing requirement in the crystal. The fractional coordinates, bond distances and angles are given independently for all the atoms as primed and unprimed atoms in the asymmetric unit. However, comparison of the bond parameters associated with primed atoms holds irue for the

able 4	
ond distances (Å) for [Ni(padtc)(PPh ₃) ₂]ClO ₄ · CH ₃ OH · H ₂ O (1)

Table 5 Bond angles (°) for [Ni(padtc)(PPh₃)₂]ClO₄·CH₃OH (1)

119.9(6)

120.0(6)

120.7(5)

105.4(11)

110.4(10)

117.1(10)

C62-C63-C64

C60-C59-C64

P2-C59-C60

02P--CI--O4P

OIP-CI-O4P

01P--CI--O2P

120.1(5)

120.1(6)

119.1(4)

100.4(9) 104.8(10)

116.6(9)

C61-C62-C63

C63-C64-C59

P2-C59-C64

O3P-CI-O4P

O2P-CI-O3P

OIP-CI-O3P

Nil-SI	2.227(3)	Ni1-S2	2.198(3)	P1-Ni1-P2	99.7(1)	S2-Ni1-P2	167.3(1)
NiI-PI	2.204(3)	Nil-P2	2.224(3)	S2-Ni1-P1	92.3(1)	S1-Ni1-P2	89.9(1)
SICI	1.713(10)	S2-C1	1.726(8)	S1-Ni1-P1	169.9(1)	S1-Ni1-S2	78.5(1)
C1-N2	1.307(10)	N2-C3	1.488(14)	Ni1-S1-C1	85.7(3)	Ni1-S2-C1	86.3(3)
N2-C16	1.490(14)	C3C4	1.487(17)	S1C1S2	109.1(5)	S2-C1-N2	125.1(7)
C4-N5	1.462(17)	N5-C6	1.390(15)	S1C1N2	125.9(7)	C1-N2-C16	121.8(8)
N5-C13	1.389(15)	C6-C7	1.497(17)	C1-N2-C3	121.6(8)	C3-N2-C16	116.6(8)
C6-O14	1.209(16)	C/-C8	1.3/4(18)	N2-C3-C4	110.7(9)	C3-C4-N5	113.2(10)
C/-Cl2	1.370(17)	C10-C9	1.364(23)	C4-N5-C13	125.2(9)	C4-N5-C6	122.4(9)
C9-C10	1.3/0(28)	C10-C11	1.394(22)	C6-N5-C13	111.6(9)	N5-C6-014	123.6(10)
	1.373(20)	012-013	1.4/6(1/)	N5-C6-C7	106.5(9)	C7-C6-O14	129.9(10)
	1.232(16)	C10-C17	1.341(10)	C6-C7-C12	106.6(10)	C6-C7-C8	128.8(11)
U17-IN18	1.406(13)	C10-C20	1.390(13)	C8-C7-C12	124.4(12)	C7-C8-C9	114.2(13)
CI0 027	1.390(19)	C20-C20	1.455(15)	C8C9C10	122.7(16)	C9-C10-C11	121.6(15)
C70-C75	1 341(18)	C21-C21	1.452(20)	C10-C11-C12	116.0(13)	C7-C12-C11	121.0(12)
C20-C23	1 386(29)	C73_C74	1405(27)	C11-C12-C13	129.1(10)	C7-C12-C13	109.7(9)
C22-C25	1 333(21)	C25-C24	1.471(16)	N5-C13-C12	105.6(9)	C12-C13-O15	130.2(10)
C26-028	1 209(16)	PL_C79	1.876(6)	N5-C13-O15	124.2(10)	N2-C16-C17	111.9(9)
P1 C35	1.209(7)	P1_C41	1.807(6)	C16C17N18	112.5(9)	C17-N18-C26	126.3(10)
C30_C31	1 395(8)	C30-C29	1.395(7)	C17-N18-C19	123.1(10)	C19-N18-C26	110.6(10)
C31_C32	1 396(8)	C32-C33	1 395(7)	N18-C19-O27	122.8(10)	N18-C19-C20	106.4(9)
C33-C34	1.395(8)	C34-C29	1.396(8)	C20-C19-O27	130.8(10)	C19-C20-C25	108.3(10)
C36-C37	1.394(9)	C36-C35	1.394(7)	C19-C20-C21	128.5(10)	C21-C20-C25	123.1(10)
C37-C38	1.394(9)	C38-C39	1.396(7)	C20-C21-C22	117.5(12)	C21-C22-C23	118.4(15)
C39-C40	1.395(10)	C40-C35	1.397(9)	C22-C23-C24	119.2(15)	C23-C24-C25	121.1(17)
C42-C43	1.394(7)	C42-C41	1.394(7)	C20-C25-C24	120.6(13)	C24-C25-C26	129 6(13)
C43-C44	1.396(7)	C44-C45	1.396(7)	C20-C25-C26	109 7(10)	N18-C26-C25	104 8(10)
C45-C46	1.395(7)	C46-C41	1.396(6)	C25-C26-O28	130.2(12)	N18-C26-O28	125 1(12)
P2C47	1.807(8)	P2-C53	1.831(6)	Nil-PI-C41	109.0(2)	Nil-Pl-C35	114.8(2)
P2C59	1.816(6)	C48-C49	1.394(10)	Nil-PI-C29	113.8(2)	C35-P1-C41	112 5(3)
C48-C47	1.395(9)	C49-C50	1.393(9)	C29-P1-C41	104.7(3)	C29-P1-C35	101.6(3)
C50-C51	1.396(9)	C51-C52	1.394(10)	C31-C30-C29	120 1(5)	C30-C31-C32	120 1(5)
C52-C47	1.396(9)	C54-C55	1.396(8)	C31_C32_C33	120.0(5)	C32_C13_C34	120.1(5)
C54-C53	1.396(8)	C55-C56	1.395(7)	C33_C34_C29	120.0(5)	C30_C29_C34	120.1(5)
C56-C57	1.395(8)	C57-C58	1.394(8)	P1-C29-C34	122 8(4)	PI C20 C20	117 2(4)
C58-C53	1.396(7)	C60-C61	1.395(8)	C37_C36_C35	120.1(6)	C16 C17 C19	120 1(4)
C60-C59	1.395(10)	C61-C62	1.396(8)	C37_C38_C39	120.1(6)	C38-C39.C40	120.1(0)
C62C63	1.395(10)	C63-C64	1.395(8)	C30-C40 C35	120.1(0)	C36 C35 C40	119.9(0)
C64-C59	1.394(8)	CI-OIP	1.378(11)	PI C25 C40	117 2(5)	DI C25 C24	120.0(0)
CI-O2P	1.335(14)	CI-O3P	1.315(20)	C43 C42 C41	117.2(3)	CA2 CA2 CAA	122.8(3)
C104P	1.383(16)	CIM-O2M	1.884(28)	C43-C44 C45	120.1(5)	C42-C43-C44	120.0(5)
		· · · · · · · · · · · · · · · · · · ·		C45-C44-C45	130.0(5)	C44-C43-C46	120.1(5)
				DI CAL CAS	120.0(3)	C42-C41-C40	120.0(3)
unprimed at	oms also. Therefo	ore, in the following	ng discussion,	Nil P2 C50	123.3(4)	F1-C41-C42	114.3(4)
parameters	associated with p	rimed atoms are o	onsidered for	Nil P2 C47	107.4(2)	C52 D2 C50	122.9(3)
comparison	There is almost	nerfect symmetry	with respect	CAT P2 C50	10.8(2)	C33-F2-C39	103.3(3)
comparison	There is annost	perfect symmetry	with respect	C47-F2-C39	100.2(3)	C47-P2-C33	103.1(3)
to the Ni-S	bond distances (2	(200(2)) and (2.20)	4(2) A) Indi-	C49-C40-C4/	120.1(3)	CF0 CF1 CT0	120.0(6)
cating sym	metric bidentate l	bonding to the ni	ckel ion. The	CS1 CS2 CA7	120.1(0)	C10-C31-C52	120.0(5)
related C-S	distances are als	o symmetric such	1 as 1.726(6)	C31-C32-C47	120.1(0)	C48-C47-C52	119.9(6)
and 1.7246	6) Å. The Ni-	P bond distance	s (2.182(2)	CSS CSA CE2	120.7(3)	F2-04/-048	119.4(4)
2 171(2) Å) are less asymm	etric compared to	1 The Ni_P	C55 C56 C57	120 1(5)	C54 C57 C59	120.1(5)
1:	y we ress asynth		s at a fine for -F	C\$7 C\$8 C\$2	120.1(3)	C54 C52 C58	120.1(5)
uistance rep	sorted is relatively	snort compared t	o une long NI-	C37-C38-C33	120.0(3)	C34-C33-C38	120.1(5)
P distance	of 2.40 A reported	l earlier [24]. The	e phenyl rings	F2-L33-L38	117.8(4)	r2-033-034	122.1(4)
of the dama	mante auto de auto a			C01-C00-C39	113'3(2)	00-001-062	120.1(6)

2.171(2) Å) are less asymmetric compared to 1. The Ni–P distance reported is relatively short compared to the long Ni–P distance of 2.40 Å reported earlier [24]. The phenyl rings of the dppe molecule show normal bond parameters (mean P-C=1.817(8) Å). The other bond parameters of the dithic-carbamate are normal. The bond distances of B–C(Ph) in the BPh₄⁻ ion are in the range 1.650–1.670 Å. The mean B–C distance is 1.657(13) Å and the bond parameters associated with the phenyl rings are normal.

Table 6	
Bond distances (Å) for the two molecules of [Ni(padtc)(dpp	e)]BPh, H ₂ O(2)

	Unprimed molecule	Primed molecule		Unprimed molecule	Primed molecule
Nil-Sl	2.210(2)	2.200(2)	C34-C35	1.340(17)	1.363(18)
Ni1-S2	2.208(2)	2.204(2)	C35-C36	1.394(17)	1.385(16)
Nil-PI	2.174(2)	2.182(2)	C41-C42	1.377(13)	1.386(13)
Nil-P2	2.164(2)	2.171(2)	C41-C46	1.393(9)	1.400(11)
\$1-C3	1.729(5)	1.726(6)	C42-C43	1.385(13)	1.398(12)
S2-C3	1.715(5)	1.724(6)	C43-C44	1.325(15)	1.367(17)
PI-CI	1.852(7)	1.845(7)	C44-C45	1.370(16)	1.348(18)
PI-C31	1.811(8)	1.815(9)	C45-C46	1.379(11)	1.362(12)
P1-C41	1.801(6)	1.811(6)	C51-C52	1.382(11)	1.408(10)
P2-C2	1.843(7)	1.838(7)	C51-C56	1.400(9)	1.365(12)
P2-C51	1.813(8)	1.809(6)	C52-C53	1.383(16)	1.395(12)
P2-C61	1.816(6)	1.812(8)	C53-C54	1.366(14)	1.357(17)
C1-C2	1.491(9)	1.482(9)	C54-C55	1.379(16)	1.375(17)
C3-N4	1.329(7)	1.323(7)	C55C56	1.386(16)	1.388(11)
N4-C5	1.453(8)	1.477(9)	C61-C62	1.371(10)	1.359(12)
N4-C18	1.477(8)	1.448(9)	C61-C66	1.362(13)	1.375(10)
C5-C6	1.515(15)	1.546(17)	C62-C63	1 390(12)	1.391(19)
C6-N7	1.430(11)	1.434(12)	C63-C64	1.344(18)	1.353(15)
N7-C8	1.402(11)	1.406(9)	C64-C65	1.355(15)	1.355(16)
N7C15	1.393(9)	1.412(12)	C65-C66	1.371(11)	1.372(17)
C8-C9	1.472(11)	1.472(13)	B1-C71	1.663(10)	1.658(10)
C8-016	1.203(8)	1.229(12)	BI-C77	1.641(13)	1.670(10)
C9-C10	1,379(16)	1.367(12)	B1-C83	1.653(10)	1.658(12)
C9-C14	1.388(11)	1.385(11)	B1-C89	1.654(9)	1.650(13)
C10-C11	1.387(16)	1.392(22)	C71-C72	1.383(10)	1.376(14)
C11-C12	1.331(20)	1.388(23)	C71-C76	1.370(13)	1.383(10)
C12-C13	1.401(23)	1.365(16)	C72-C/3	1.388(11)	1.393(14)
C13-C14	1.399(14)	1.390(16)	C73-C74	1.363(18)	1.356(15)
C14-C15	1.481(14)	1.444(11)	C74-C75	1.354(15)	1.387(18)
C15-017	1.225(12)	1.214(9)	C75-C76	1.388(12)	1.383(11)
C18-C19	1.512(13)	1.499(18)	C77-C78	1.401(10)	1.380(19)
C19-N20	1.464(10)	1.421(16)	C77-C82	1.379(11)	1.402(16)
N20-C21	1.398(10)	1.387(13)	C78-C79	1.365(14)	1.345(15)
N20-C28	1.413(8)	1.405(16)	C79-C80	1.388(14)	1.379(35)
C21-C22	1.476(10)	1,440(21)	C80-C81	1.376(14)	1.386(30)
C21-O29	1.209(8)	1.238(18)	C81-C82	1.381(16)	1.392(15)
C22-C23	1.383(14)	1.381(18)	C83-C84	1.402(12)	1.380(10)
C22-C27	1.377(10)	1.368(19)	C83-C88	1.394(9)	1 403(13)
C23-C24	1.377(14)	1.432(41)	C84-C85	1.379(12)	1 378(16)
C24-C25	1.361(18)	1.333(42)	C85C86	1.357(12)	1.391(22)
C25-C26	1.378(18)	1.371(23)	C86-C87	1.390(16)	1.362(18)
C26-C27	1.393(10)	1.417(25)	C87-C88	1.369(12)	1.386(18)
C27-C28	1.493(12)	1.464(15)	C89C90	1.399(12)	1.395(12)
C28-O30	1.209(10)	1.197(12)	C89-C94	1.426(14)	1.359(10)
C31-C32	1.362(13)	1.378(12)	C90-C9i	1.397(12)	1.423(18)
C31-C36	1.403(10)	1.375(9)	C91-C92	1.388(20)	1.366(14)
C32-C33	1.411(19)	1.379(19)	C92-C93	1.376(17)	1.361(15)
C33-C34	1.349(15)	1.368(15)	C93-C94	1.394(11)	1.385(17)

In complexes 1 and 2 the Ni–S bond distances are different. Similar differences were found in the Ni(dedtc)ClPPh₃ and [Ni(dedtc)(PPh₃)₂]⁺ (dedtc = diethyldithiocarbamate) complexes reported from our laboratory [13]. The Ni–P distances are also dissimilar in complexes 1 and 2. A comparison of the Ni–P distances in 1 and 2 show1(highly) significant differences, 2.204(3), 2.224(3) and 2.182(2), 2.171(2) Å, respectively. The difference is due to the powerful chelating nature of dppe in complex 2. The chelating nature of dppe forces the corresponding P-Ni-P angle close to 90°, viz. 87.4(1)°, whereas in complex 1 the P-Ni-P angle is 99.7(1)°. Generally, the P-Ni-P angle is greater than 93° for structures incorporating unbridged di- or triphenylphosphine ligands due to steric effects and therefore dppe should be responsible for shortening of the Ni-P bond lengths and reduction of the P-Ni-P angle [14]. The shortening of the Ni-P distance is due to the effective interaction of chelating dppe compared to triphenylphosphine. The N-C-S and C-

Table 7	
Bond angles (°) for the two molecules of [!	Ni(padtc)(dppe)]BPh ₄ ·H ₂ O(2)

	Unprimed molecule	Primed molecule		Unprimed molecule	Primed molecule
	86 7(1)	874(1)	PI_C31_C36	1191(5)	120.2(6)
\$2_Ni1_P2	962(1)	174 3(1)	PI-C31-C32	120.8(5)	120.2(0)
\$2_Ni1_P1	174 9(1)	97 9(1)	C32-C31-C36	120.0(3)	1194(7)
SI_Ni1_P?	174.3(1)	95.3(1)	C31-C32-C33	1197(8)	120.2(8)
S1_N(1-12	979(1)	1754(1)	C32_C33_C34	1197(11)	1194(11)
SI_Ni1_S2	79.6(1)	79.6(1)	C33_C34_C35	121.0(10)	1215(11)
Nil_SI_C3	84 9(2)	85.4(2)	C34-C35-C36	121.4(9)	118 8(9)
Ni1_\$2_C3	85 2(2)	854(2)	C31-C36-C35	118 (8)	120 7(8)
Nil-Pl_C41	1191(2)	119 2(2)	PI_C41_C46	1197(5)	1184(6)
NIL PL_C31	109.9(2)	113.2(2)	P1_C41_C42	123.6(5)	123 2(6)
Nil_PI_CI	107 8(2)	106.7(2)	C42-C41-C46	1167(7)	118 5(7)
C31-PI-C41	107 8(3)	104.8(3)	C41-C42-C43	121 0(8)	1195(9)
CI_PI_C41	107.8(3)	107.9(3)	C42-C43-C44	121.7(10)	120 9(10)
CI_PI_C3I	103 1(3)	104.0(3)	C43-C44-C45	1191(10)	118 8(10)
Ni1-P2-C61	118.9(2)	112.8(2)	C44-C45-C46	120 5(9)	122 6(10)
Nil=P2=C51	110 0(2)	117.4(2)	C41-C46-C45	120 9(7)	1:97(8)
Nil_P2_C2	108 1 (2)	106 7(2)	P2-C51-C56	120 3(5)	173 9(5)
C51-P2-C61	107 9(3)	105.7(3)	P2-C51-C52	120.0(5)	1178(5)
C2_P2_C6I	107.0(3)	103.7(3)	C52-C51-C56	1196(6)	118 2 (7)
C2-P2-C51	103.8(3)	109.7(3)	C51-C52-C53	120.5(7)	120.3(8)
PI-CI-C2	106.7(4)	106.7(4)	C52-C53-C54	119.7(10)	120 2 (9)
P2-C2-C1	106.0(4)	106.6(4)	C53-C54-C55	120 8(9)	120.0(10)
\$1-C3-\$2	110.3(3)	109 6(3)	C54-C55-C56	120 3(8)	1204(10)
\$2-C3-N4	125 3(4)	125.3(5)	C51-C56-C55	1191(7)	121.0(8)
SI-C3-N4	124.4(4)	125.1(5)	P2C61C66	120.7(5)	121.0(6)
C3-N4-C18	121.2(5)	121.0(5)	P2-C61-C62	120.6(6)	121.8(5)
C3-N4-C5	121.6(5)	120.4(5)	C62-C61-C66	118.6(7)	117.2(7)
C5-N4-C18	117.2(4)	118.6(5)	C61-C62-C63	119.0(8)	121.8(8)
N4-C5-C6	112.8(6)	110.3(6)	C62-C63-C64	121.8(9)	118.8(11)
C5-C6-N7	111.9(6)	112.2(6)	C63C64C65	118.9(9)	121.1(10)
C6-N7-C15	124.8(6)	123.3(7)	C64-C65-C66	120.3(9)	119.1(9)
C6-N7-C8	124,4(6)	125.5(7)	C61-C66-C65	121.3(8)	122.0(8)
C8-N7-C15	110.8(6)	110.8(6)	C83-B1-C89	110.7(5)	107.9(6)
N7-C8-O16	123.5(7)	122.5(7)	C77-B1-C89	113.8(6)	108.4(6)
N7-C8-C9	106.5(6)	106.3(7)	C77-B1-C83	107.1(5)	112.8(5)
C9-C8-O16	130.0(7)	131.2(7)	C71-B1-C89	103.6(5)	112.8(5)
C8-C9-C14	108.2(7)	107.0(6)	C71-B1-C83	111.1(5)	110.1(5)
C8-C9-C10	131.0(8)	129.7(8)	C71-B1C77	110.7(5)	104.9(5)
C10-C9-C14	120.8(8)	123.2(8)	B1-C71-C76	124.8(6)	121.0(6)
C9-C10-C11	118.6(11)	117.2(11)	B1-C71-C72	120.9(6)	123.7(6)
CI0-CI1-C12	120.8(11)	119.7(11)	C72-C71-C76	114.2(6)	115.2(6)
C11-C12-C13	122.7(13)	122.8(13)	C71-C72-C73	123.2(8)	121.9(8)
C12-C13-C14	116.8(12)	117.7(11)	C72-C73-C74	120.9(8)	120.8(10)
C9-C14-C13	120.2(9)	119.4(8)	C73-C74-C75	117.3(8)	119.8(8)
CI3-CI4-C15	132.0(9)	130.1(8)	C74-C75-C76	121.0(10)	117.7(9)
C9-C14-C15	107.8(7)	110.4(7)	C71-C76-C75	123.3(9)	124.6(8)
N7-C15-C14	106.6(7)	105.4(7)	B1-C77-C82	123.0(5)	119.1(7)
C14-C15-O17	129.6(8)	131.8(8)	B1-C77-C78	123.7(6)	127.1(9)
N7-CI5-O17	123.7(7)	122.8(7)	C78-C?7-C82	113.1(6)	113.6(9)
N4-C18-C19	112.6(6)	111.5(8)	C77-C78-C79	124.9(7)	126.1(15)
C18-C19-N20	112.0(5)	112.3(8)	C78-C79-C80	119.6(8)	118.0(14)
C19-N20-C28	124.2(6)	123.5(9)	C79-C80-C81	117.8(8)	121.3(17)
C19-N20-C21	122.9(5)	125.6(10)	C80-C81-C82	120.6(8)	117.3(14)
C21-N20-C28	112.5(5)	110.0(8)	C77-C82-C81	124.0(6)	123.6(11)
N20-C21-O29	122.6(6)	122.4(10)	B1-C83-C88	121.5(6)	124.0(7)
N20-C21-C22	106.1(6)	108.7(11)	B1-C83-C84	125.1(6)	120.9(6)
C22-C21-O29	131.3(0)	128.9(11)	C84-C83-C88	113.3(6)	115.1(8)
C21-C22-C23	130.9(7)	100.2(10)		123.0(7)	124.8(9)
C21-C22-C23	130.7(7)	130.2(13)	L04-L03-L00	121.3(8)	117.4(12)

(continued)

	Unprimed molecule	Primed molecule		Unprimed molecule	Primed molecule
 C23-C22-C27	121.3(6)	123.4(12)	C85-C86-C87	117.7(9)	120.8(12)
C22-C23-C24	116.2(9)	114.9(19)	C36-C87-C88	120.0(9)	119.9(12)
C23-C24-C25	123.2(10)	120.3(19)	C83-C88-C87	124.4(8)	122.0(9)
C24-C25-C26	120.9(9)	125.6(23)	b1-C89C94	120.7(6)	126.1(6)
C25-C26-C27	116.8(8)	114.4(17)	B1-C89-C90	126.2(6)	120.1(6)
C22-C27-C26	121.5(7)	120.9(11)	C90-C89-C94	113.1(6)	113.8(7)
C26-C27-C28	128.5(7)	128.2(13)	C89-C90-C91	123.6(8)	122.9(7)
C22-C27-C28	109.9(6)	110.7(11)	C90-C91-C92	120.2(9)	120.3(9)
N20-C28-C27	103.6(6)	104.3(9)	C91-C92-C93	119.6(10)	116.6(9)
C27-C28-O30	131.4(6)	131.6(10)	C92-C93-C94	119.0(9)	122.4(8)
N20-C28-O30	124.9(6)	124.1(9)	C89-C94-C93	124.5(8)	123.7(7)

Fig. 1. Geometry of the {Ni(padcc)(PPh₂)₂} * complex (1) showing the atomic labelling scheme. The hydrogen and solvent molecules were omitted for clarity. The ORTEP diagram is with 30% probability contours for the vibration ellipsoids.

N-C angles of the dithiocarbamate moiety in complexes 1 and 2 are almost identical.

Another important aspect of the comparison is with respect to the thioureide bonds. The thioureide C-N bond distance in padte is 1.359(3) Å [25]. In complex 1 and 2 the thioureide C-N distances are 1.307(10) and 1.323(7) Å, respectively. Significant reduction in the bond distances is a very clear indication of the contribution of the thioureide structure to the molecules. This is inline with the ν C-N absorptions occurring at 1463, 1494, 1509 and 1512 cm⁻¹ for padtc⁻, Ni(padtc)₂, [Ni(padtc)(PPh₃)₂]⁺ and [Ni(padtc)-(dpep)]⁺, respectively.

In conclusion, the following facts are brought out by the present study: planar NiS₂P₂ chromophores depending on the nature of the phosphine induce asymmetry in the *trans* Ni-S distances; chelating dppe forces a symmetrical Ni-S bonding thereby increasing the contribution of the thioureide struc-

Fig. 2. Geometry of the {Ni{padtc}(dppe)}* complex (2) showing the atomic labelling scheme. The hydrogen and solvent molecules were omitted for clarity. The ORTEP diagram is with 30% probability contours for the vibration ellipsoids.

ture. Observed ν C-N values for padtc⁻ and the different complexes also support this fact.

4. Supplementary material

Listing of anisotropic thermal parameters and fractional coordinates of the hydrogen atoms have been deposited with the IUCr. Copies may be obtained through the Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, UK, on request.

References

- [1] A. Chakravorty, Prog. Inorg. Chem., 7 (1966) 83-86.
- [2] J.P. Fackler, Jr., and W.C. Sieidel, Inorg. Chem., 8 (1969) 1631-1639.

- [3] I.J.B. Lin, H.W. Chen and J.P. Fackler, Jr., Inorg. Chem., 17 (1978) 394–401.
- [4] J.M.C. Alison and T.A. Stephenson, J. Chem. Soc., Dalton Trans., (1973) 254-263.
- [5] J.P. Fackler, Jr., L.D. Thompson, I.J.B. Lin, T.A. Steph nson, R.O. Gould, J.M.C. Alison and A.J.F. Fraser, *Inorg. Chem.*, 21 (1982) 2397-2403.
- [6] D.M. Anderson, E.A.V. Ebsworth, T.A. Stephenson and M.D. Walkinshaw, J. Chem. Soc., Dalton Trans., (1982) 2343-2351.
- [7] C.K. Jorgensen, Inorg. Chem., 3 (1964) 1201-1202.
- [8] K. Ramalingam, G. Aravamudan and V. Venkatachalam, Bull. Crem. Soc. Jpn., 66 (1993) 1554-1555.
- [9] J.A. McCleverty and N.J. Morrison, J. Chem. Soc., Dalton Trans., (1976) 541-547.
- [10] D. Lachenal, Inorg. Nucl. Chem. Lett., 11 (1975) 101-106.
- [11] R.P. Burns, F.P. McCullough and C.A. McAuliffe, Adv. Inorg. Chem. Radiochem., 23 (1980) 211-218.
- [12] P.L. Maxfield, Inorg. Nucl. Chem. Lett., 6 (1970) 693-696.
- [13] K. Ramalingam, G. Aravamudan and M. Seshasayee, Inorg. Chim. Acta, 128 (1987) 231-237.
- [14] R. Akilan, K. Sivakumar, V. Venkatachalam, K. Ramalingam, K. Chinnakali and H. Kun-Fun, Acta Crystallogr., Sect. C, 51 (1995) 368-370.

- [15] G.H. Searle, S.F. Lincoln, S.G. Teague and D.G. Rowe, Aust. J. Chem., 32 (1979) 519-536.
- [16] A. Altomare, G. Cascarano, C. Giacovazze, A. Guagliardi, C.M. Burla, C. Polidori and M. Camalli, J. Appl. Crystallogr., 27 (1994) 435.
- [17] G.M. Sheldrick, SHELX76. program for crystal structure determination, University of Cambridge, UK, 1976.
- [18] G.M. Sheldrick, SHELXL93, program for crystal structure refinement, University of Göttingen, Germany, 1993.
- [19] C. Rizzoli, V. Sangennano, G. Calestani and D.G. Andreetti, J. Appl. Crystallogr., 20 (1987) 436–437.
- [20] M. Nardelli, Comput. Chem., 7 (1983) 95-99.
- [21] F. Bonati and R. Vgo, J. Organomet. Chem., 10 (1967) 257-268.
- [22] International Tables for X cay Crystallography, Vol. III, Kynoch, Birmingham, UK, 1968.
- [23] V. Venkatachalam, K. Ramalingam, T.C.W. Mak and L.B. Sheng, Polyhedron, 15 (1996) 1295–1301.
- [24] H. Hope, M.M. Olmstead, P.P. Power and M. Viggiano, *Inorg. Chem.*, 23 (1984) 326-330.
- [25] V. Verkatachalam, S. Thirumaran, K. Ramalingam, T.C.W. Mak and L.B. Sheng, Bull. Chem. Soc. Jpn., (1996) submitted for publication.