

Tetrahedron 54 (1998) 6445-6456

TETRAHEDRON

Synthesis of Difluorocyclopropyl Carbocyclic Homo-nucleosides

René Csuk* and Leo Eversmann

Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg,

Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany

Received 11 March 1998; accepted 6 April 1998

Abstract: Racemic difluorinated carbocyclic homo-nucleoside analogues are easily accessible from (Z)-4-(benzyloxy)-2-butenyl acetate by difluorocyclopropanation using sodium chlorodifluoro acetate in diglyme at 190°C followed by Mitsunobu reactions. © 1998 Elsevier Science Ltd. All rights reserved.

A large number of nucleoside analogues has been synthesized as potential chemotherapeutic agents. Among them, several carbocyclic nucleosides are particularly interesting since they exhibit potent anti-HIV activities and are considered as alternatives to drugs as ddl, ddC and AZT. The side effects and toxicity of the latter compounds limit their usefulness as antiretroviral agents.^{1, 2} As a part of our drug discovery program for AIDS and other viral diseases we became interested in the synthesis and biological evaluation of cyclopropyl carbocyclic nucleosides.^{3, 4} Previously the incorporation of one or two fluorine substituents has been shown to be of advantage both for an improved activity, higher bioavailability and retarded metabolism of several drugs.⁵ Thus, herein we report the first synthesis of difluorocyclopropyl homo-nucleoside analogues ⁶ in a very efficient way.

Thus, the easily available (Z)-4-(benzyloxy)-2-butenyl acetate (1)⁷ was subjected to a difluorocyclopropanation using sodium difluoro acetate in diglyme at 190°C ⁸ to afford 2. 2 is characterized in its ¹⁹F NMR spectrum by the presence of two signals at $\delta = -126.82$ and -152.61 ppm showing each a ${}^{2}J_{F,F} = 162.7$ Hz; the quaternary carbon bearing the two fluorine substituents is found in the ¹³C NMR spectrum at $\delta =$ 114.13 ppm. Smooth Zemplen deacetylation of 2 with catalytic amounts of sodium methoxide in methanol gave the key intermediate 3. Treatment of 3 with triphenylphosphine (TPP) diethyl azodicarboxylate (DEAD) and 6-chloro-purine under Mitsunobu conditions ⁹ afforded 4 ¹⁰ that was subjected to an ammonolysis to afford 5 in 77% yield.¹¹ A more direct preparation of 5 was achieved by a Mitsunobu reaction of 3 with adenine. Finally, 5 was debenzylated with *Pearlman*'s catalyst using cyclohexene as a hydrogen donor to afford the adenine analogue 6 in 74% yield. 6 shows in the ¹⁹F NMR spectrum two signals at $\delta = -124.38$ and -151.45 ppm; the signal for the CH₂-N-moiety is found in the ¹³C NMR spectrum at $\delta = 36.53$ ppm and shows a ${}^{3}J_{C,F} = 4.98$ Hz. The NH₂-group of the heterocycle is observed in the ¹H NMR spectrum at $\delta = 5.59$ ppm as a broad signal.

By a similar strategy a thymine analogue was prepared using again 3 as a starting material. Thus, reaction of 3 with N³-benzoyl-thymine 12 , DEAD and TPP in dry 1,4-dioxane 13 for 16 h at ambient

Mitsunobu reaction of 3 with N³-benzoyl-uracil ¹⁴ gave 10 that was debenzoylated to afford 11 whose debenzylation gave the uracil analogue 12. To access a cytosine analogue the uracil derivative 11 was allowed to react with 1,2,3-triazole and POCl₃/triethylamine ¹⁵ to afford 13 whose deprotection finally gave the desired cytosine analogue 14 albeit in a somewhat low yield.

Treatment of 4 with trifluoroacetic acid gave 15 that upon debenzylation resulted in the smooth formation of the hypoxanthine derivative $16.^{16}$ Finally, a 5-fluoro-uracil analogue was prepared by the reaction of 3 with N³-benzoyl-5-fluoro-uracil ¹⁷, DEAD, TPP to give 73% of the fully protected derivative 17 whose debenzoylation with ammonium hydroxide yielded 18 that was debenzylated to afford 19. 19 is characterized in its ¹⁹F NMR spectrum by the presence of three signals at $\delta = -126.38, -152.60$ and -169.67 ppm the latter of which can be assigned to the fluoro substituent at the 5'-position of the heterocycle.

Since preliminary screening of the compounds revealed some cytotoxic activity the synthesis of enantiomerically pure samples by a chemoenzymatic process is presently investigated in our laboratories.¹⁸

Acknowledgment.- Financial support by the European Communities (SC1*-CT92-0780), Land Sachsen-Anhalt (21TA1996) and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr. Ch. Hawat for taking several of the NMR spectra.

Experimental Part

Melting points are uncorrected (*Leica* hot stage microscope), optical rotations were obtained using a Perkin-Elmer 341 polarimeter (1 cm micro cell), NMR spectra (internal Me₄Si) were recorded using the Varian spectrometers Gemini 200, Gemini 2000 or Unity 500 (δ given in ppm, *J* in Hz, internal Me₄Si for ¹H and ¹³C NMR spectra, internal CCl₃F was used for ¹⁹F NMR spectra, C^c correspond to the atoms of the heterocycle), IR spectra (film or KBr pellet) on a Perkin-Elmer FT-IR spectrometer Spectrum 1000, MS spectra were taken on a Intectra GmbH AMD 402 (electron impact, 70 eV) or on a Finnigan MAT LCQ 7000 (electrospray, voltage 4.5 kV, under nitrogen) instrument; for elemental analysis a Foss-Heraeus Vario EL instrument was used; TLC was performed on silica gel (Merck 5554, detection by UV absorption or by treatment with a solution of 10% sulfuric acid, ammonium molybdate and cerium^(IV) sulfate followed by gentle heating).

 (\pm) -(1 SR, 3 RS)-[3-Benzyloxymethyl-2,2-difluorocyclopropyl]-methyl acetate [(\pm) -2] A solution of (Z)-4-(benzyloxy)-2-butenyl acetate (1) (3.3 g, 15 mmol) in dry diglyme (5 ml) was heated to 190 °C. A solution of sodium chloro-difluoro acetate (25 g, 164 mmol) in dry diglyme (43 ml) was added at this temperature over a period of 60 minutes. After keeping the reaction at 190 °C for an additional 15 minutes it was allowed to cool to room temperature, poured into ice water and the aqueous solution was extracted with hexane (4 x 100 ml). The combined organic layers were washed with brine, dried (MgSO₄) and the solvents were evaporated under reduced pressure. The remaining brown oil was subjected to column chromatography (silica gel, ethyl acetate/hexane 1:5) to afford 2 (3.33 g, 83%) as a colorless oil contaminated with some starting material which was easily separated in the next reaction step; an analytical sample was prepared by deacetylation (vide infra), chromatography (ethyl acetate 1:2) and re-acetylation (pyridine/acetic anhydride); R_F (ethyl acetate/hexane 1:4) 0.41; UV (methanol): $\lambda_{max} = 266$ nm (log $\varepsilon = 3.57$); IR (film): v 3370w, 3035w, 2965w, 2870m, 1955w, 1740s, 1600w, 1090s, 1035s; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 5 H, phenyl), 4.54 and 4.48 (AB system, J_{AB} = 11.7, 2 H, CH₂-phenyl), 4.31-4.11 (m, 2 H, CH₂-O-Ac), 3.69-3.59 (m, 2 H, CH₂-O-Bn), 2.13-2.03 (m, 2 H, cyclopropyl), 2.04 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 171.82 (s, CO), 138.83 (s, Cq phenyl), 129.56 (d, Cartho phenyl), 128.93 (d, Cmeta phenyl), 128.81 (d, Cpara phenyl), 114.13 (*dd*, ${}^{1}J_{C,F} = 283.7, 290.68, CF_2$), 73.91 (*t*, CH₂-phenyl), 63.73 (*dt*, ${}^{3}J_{C,F} = 32.2, CH_2-O-Bn$), 58.77 (*dt*, ${}^{3}J_{C,F} = 5.0, CH_2-O-Ac$), 26.07 (*dt*, ${}^{2}J_{C,F} = 10.0, C(1)$), 24.71 (*dt*, ${}^{2}J_{C,F} = 21.1, C(3)$), 21.60 (*q*, CH₃); ${}^{19}F$ NMR (188 MHz, CDCl₃): δ -126.82 (*ddd*, ${}^{2}J_{F,F} = 162.65, {}^{3}J_{H,F} = 10.8, {}^{3}J_{H,F} = 11.0, F$), -152.61 (*d*, ${}^{2}J_{F,F} = 162.65, {}^{3}J_{H,F} = 10.8, {}^{3}J_{H,F} = 11.0, F$), -152.61 (*d*, ${}^{2}J_{F,F} = 162.65, {}^{3}J_{H,F} = 10.8, {}^{3}J_{H,F} = 11.0, F$), -152.61 (*d*, ${}^{2}J_{F,F} = 162.65, {}^{3}J_{H,F} = 10.8, {}^{3}J_{H,F} = 11.0, F$), -152.61 (*d*, ${}^{2}J_{F,F} = 162.65, {}^{3}J_{H,F} = 10.8, {}^{3}J_{H,F} = 10.8$ 162.65, F'); MS (e.i., 70 eV): 270 (1%), 227 (1%), 210 (1%), 190 (1%), 180 (1%), 163 (1%), 144 (6%), 119 (1%), 105 (13%), 91 (100%), 65 (17%), 43 (56%); HRMS calcd. for $C_{14}H_{16}O_3F_2$: 270.1067; found: 270.1068; Anal. calcd. for C14H16O3F2 (270.28): C, 62.22; H, 5.97; found: C, 62.51; H, 6.04.

(±)-(1 SR, 3 RS)-3-Benzyloxymethyl-2,2-difluorocyclopropyl-methanol [(±)-3] A solution of 2 (3.33 g, 12.3 mmol) in methanol (7 ml) was treated with catalytic amounts of sodium methoxide. After 30 minutes the reaction was complete and the reaction mixture was neutralized by the addition of 10 % aqueous hydrochloric acid. The solvent was evaporated and the residue was suspended in water (10 ml). The suspension was extracted with ethyl acetate (4 × 50 ml), the combined organic layers were washed with brine, dried (MgSO₄) and the solvents were evaporated. The remaining crude oil was purified by column chromatography (silica gel, ethyl acetate/ hexane 1:3) to afford 3 (2.4 g, 70 % yield from 1) as a colorless oil; R_F (ethyl acetate/hexane 1:2) 0.29; UV (methanol): $\lambda_{max} = 266$ nm (log $\varepsilon = 5.06$); IR (film): v 3430s, 3090w, 3065m, 3035m, 2880s, 1960w, 1880w, 1815w, 1735w, 1605w, 1585w, 1480s, 1420m, 1365s, 1285s, 1250s, 1185s, 1075s, 1030s, 1000s; ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.28 (m, 5 H, phenyl), 4.53 (AB system, $J_{AB} = 11.59$, 2 H, CH₂-phenyl), 3.87 (m, ² $J_{H,H} = -10.85$, ³ $J_{H,H(C1)} = 4.54$, 1 H, CH₂-OH), 3.58 (m, ² $J_{H,H} = -11.38$, ³ $J_{H,H(C3)} = 4.1$, 1 H, CH₂-OBn), 2.85 (d, 1 H, OH), 2.08 (m, ³ $J_{H,(C1)} = 11.59$, 1 H, H-C(1)), 2.06 (m, ³ $J_{H,(C1)} = 11.59$, 1 H, H-C(3)); ¹³C NMR (100 MHz, CDCl₃): δ 136-78 (s, C_q phenyl), 128.60

(*d*, C_{ortho} phenyl), 128.17 (*d*, C_{meta} phenyl), 127.95 (*d*, C_{para} phenyl), 113.78 (*dd*, ¹J_{C,F} = 289.40, 284.0, CF₂), 73.35 (*t*, ¹J_{C,H} = 141.82, CH₂-phenyl), 62.58 (*dt*, ³J_{C,F} = 3.73, CH₂-OBn), 55.58 (*dt*, ³J_{C,F} = 3.73, ¹J_{C,H} = 145.50, CH₂OH), 28.35 (*dt*, ²J_{C,F} = 9.95, ¹J_{C,H} = 356.76, C(1)), 24.83 (*dt*, ²J_{C,F} = 9.95, ¹J_{C,H} = 364.21, C(3)); ¹⁹F NMR (470 MHz, CDCl₃): δ -124.35 (*ddd*, ²J_{F,F} = 162.58, ³J_{F,H} = 13.80, ³J_{F,H} = 14.05, F), -149.79 (*dd*, ²J_{F,F} = 162.58, ³J_{F,H} = 1.47, F'); MS (e.i., 70 eV): 228 (2.9%), 107 (100%), 102 (22.9%), 91 (50%), 77 (14.3%), 65 (16.4%); Anal. calcd. for C₁₂H₁₄F₂O₂ (228.24): C, 63.15, H, 6.18; found: C, 63.15; H, 6.27.

(±)-[(1 SR, 3 RS)-(3-Benzyloxymethyl-2,2-difluorocyclopropyl)-methyl]-6-chloro-9H-purine [(±)-4] To a mixture of 3 (0.41 g, 1.8 mmol), triphenylphosphine (0.95 g, 3.6 mmol) and 6-chloropurine (0.56 g, 3.6 mmol) in dry 1,4-dioxane (8 ml) a solution of DEAD (0.57 ml, 3.6 mmol) in 1,4-dioxane (30 ml) was added dropwise at room temperature over a period of 2.5 hours. The reaction mixture was stirred overnight, the solvent was evaporated and the remaining yellowish oil was purified by column chromatography (silica gel, ethyl acetate/hexane 1:1) to afford 4 (0.44 g, 67 %) as an oil contaminated with some impurities that were easily removed after the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 7:3); R_F (ethyl acetate/hexane 1:1) 0.24; UV (methanol): $\lambda_{max} = 267$ nm (log $\varepsilon = 3.99$); IR (film): v 3450w, 3031w, 2865w, 1735w, 1595m, 1560m, 1500w, 1475m, 1440w, 1405m, 1370w, 1335m, 1275w, 1255w, 1210m, 1185w, 1145w, 1075m, 1030w; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1 H, H-C(4')), 8.18 (s, 1 H, H-C(8')), 7.35-7.25 (m, 5 H, phenyl), 4.57-4.30 (m, 4 H, CH₂-phenyl and CH₂-N), 3.86-3.61 (m, 2 H, CH₂-O-Bn), 2.34-2.12 (m, 2 H, cyclopropyl); ¹³C NMR (100 MHz, CDCl₃): δ 152.17 (s, C(6')), 151.88 (s, C(2')), 151.34 (s, C(4')), 145.00 (s,C(8')), 137.11 (s, C_q phenyl), 131.67 (d, C_{ortho} phenyl), 128.26 (d, C_{meta} phenyl), 127.93 (d, C_{para} phenyl), 113.99 (s, $C(5^{\circ})$), 112.49 (dd, ${}^{1}J_{C,F} = 293.20, 282.43$, CF₂), 73.22 (*t*, CH₂-phenyl), 62.03 (*dt*, ${}^{3}J_{C,F}$ = 4.12, CH₂-OBn), 37.92 (*dt*, ${}^{3}J_{C,F}$ = 6.22, CH₂-N), 25.26 (*dt*, $^{2}J_{C,F} = 10.06, C(3)), 24.28 (dt, ^{2}J_{C,F} = 11.06, C(1)); ^{19}F NMR (188 MHz, CDCl_{3}): \delta -126.69 (ddd, ^{2}J_{F,F} = 10.06, C(3))$ $168.1, {}^{3}J_{F,H} = 10.8, {}^{3}J_{F,H} = 11.0, F$, -151.75 (d, ${}^{2}J_{F,F} = 168.1, F'$); MS (e.i., 80 eV): 367 (0.6%), 365 (1.8%), 258 (10.3%), 238 (31.6%), 181 (7.1%), 155 (9.6%), 104 (17.7%), 91 (100%), 71 (43.3%); HRMS calcd. for C17H15ON4F2Cl: 364.0902; found: 364.0904; Anal. calcd. for C17H15ON4F2Cl (364.79): C, 55.98; H, 4.14; N, 15.36; found: C, 55.79; H, 4.29; N, 15.42.

(±)-9-[(1 SR, 3 RS)-(3-Benzyloxymethyl-2,2-difluoro-cyclopropyl)-methyl]-9H-6-purinamine [(±)-5]

a) From 4: Treatment of compound 4 (0.11 g, 0.3 mmol) with liquid ammonia (10 ml) in an autoclave at 75 °C and 40 bar for 18 hours resulted after evaporation of the volatiles and column chromatography (silica gel, ethyl acetate/prop-2-OH 3:1) in the formation of 5 (80 mg, 77%).

b) From 3: A more direct preparation of 5 was achieved by a Mitsunobu reaction as described for 4 using 3 (0.92 g, 4.03 mmol), triphenylphosphine (2.11 g, 8.06 mmol), adenine (1.09 g, 8.06 mmol) suspended in 1,4-dioxane (18 ml) and DEAD (1.27 ml, 8.06 mmol) dissolved in 1,4-dioxane (20 ml). The solvent was evaporated and the residue was purified by column chromatography (silica gel, ethyl acetate/prop-2-OH 3:1) to afford 5 (0.61 g, 43%).

Data for 5: white solid, mp: 149-150 °C; R_F (ethyl acetate/methanol 4:1) 0.48; UV (methanol): $\lambda_{max} = 263 \text{ nm}$ (log $\varepsilon = 4.16$); IR (KBr): v 3355s, 3155m, 2925m, 2865w, 1650s, 1605s, 1575m, 1475s, 1420m, 1370m, 1330m, 1310m, 1245s, 1195m, 1165m, 1115m, 1075m, 1030m, 1005m; ¹H NMR (400 MHz, CD₃OD): δ 8.35 (s, 1 H, H-C(2')), 7.84 (s, 1 H, H-C(8')), 7.36-7.25 (m, 5 H, phenyl), 4.49 (AB system, J_{AB} = 11.99, 2 H, CH₂-phenyl), 4.46 (m, ²J_{H,H} = -6.73, ³J_{H,H} = 5.46, 1 H, CH₂-N), 4.19 (m, ²J_{H,H} = -6.73, ³J_{H,H} = 14.95, 1 H, CH₂-N), 3.79 (m, ²J_{H,H} = -11.06, ³J_{H,H} = 6.66, 1 H, CH₂-OBn), 3.64 (m, ²J_{H,H} = -11.06, ³J_{H,H} = 8.76, 1 H, CH₂-OBn), 2.28 (m, ³J_{H,H} = 7.32, 1 H, H-C(1)), 2.13 (m, ³J_{H,H} = 7.32, 1 H, H-C(3)); ¹³C NMR (125 MHz, CDCl₃): δ 155.74 (s, C(6')), 153.04 (d, ¹J_{C,H} = 201.66, C(2')), 149.94 (s, C(4')), 140.00 (d, ¹J_{C,H} = 210.92, C(8')), 137.22 (s, C_q phenyl), 128.50 (d, C_{ortho} phenyl), 127.97 (d, C_{meta} phenyl), 127.77 (d, C_{para}

phenyl), 119.52 (*s*, C(5^c)), 112.67 (*dd*, ¹J_{CF}=282.2, CF₂), 73.05 (*t*, ¹J_{C,H} = 139.81, CH₂-phenyl), 62.21 (*dt*, ³J_{C,F} = 4.99, ¹J_{C,H} = 146.42, CH₂-OBn), 37.25 (*dt*, ³J_{C,F} = 5.99, ¹J_{C,H} = 140.56, CH₂-N), 25.18 (*dt*, ²J_{C,F} = 9.98, ¹J_{C,H} = 164.27, C(3)), 24.65 (*dt*, ²J_{C,F} = 10.9, ¹J_{C,H} = 163.31, C(1)); ¹⁹F NMR (188 MHz, CDCl₃): δ -126.91 (*dd*, ²J_{F,F} = 168.1, ³J_{F,H} = 10.82, ³J_{F,H} = 11.0, F), -152.14 (*dt*, ²J_{F,F} = 168.1, F^c); MS (e.i., 70 eV): 345 (1.4%), 325 (1.4%), 296 (12.7%), 239 (14.2%), 219 (100%), 224 (12.7%), 204 (9.2%), 148 (12.7%), 135 (32.6%), 108 (7.1%), 99 (11.3%), 91 (67.4%); HRMS calcd. for C₁₇H₁₇F₂N₅O: 345.1401; found: 345.1401.

(±)-3-Benzoyl-1-[(1 SR, 3 RS)-3-benzyloxymethyl-2,2-difluorocyclopropylmethyl]-5-methyl-1,2,3,4-tetrahydro-2,4-pyrimidinedione [(±)-7] The reaction was performed under the conditions as described for 4 using 3 (0.34 g, 1.47 mmol), triphenylphosphine (0.77 g, 2.96 mmol), N³-benzoylthymine (0.68 g, 2.96 mmol), 1,4-dioxane (8 ml) and DEAD (0.46 ml, 2.96 mmol) in 1,4-dioxane (15 ml). After evaporation of the solvents purification by column chromatography (silica gel, ethyl acetate/hexane 1:4 \rightarrow 1:2) gave 7 (0.43g, 68%) as an oil; R_F (ethyl acetate/hexane 1:2): 0.12; UV (methanol): $\lambda_{maxl} = 280 \text{ nm} (\log \epsilon = 100 \text{ nm})$ 3.88), $\lambda_{max2} = 255 \text{ nm} (\log \varepsilon = 4.19)$; IR (film): v 3305w, 3065w, 3030w, 2980w, 2930w, 2870w, 2140w, 1970w, 1800w, 1750s, 1700s, 1660s, 1600m, 1580w, 1475m, 1440s, 1385m, 1360m, 1330m, 1315m, 1250s, 1195m, 1180m, 1090m, 1075m, 1030m, 1000m; ¹H NMR (200 MHz, CDCl₃): δ 7.94-7.27 (m, 10 H, phenyl), 7.16 (s, 1 H, H-C(6')), 4.53 (AB system, J_{AB} = 11.61, 2 H, CH₂-phenyl), 4.19-4.11 (m, 1 H, CH₂-OBn), 3.80-3.61 (m, 3 H, CH₂-OBn and CH₂-N), 2.20-2.11 (m, 2 H, cyclopropyl), 1.27 (s, 3 H, CH₃); ¹³C NMR (50 MHz, CDCl₃): & 168.83 (s, CO benzoyl), 162.94 (s, C(2')), 149.75 (s, C(4')), 139.59 (d, C(6')), 137.15 (s, C_q phenyl (Bn)), 134.93 (s, C_q phenyl (Bz)), 131.53 (d, C_{para} phenyl (Bz)), 130.35 (d, C_{ortho} phenyl (Bz)), 129.04 (d, C_{meta} phenyl (Bz)), 128.52 (d, C_{ortho} phenyl (Bn)), 128.02 (d, C_{meta} phenyl (Bn)), 127.77 (*d*, C_{para} phenyl (Bn)), 113.83 (*dd*, ¹J_{C,F} = 292.21, 281.25, CF₂), 111.08 (*s*, C(5⁺)), 73.03 (*t*, CH₂phenyl), 62.32 (*dt*, ${}^{3}J_{C,F} = 6.16$, CH₂-OBn), 42.25 (*dt*, ${}^{3}J_{C,F} = 5.39$, CH₂-N), 25.08 (*dt*, ${}^{2}J_{C,F} = 10.01$, C(3)), 23.70 (*dt*, ${}^{3}J_{C,F} = 10.02$, C(1)), 12.19 (*q*, CH₃); ¹⁹F NMR (188 MHz, CDCl₃): δ -126.48 (*ddd*, ${}^{2}J_{F,F} = 164.62$, ${}^{3}J_{F,H} = 10.91$, ${}^{3}J_{F,H} = 10.94$, F), -150.81 (*d*, ${}^{2}J_{F,F} = 164.62$, F'); MS (ESI): 441 (M+1, 2 %), 463 (M+Na, 38 %), 479 (M+K, 14 %), 271 (100 %); HRMS calcd. for C₂₄H₂₂O₄N₂F₂: 440.1548, found: 440.1548.

(\pm)-1-[(1 SR, 3 RS)-3-Benzyloxymethyl-2,2-difluorocyclopropylmethyl]-5-methyl-1,2,3,4tetrahydro-2,4-pyrimidinedione [(\pm)-8] A solution of 7 (0.34 g, 0.78 mmol) in 1,4-dioxane (10 ml) was treated with sodium hydroxide (N, 10 ml) for 12h. The volatiles were evaporated and the remaining oil was subjected to column chromatography (silica gel, ethyl acetate/hexane 4:1) to give **8** (0.22 g, 84 %) as a white solid mp: 162-163 °C; R_F (ethyl acetate/hexane 5:1) 0.39; UV (methanol): $\lambda_{max} = 271$ nm (log $\varepsilon = 3.98$); IR (KBr): v 3445*m*, 3165*w*, 3035*m*, 2930*w*, 2875*w*, 1700*s*, 1665*s*, 1475*m*, 1380*m*, 1365*m*, 1275*m*, 1250*m*, 1230*w*, 1200*m*, 1175*w*, 1090*m*, 1030*w*; ¹H NMR (500 MHz, CDCl₃): 8.11 (*br s*, 1 H, NH), 7.37-7.23 (*m*, 5 H, phenyl), 7.01 (*s*, 1 H, H-C(6')), 4.50 (AB system, $J_{AB} = 11.67$, 2 H, CH₂-phenyl), 4.12 (*m*, ²*J*_{H,H} = -12.37, ³*J*_{H,H} = 6.97, 1 H, CH₂-OBn), 3.77 (*m*, ²*J*_{H,H} = -12.37, ³*J*_{H,H} = 7.62, 1 H, CH₂-OBn), 3.60 (*m*, ²*J*_{H,H} = -8.77, ³*J*_{H,H} = 10.53, 1 H, CH₂-N), 3.57 (*m*, ²*J*_{H,H} = -8.77, ³*J*_{H,H} = 9.76, 1 H, CH₂-N), 2.12 (*m*, ³*J*_{H(C3),H(C1)} = 13.28, 1 H, H-C(3)), 2.07 (*m*, ³*J*_{H(C3),H(C1)} = 13.28, 1 H, H-C(1)), 1.24 (*s*, 3 H, CH₃); ¹³C NMR (100 MHz, d₆-DMSO): δ 164.348 (*s*, C(2')), 151.032 (*s*, C(4')), 140.917 (*d*, C(6')), 138,21 (*s*, C_{*q*} phenyl), 128.52, 128.00, 127.77 (each *d*, phenyl), 114.59 (*t*, ¹*J*_{C,F} = 285.66, CF₂), 108.96 (*s*, C(5')), 71.91 (*t*, ¹*J*_{C,H} = 139.51, CH₂-phenyl), 62.41 (*dt*, ³*J*_{C,H} = 161.94, C(3)), 24.59 (*dt*, ²*J*_{C,F} = 10.02, ¹*J*_{C,H} = 161.78, C(1)), 11.82 (*q*, CH₃); ¹⁹F NMR (470 MHz, CD₃OD): δ -126.71 (*ddd*, ²*J*_{F,F} = 164.23, ³*J*_{F,H} = 13.27, F), -152.12 (*dd*, ²*J*_{F,F} = 164.23, ³*J*_{F,H} = 1.47, F'); MS (e.i., 70 eV): 336 (6.4%), 230 (73.7%), 210 (69.5%), 172 (9.6%), 151 (27.7%), 139 (15.9%), 126 (22.3%), 96 (17.7), 91 (100%); HRMS calcd. for C₁₇H₁₈N₂O₃F₂: 336.1285, found 336.1287.

(±)-1-[(1 SR, 3 RS)-2,2-Difluoro-3-hydroxymethyl-cyclopropylmethyl]-5-methyl-1,2,3,4tetrahydro-2,4-pyrimidinedione (= 1-(2,2-difluoro-3-hydroxymethyl-cyclopropylmethyl) thymine) [(±)-9] To a solution of 8 (0.86 g, 2.56 mmol) in methanol (35 ml) were added cyclohexene (28 ml) and Pearlman's catalyst (1.97 g, 20 %) and the reaction mixture was heated under reflux for 6 hours. After filtration and evaporation of all volatiles the remaining residue was subjected to column chromatography (silica gel, ethyl acetate/hexane 1:1 \rightarrow ethyl acetate/methanol 3:1) to give 9 (0.45 g, 71 %) as a white solid; mp: 183-185 °C; R_F (ethyl acetate/methanol 4:1) 0.54; UV (methanol): $\lambda_{max} = 271$ nm, (log $\varepsilon = 3.87$); IR (KBr): v 3460s, 3185s, 3040s, 2925m, 2815m, 2550m, 1690s, 1645s, 1455s, 1417m, 1385m, 1355s, 1265s, 1250s, 1225s, 1195s, 1155m, 1125m, 1105m, 1050s, 1005m; ¹H NMR (500 MHz, d₆-DMSO): δ 11.24 (br s, 1 H, NH), 7.48 (s, 1 H, H-C(6')), 4.88 (s, 1 H, C-OH), 3.93 (m, ${}^{2}J_{H,H} = -14.11$, ${}^{3}J_{H,H} = 7.09$, 1 H, CH₂-N), $3.74 (m, {}^{2}J_{H,H} = -14.70, {}^{3}J_{H,H} = 7.73, 1 \text{ H}, \text{CH}_{2}\text{-OH}), 3.64 (m, {}^{2}J_{H,H} = -14.11, {}^{3}J_{H,H} = 7.78, 1 \text{ H}, \text{CH}_{2}\text{-N}), 3.55 \text{ H}$ $(m, {}^{2}J_{H,H} = -14.70, {}^{3}J_{H,H} = 7.61, 1 \text{ H}, \text{CH}_{2}\text{-OH}), 2.18 (m, {}^{3}J_{H,H} = 11.84, 1 \text{ H}, \text{H-C}(1)), 2.03 (m, {}^{3}J_{H,H} = 11.84, 1 \text{ H})$ 1 H, H-C(3)), 1.75 (s, 3 H, CH₃); ¹³C NMR (125 MHz, CD₃OD): δ 165.59 (s, C(2⁺)), 151.70 (s, C(4⁺)), 141.33 (*d*, C(6')), 113.8 (*dd*, ${}^{1}J_{C,F}$ = 291.07, 280.39, CF₂), 110.383 (*s*, C(5')), 54.47 (*dt*, ${}^{3}J_{C,F}$ = 6.03, CH₂-OH), 41.63 (*dt*, ${}^{3}J_{C,F}$ = 5.91, CH₂-N), 27.39 (*dt*, ${}^{2}J_{C,F}$ = 9.93, C(3)), 23.90 (*dt*, ${}^{2}J_{C,F}$ = 9.93, C(1)), 11.03 (*q*, CH₃); ¹⁹F NMR (188 MHz, CD₃OD): δ -124.14 (*ddd*, ${}^{2}J_{F,F}$ = 164.5, ${}^{3}J_{F,H}$ = 10.82, ${}^{3}J_{F,H}$ = 11.06, F), -150.63 $(dt, {}^{2}J_{F,F} = 164.5, F^{\circ});$ MS (e.i., 70 eV): 246 (49%), 229 (85%), 215 (75%), 196 (17%), 172 (32%), 149 (38%), 139 (46%), 126 (86%), 91 (25%), 83 (31%), 96 (100%); HRMS calcd. for C₁₀H₁₂O₃N₂F₂: 246.0799; found: 246.0799.

(±)-3-Benzoyl-1-[(1 *SR*, 3 *RS*)-3-benzyloxymethyl-2,2-difluorocyclopropylmethyl]-1,2,3,4tetrahydro-2,4-pyrimidinedione [(±)-10] The reaction was performed under the conditions as described for 4 using 3 (0,41 g, 1.80 mmol), triphenylphosphine (0.95 g, 3.60 mmol), N³-benzoyluracil (0.78 g, 3.60 mmol), 1,4-dioxane (7 *ml*) and DEAD (0.57 *ml*, 3.60 mmol) in 1,4-dioxane (20 *ml*). After evaporation of the solvents and purification by column chromatography (silica gel, ethyl acetate/hexane 1:1) 10 (0.56 g, 71%) was obtained as an oil contaminated with some impurities that were easily separated in the next reaction step; an analytical sample was obtained by column chromatography (silica gel RP-18, methanol/water 8:3); R_F (ethyl acetate/hexane 1:1) 0.28; UV (methanol): $\lambda = 255.2$ nm (log $\varepsilon = 3.28$); IR (film): v 3245w, 3090w, 3035w, 2870w, 1750s, 1705s, 1665s, 1600m, 1390m, 1560w, 1530w, 1475m, 1440s, 1365m, 1245s, 1210m, 1180m, 1075m, 1030m, 1000m; ¹H NMR (200 MHz, CDCl₃): δ 7.91 (*d*, ³*J*_{H,H} = 1.17, 1 H, H-C(6')), 7.66-7.27 (*m*, 10 H, phenyl), 5.63 (*d*, ³*J*_{H,H} = 8.01, 1 H, H-C(5')), 4.48 (AB system, *J*_{AB} = 11.6, 2 H, CH₂phenyl), 4.08 (*m*, 1 H, CH₂-N), 3.81-3.51 (*m*, 3 H, CH₂-OBn and CH₂-N), 2.14-2.02 (*m*, 2 H, cyclopropyl); ¹³C NMR (100 MHz, CDCl₃): δ 168.79 (*s*, CO benzoyl), 162.33 (*s*, C(2⁺)), 149.84 (*s*, C(4⁺)), 143.96 (*d*, C(6⁺)), 137.25 (*s*, C_q phenyl (Bn)), 135.14 (*s*, C_q phenyl (Bz)), 131.49 (*d*, C_{para} phenyl (Bz)), 130.44 (*d*, C_{ortho} phenyl (Bz)), 129.25 (*d*, C_{meta} phenyl (Bz)), 128.53 (*d*, C_{ortho} phenyl (Bn)), 128.20 (*d*, C_{meta} phenyl (Bn)), 127.90 (*d*, C_{para} phenyl (Bn)), 112.79 (*dd*, ¹_{J_{C,F} = 293.60, 281.43, CF₂), 102.27 (*s*, C(5⁺)), 73.03 (*t*, CH₂-phenyl), 62.08 (*dt*, ³_{J_{C,F} = 4.14, CH₂-OBn), 42.53 (*dt*, ³_{J_{C,F} = 5.80, CH₂-N), 25.02 (*dt*, ²_{J_{C,F} = 10.36, C(3)), 23.68 (*dt*, ²_{J_{C,F} = 10.36, C(1)); ¹⁹F NMR (188 MHz, CDCl₃): δ -126.4 (*ddd*, ²_{J_{F,F} = 166.31, ³_{J_{F,H} = 10.96, ³_{J_{F,H} = 11.04, F), -150.83 (*d*, ²_{J_{F,F} = 166.31, F⁺); MS (e.i., 70 eV): 426 (3.5%), 321 (6.4%), 215 (67.2%), 196 (11%), 125 (7.4%), 105 (86%), 91 (100%), 77 (62%); HRMS calcd. for C₂₃H₂₀O₄N₂F₂: 426.1390; found: 426.1389.}}}}}}}}}

(±)-[(1 *SR*, 3 *RS*)-3-Benzyloxymethyl-2,2-difluorocyclopropylmethyl]-1,2,3,4-tetrahydro-2,4pyrimidinedione [(±)-11] A solution of 10 (0.56 g, 1.3 mmol) in methanol (20 *ml*) was treated with ammonium hydroxide (6 *ml*) for 2 hours. The volatiles were evaporated and the remaining oil was subjected to column chromatography (silica gel, ethyl acetate/hexane 1:1) to give 11 (0.4 g, 95%) as a white solid; mp: 93-94 °C; R_F (ethyl acetate/hexane 4:1) 0.33; UV (methanol): $\lambda_{max} = 266$ nm (log $\varepsilon = 3.92$); IR (KBr): v 3370s, 3175*m*, 3095*m*, 3045*m*, 2880*w*, 2815*w*, 1960*w*, 1695*s*, 1665*s*, 1625*m*, 1580*m*, 1470*m*, 1430*m*, 1395*m*, 1370*m*, 1285*w*, 1255*m*, 1215*w*, 1185*m*, 1145*w*, 1090*m*, 1075*m*, 1030*w*, 1005*w*; ¹H NMR (400 MHz, CDCl₃): δ 10.1 (*br s*, 1 H, NH), 7.51-7.27 (*m*, 5 H, phenyl), 7.19 (*d*, ³J_{H,H} = 7.93, 1 H, H-C(6')), 5.57 (*d*, ³J_{H,H} = 8.93, 1 H, H-C(5')), 4.48 (AB system, J_{AB} = 11.27, 2 H, CH₂-phenyl), 4.11 (*m*, ²J_{H,H} = -14.68, ³J_{H,H} = 3.25, 1 H, CH₂-N), 3.58 (*m*, ²J_{H,H} = -10.8, ³J_{H,H} = 6.96, 1 H, CH₂-OBn), 3.63 (*m*, ²J_{H,H} = -14.68, ³J_{H,H} = 5.87, 1 H, CH₂-N), 3.58 (*m*, ²J_{H,H} = -10.8, ³J_{H,H} = 6.96, 1 H, CH₂-OBn), 2.11509/2.1136 (*m*, ³J_{H(C3),H(C1)} = 2.39, 2 H, cyclopropyl); ¹³C NMR (100 MHz, CDCl₃): δ 164.19 (*s*, C(2⁺)), 151.10 (*s*, C(4⁺)), 144.14 (*d*, ¹J_{C,H} = 179.8, C(6⁺)), 137.20 (*s*, C_{*q*} phenyl), 128.65, 128.63, 127.43 (each *d*, phenyl), 112.87 (*dd*, ¹J_{C,F} = 282.33, CF₂), 102.55 (*d*, ¹J_{C,H} = 174.4, C(5⁺)), 73.03 (*t*, ¹J_{C,H} = 174.4, CH₂-phenyl), 62.15 (*dt*, ³J_{C,F} = 4.22, ¹J_{C,H} = 142.06, CH₂-OBn), 42.23 (*dt*, ³J_{C,F} = 5.39, ¹J_{C,H} = 144.32, CH₂-N), 24.96 (*dt*, ²J_{C,F} = 10.36, ¹J_{C,H} = 165.2, C(3)), 23.82 (*dt*, ²J_{C,F} = 10.36, ¹J_{C,H} = 165.2, C(1)); ¹⁹F NMR (470 MHz, CDCl₃): δ -126.52 (*ddd*, ²J_{F,F} = 164.66, ³J_{F,H} = 12.87, ³J_{F,H} = 13.02, F), -151.02 (*dd*, ²J_{F,F} = 164.66, ³J_{F,H} = 1.43, F⁺); MS (e.i., 70 eV): 32

(±)-[(1 *SR*, 3 *RS*)-2,2-Difluoro-3-hydroxymethyl-cyclopropylmethyl]-1,2,3,4-tetrahydro-2,4pyrimidinedione (= (±)-1-(2,2-difluoro-3-hydroxymethyl-cyclopropylmethyl) uracil) [(±)-12] To a solution of 11 (0.52 g, 1.61 mmol) in methanol (20 *ml*) were added cyclohexene (18.5 *ml*) and *Pearlman's* catalyst (1.24 g, 20 %) and the reaction mixture was heated at reflux for 4.5 hours. After filtration and evaporation of all volatiles the remaining residue was subjected to column chromatography (silica gel, ethyl acetate/methanol 3:1) to give 12 (0.11 g, 29 %) as a white solid; mp: 168-169 °C; R_F (ethyl acetate/prop-2-OH 10:1) 0.33; UV (methanol): $\lambda_{max} = 266$ nm (log $\varepsilon = 4.07$); IR (KBr): 3480*s*, 3165*s*, 3040*s*, 2940*m*, 2895*m*, 2800*m*, 1715*s*, 1660*s*, 1470*s*, 1420*m*, 1395*s*, 1360*s*, 1325*m*, 12.85*m*, 1255*s*, 1235*s*, 1170*s*, 1130*m*, 1110*m*, 1080*m*, 1050*s*; ¹H NMR (500 MHz, CD₃OD): δ 7.58 (*d*, ³J_{H,H} = 7.87, 1 H, H-C(6')), 5.66 (*d*, ³J_{H,H} = 7.87, 1 H H-C(5')), 4.14 (*m*, ²J_{H,H} = -14.34, ³J_{H,H} = 6.97, 1 H, CH₂-N), 3.84 (*m*, ²J_{H,H} = -11.86, ³J_{H,H} = 8.05, 1 H, CH₂-OH), 3.82 (*m*, ²J_{H,H} = -14.34, ³J_{H,H} = 8.56, 1 H, CH₂-N), 3.71 (*m*, ²J_{H,H} = -11.86, ³J_{H,H} = 8.05, 1 H, CH₂-OH), 2.19 (*m*, ³J_{H,H} = 11.79, 1 H, H-C(1)), 2.06 (*m*, ³J_{H,H} = 11.79, 1 H, H-C(3)); ¹³C NMR (100 MHz, CD₃OD): δ 166.84 (*s*, C(2')), 152.94 (*s*, C(4')), 146.95 (*d*, ¹J_{C,H} = 182.52, C(6')), 115.10 (*dd*, ¹J_{C,F} = 291.4, CF₂), 102.71 (*d*, ¹J_{C,H} = 178.51, C(5')), 55.63 (*dt*, ³J_{C,F} = 5.63, ¹J_{C,H} = 140.65, CH₂OH), 43.14 (*dt*, ³J_{C,F} = 5.83, ¹J_{C,H} = 143.55, CH₂-N), 28.53 (*dt*, ²J_{C,F} = 10.36, ¹J_{C,H} = 159.64, C(3)), 24.92 (*dt*, ²J_{C,F} = 10.76, ¹J_{C,H} = 159.64, C(1)); ¹⁹F NMR (470 MHz, CD₃OD): δ -126.9 (*ddd*, ²J_{F,F} = 164.93, ³J_{F,H} = 13.22, ³J_{F,H} = 13.28, F), -153.12 (*dd*, ²J_{F,F} = 164.93, ³J_{F,H} = 1.45, F'); MS (e.i., 70 eV): 232 (21.3%), 215(100%), 201 (31.9%), 182 (39.7%), 158 (33.3%),

(±)-4-Amino-1-[(1 SR, 3 RS)-3-benzyloxymethyl-2,2-difluorocyclopropylmethyl]-1,2,3,4tetrahydro-2-pyrimidinone [(±)-13] To a suspension of 1,2,4-triazole (1.63 g, 23.6 mmol) in acetonitrile (13 ml) POCl₃ (0.45 ml, 5 mmol) was added at 0 °C. After stirring for 5 min triethylamine (3.75 ml) was added and stirring at 0°C was continued for an additional 1.5 hours. A solution of 11 (0.4 g, 1.24 mmol) in acetonitrile (6 ml) was added at 0 °C. The temperature was kept at 0 °C for 30 minutes, then the reaction mixture was allowed to warm to room temperature and was stirred for 5 hours. The filtrate was diluted with ethyl acetate (50 ml) and the organic layer was washed successively with a saturated aqueous solution of NaHCO₃ (10 ml). The volatiles were evaporated and the remaining oil was dissolved in 1,4-dioxane (6 ml) and an aqueous solution of NH₄OH (5 ml, 25%) was added. After stirring overnight the ammonia was evaporated under reduced pressure and the residue was subjected to column chromatography (silica gel, ethyl acetate/methanol 3:1) to afford 13 (0.12 g, 30%) as a white solid; mp: 241-243 °C; R_F (ethyl acetate/prop-2-OH 3:1) 0.29; UV (methanol): $\lambda_{max} = 275$ nm (log $\varepsilon = 3.86$); IR (KBr): v 3345s, 3120m, 2915w, 2865w, 2360w, 1660s, 1625s, 1525w, 1480m, 1385m, 1280m, 1220w, 1205w, 1180w, 1115w, 1070m, 1025w, 1010w; ¹H NMR (400 MHz, CD₃OD): δ 7.42 (d, ³J_{H,H} = 7.59, 1 H, H-C(6')), 7.30-7.26 (m, 5 H, phenyl), 5.74 (d, ${}^{3}J_{H,H} = 7.19$, 1 H, H-C(5')), 4.51 (AB system, $J_{AB} = 11.60$, 2 H, CH₂-phenyl), 4.07 (m, ${}^{2}J_{H,H} = -14.21$, ${}^{3}J_{H,H} = 13.73$, 1 H, CH₂-N), 3.77 (m, ${}^{2}J_{H,H} = -14.21$, ${}^{3}J_{H,H} = 8.07$, 1 H, CH₂-N), 3.74 (m, ${}^{2}J_{H,H} = -11.79$, ${}^{3}J_{H,H} = 7.10$, 1 H, CH₂-OBn), 3.67-3.61 (m, ${}^{2}J_{H,H} = -11.79$, ${}^{3}J_{H,H} = 8.50$, 1 H, CH₂-OBn), 2.24 (m, ${}^{3}J_{H,H} = 11.90$, 1 H, H-C(1)), 2.12 (m, ${}^{3}J_{H,H} = 11.90$, 1 H, H-C(3)); 13 C NMR (100 MHz, CD₃OD): δ 168.19 (s, C(4')), 159.10 (s, C(2')), 147.25 (d, ${}^{1}J_{C,H} = 181.15$, C(6')), 139.45 (s, C_q phenyl), 129.60, 129.15, 128.99 (each d, phenyl), 115.18 (dd, ${}^{1}J_{C,F} = 291.14$, 281.58, CF₂), 96.02 (d, ${}^{1}J_{C,H} = 174.51$ C(5')), 73.91 (t, ${}^{1}J_{C,H} = 174.51$ C(5')), 73.91 (t, {}^{1}J_{C,H} = 174.51 (t, {}^{1}J_{C,H} = 174.51 C(5')), 73.91 (t, {}^{1}J_{C,H} = 174.51 (t 143.39, CH₂-phenyl), 63.74 (dt, ${}^{3}J_{C,F} = 4.93$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{1}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{3}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{3}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{3}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{3}J_{C,H} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 4.92$, ${}^{3}J_{C,F} = 145.06$, CH₂-OBn), 44.37 (dt, ${}^{3}J_{C,F} = 14.06$, ${}^{3}J_$ 143.36, CH₂-N), 26.27 (*dt*, ${}^{2}J_{C,F} = 10.76$, ${}^{1}J_{C,H} = 164.13$, C(3)), 25.18 (*dt*, ${}^{2}J_{C,F} = 10.76$, ${}^{1}J_{C,H} = 164.13$, C(1)); 19 F NMR (188 MHz, CD₃OD): δ -124.07 (*ddd*, ${}^{2}J_{F,F} = 160.82$, ${}^{3}J_{F,H} = 14.62$, ${}^{3}J_{F,H} = 14.65$, F), -149.75 (*d*, ${}^{2}J_{\text{F,F}}$ = 160.82, F'); MS (e.i., 70 eV): 322 (5.3%), 272 (3.2%), 230 (3.7%), 215 (61%), 200 (28.7%), 195 (100%), 164 (5.7%), 136 (24.1%), 125 (17%), 111 (40,8%), 91 (51.1%); HRMS calcd. for C₁₆H₁₇O₂N₃F₂: 231.0189; found: 321.1289.

(±)-4-Amino-1-[(1 *SR*, 3 *RS*)-2,2-difluoro-3-hydroxymethyl-cyclopropylmethyl]-1,2,3,4tetrahydro-2-pyrimidinone (=1-(2,2-difluoro-3-hydroxymethyl-cyclopropylmethyl) cytosine) [(±)-14] For deprotection a solution of the benzyl ether 13 (0.31 g, 0.96 mmol) in methanol (15 *ml*) was treated with cyclohexene (12 *ml*) and *Pearlman's* catalyst (0.74 g, 20%) under reflux for 10 hours. The catalyst was filtered off and all volatiles were removed under reduced pressure. The remaining oil was subjected to column chromatography (silica gel RP-18, methanol/water 7:3) to afford 14 (0.02 g, 10%) as a white solid; mp: 199-202 °C; R_F (ethyl acetate/prop-2-OH 3:1) 0.13; UV (methanol): $\lambda_{max} = 275$ nm (log ε = 3.86); IR (KBr): v 3380s, 2825*m*, 1655*s*, 1610*s*, 1525*m*, 1480*s*, 1435*m*, 1385*s*, 1285*m*, 1250*m*, 1205*m*, 1180*m*, 1125*m*, 1045*m*, 1005*m*; ¹H NMR (500 MHz, CD₃OD): δ 7.58 (*d*, ³J_{H,H} = 6.99, 1 H, H-C(6')), 5.87 (*d*, ³J_{H,H} = 6.99, 1 H, H-C(5')), 4.17 (*m*, ²J_{H,H} = -14.47, ³J_{H,H} = 6.92, 1 H, CH₂-N), 3.83 (*m*, ²J_{H,H} = -12.19, ³J_{H,H} = 7.48, 1 H, CH₂-OH), 3.79 (*m*, ²J_{H,H} = -14.47, ³J_{H,H} = 7.85, 1 H, CH₂-N), 3.72 (*m*, ²J_{H,H} = -12.19, ³J_{H,H} = 8.16, 1 H, CH₂-OH, 2.21 (*m*, ³J_{H,H} = 11.78, 1 H, H-C(1)), 2.04 (*m*, ³J_{H,H} = 11.78, 1 H, H-C(3)); ¹³C NMR (100 MHz, CD₃OD): δ 168.17 (*s*, C(4')), 159.19 (*s*, C(2')), 147.32 (*d*, ¹J_{C,H} = 179.35, C(6')), 115.239 (*d*, ¹J_{C,F} = 291.49, 280.82, CF₂), 96.20 (*d*, ¹J_{C,H} = 174.62, C(5')), 55.65 (*d*t, ³J_{C,F} = 6.03, ¹J_{C,H} = 143.71, CH₂-OH), 44.46 (*d*t, ³J_{C,F} = 5.93, ¹J_{C,H} = 143.01, CH₂-N), 28.54 (*d*t, ²J_{C,F} = 10.15, ¹J_{C,H} = 163.62, C(3)), 25.18 (*d*t, ²J_{C,F} = 10.66, ¹J_{C,H} = 163.74, C(1)); ¹⁹F NMR (188 MHz, CD₃OD): δ -124.10 (*d*t, ²J_{F,F} = 164.48, ³J_{F,H} = 14.62, F), -150.87 (*d*, ²J_{F,F} = 164.48, F'); MS (ESI): 232.1 (M+1, 100 %), 254.1 (M+Na, 95 %); HRMS calcd. for C₉H₁₁O₂N₃F₂: 231.0189; found: 231.0189.

 (\pm) -9-[(1 SR, 3 RS)-3-Benzyloxymethyl-2,2-difluoro-cyclopropylmethyl]-6,9-dihydro-1H-6purinone [(\pm)-15] Compound 4 (0.4 g, 1.09 mmol) was stirred with trifluoroacetic acid (80%,17 ml) at room temperature for 19 hours, then the volatiles were evaporated under reduced pressure and co-evaporated with toluene (15 *ml*). The residue was dissolved in methanol (23 *ml*) and treated with NH₄OH (2.8 *ml*, 25 %) for 2 hours at room temperature. Evaporation of the volatiles afforded the crude product, which was purified by column chromatography (silica gel, ethyl acetate \rightarrow ethyl acetate/methanol 4:1) to afford **15** (0.38 g, 99%) as a greasy oil; R_F (ethyl acetate/methanol 3:1) 0.61; UV (methanol): $\lambda_{max} = 252$ nm (log $\varepsilon = 3.99$); IR (KBr): v 3245*s*, 3055*m*, 2865*m*, 1700*s*, 1590*m*, 1555*m*, 1520*m*, 1475*m*, 1415*m*, 1385*s*, 1340*m*, 1285*m*, 1215*s*, 1190*m*, 1090*m*, 1030*m*; ¹H NMR (500 MHz, CD₃OD): δ 8.08 (*s*, 1 H, H-C(2')), 8.02 (*s*, 1 H, C(8')), 7.34-7.18 (*m*, 5 H, phenyl), 4.50 (AB system, $J_{AB} = 11.99$, 2 H, CH₂-phenyl), 4.45 (*m*, ² $J_{H,H} = -14.74$, ³ $J_{H,H} = 7.05$, 1 H, CH₂-N), 4.21 (*m*, ² $J_{H,H} = -14.74$, ³ $J_{H,H} = 8.33$, 1 H, CH₂-N), 3.81 (*m*, ² $J_{H,H} = -11.10$, ³ $J_{H,H} = 6.68$, 1 H, CH₂-OBn), 3.64 (*m*, ² $J_{H,H} = -11.10$, ³ $J_{H,H} = 8.89$, 1 H, CH₂-OBn), 2.27 (*m*, ³ $J_{H,H} = 12.15$, 1 H, H-C(1)), 2.15 (*m*, ³ $J_{H,H} = 12.15$, 1 H, H-C(3)); ¹³C NMR (100 MHz, CD₃OD): δ 158.68 (*s*, C(6')), 149.92 (*s*, C(4')), 146.37 (*d*, ¹ $J_{C,H} = 207.2$, C(2')), 141.44 (*d*, ¹ $J_{C,H} = 214.24$, C(8')), 138.82 (*s*, C₄ phenyl), 129.11, 128.50, 128.47 (each *d*, phenyl), 124.79 (*s*, C(5')), 113.69 (*dd*, ¹ $J_{C,F} = 291.28$, 281.73, CF₂), 73.46 (*t*, ¹ $J_{C,H} = 144.64$, CH₂-N), 25.95 (*dt*, ² $J_{C,F} = 10.56$, ¹ $J_{C,H} = 164.55$, C(3)), 25.16 (*dt*, ² $J_{C,F} = 10.16$, ¹ $J_{C,H} = 165.35$, C(1)); ¹⁹F NMR (188 MHz, CD₃OD): -124.31 (*ddd*, ² $J_{F,F} = 164.47$, ³ $J_{F,H} = 14.62$, ³ $J_{F,H} = 14.65$, F), -150.21 (*d*, ² $J_{F,F} = 164.47$, F'); MS (e.i., 70 eV): 345 (1.1%), 299 (1.1%), 277 (4.3%), 252 (5.7%), 240 (3.2%), 220 (2.1%), 207 (4.3%), 162 (15.6%); 122 (24.5\%), 105 (92.5\%), 91 (54.6\%), 77 (100%); HRMS calcd. for C₁₇H₁₆O₂N₄F₂: 346.1241; found: 346.1241.

(±)-[(1 *SR*, 3 *RS*)-2,2-Difluoro-3-hydroxymethyl-cyclopropylmethyl]-6,9-dihydro-1H-6purinone [(±)-16] A mixture of 15 (0.38 g, 1.1 mmol), cyclohexene (12.5 *ml*) and *Pearlman's* catalyst (0,85 g, 20%) in methanol (13 ml) was heated under reflux for 4 hours. The filtrate was concentrated *in vacuo* and the remaining residue was subjected to column chromatography (silica gel, ethyl acetate/methanol 4:1) to afford 16 (0.13g, 46%) as a white solid; mp: 270-271 °C; R_F (ethyl acetate/methanol 3:1) 0.31; UV (methanol): $\lambda_{max} = 252$ nm (log $\varepsilon = 4.04$); IR (KBr): 3390s, 3125s, 3050s, 2855s, 1675s, 1595s, 1550s, 1475s, 1415s, 1350s, 1290s, 1220s, 1175s, 1120s, 1050s; ¹H NMR (500 MHz, CD₃OD): δ 8.10 (*s*, 1 H, H-C(2')), 8.05 (*s*, 1 H, H-C(8')), 4.52 (*m*, ²J_{H,H} = -14.88, ³J_{H,H} = 7.60, 1 H, CH₂-N), 4.45 (*m*, ²J_{H,H} = -14.88, ³J_{H,H} = 8.04, 1 H, CH₂-N), 3.90 (*m*, ²J_{H,H} = -12.27, ³J_{H,H} = 7.28, 1 H, CH₂-OH), 3.75 (*m*, ²J_{H,H} = -12.27, ³J_{H,H} = 7.67, 1 H, CH₂-OH), 2.42 (*m*, ³J_{H,H} = 12.04, 1 H, H-C(1)), 2.11 (*m*, ³J_{H,H} = 12.04, 1 H, H-C(3)); ¹³C NMR (100 MHz, CD₃OD): δ 159.18 (*s*, C(6')), 150.40 (*s*, C(4')), 146.90 (*d*, ¹J_{C,H} = 207.2, C(2')), 142.03 (*d*, ¹J_{C,H} = 137.89, CH₂-OH), 38.70 (*dt*, ³J_{C,F} = 6.64, ¹J_{C,H} = 142.93, CH₂-N), 28.59 (*dt*, ³J_{C,F} = 10.36, ¹J_{C,H} = 165.76, C(3)), 25.68 (*dt*, ²J_{C,F} = 10.76, ¹J_{C,H} = 177.73, C(1)); ¹⁹F NMR (470 MHz, CD₃OD): δ -127.00 (*ddd*, ²J_{F,F} = 165.08, ³J_{F,F} = 12.48, ³J_{F,H} = 12.56, F), -154.01 (*dd*, ²J_{F,F} = 165.08, ³J_{F,H} = 1.48, F'); MS (e.i., 70 eV): 257 (21.2%), 240 (11%), 226 (6.4%), 207 (13.1%), 163 (7.1%), 150 (26.2%), 137 (100%), 110 (27.7%), 91 (24.1%), 77 (28.7%); HRMS calcd. for C₁₀H₁₀O₂N₄F₂: 256.0772; found: 256.0771.

(±)-3-Benzoyl-1-[(1 *SR*, 3 *RS*)-3-benzyloxymethyl-2,2-difluorocyclopropylmethyl]-5-fluoro-1,2,3,4-tetrahydro-2,4-pyrimidinedione [(±)-17] The reaction was performed according to the Mitsunobu reaction as described for the preparation of compound 4 using 3 (0,54 g, 2.35 mmol) in 1,4-dioxane (3 *ml*), N³-benzoyl-5-fluorouracil (1.1 g, 4.7 mmol), triphenylphosphine (1.23 g, 4.7 mmol) and DEAD (0.74 *ml*, 4.7 mmol) in 1,4-dioxane (20 *ml*). After stirring overnight the solvent was evaporated, the residue was purified by column chromatography (ethyl acetate/hexane 1:3) and 17 (0.76 g, 73%) was obtained as a colorless oil; R_F (ethyl acetate/hexane 1:1) 0.40; UV (methanol): $\lambda_{max} = 256$ nm (log $\varepsilon = 4.30$); IR (film): v 3370*w*, 3070*w*, 2870*w*, 1755*s*, 1715*s*, 1670*s*, 1600*m*, 1475*m*, 1450*m*, 1365*m*, 1250*s*, 1180*m*, 1075*m*, 1030*w*; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (*d*, ³*J*_{H,H} = 8.43, 1 H, H-C(6')), 7.58-7.19 (*m*, 10 H, phenyl), 4.41 (AB system, *J*_{AB} = 11.78, 2 H, CH₂-phenyl), 3.93 (*m*, ²*J*_{H,H} = -15.29, ³*J*_{H,H} = 5.89, 1 H, CH₂-N), 3.69 (*m*, ²*J*_{H,H} = -15.29, ³*J*_{H,H} = 7.08, 1 H, CH₂-N), 3.68 (*m*, ²*J*_{H,H} = -11.49, ³*J*_{H,H} = 5.97, 1 H, CH₂-OBn), 3.49 (*m*, ²*J*_{H,H} = -11.49, ³*J*_{H,H} = 8.27, 1 H, CH₂-OBn), 2.06 (*m*, ³*J*_{H,H} = 11.07, 1 H, H-C(1)), 2.01 (*m*, ³*J*_{H,H} = 11.07, 1 H, H-C(3)); ¹³C NMR (100 MHz, CDCl₃): δ 167.36 (s, O=C-phenyl), 156.22 (d, ${}^{2}J_{C,F} = 27.36$, C(4')), 148.32 (s, C(2')), 139.86 (d, ${}^{1}J_{C,F} = 239.99$, C(5')), 137.15 (s, C_q phenyl (Bn)), 135.43 (s, C_q phenyl (Bz)), 130.93 (d, C_{para} phenyl (Bz)), 130.41 (d, C_{ortho} phenyl (Bz)), 129.22 (d, C_{meta} phenyl (Bz)), 128.50 (d, C_{ortho} phenyl (Bn)), 128.45 (dd, ${}^{2}J_{C,F} = 33.56$, C(6')), 128.00 (d, C_{meta} phenyl (Bn)), 127.78 (d, C_{para} phenyl (Bn)), 112.61 (dd, ${}^{1}J_{C,F} = 292.39$, 280.72, CF₂), 72.91 (t, CH₂-phenyl), 61.91 (dt, ${}^{3}J_{C,F} = 4.12$, CH₂-OBn), 42.48 (dt, ${}^{3}J_{C,F} = 5.43$, CH₂-N), 24.99 (dt, ${}^{2}J_{C,F} = 10.36$, C(3)), 23.36 (dt, ${}^{2}J_{C,F} = 10.36$, C(1)); ¹⁹F NMR (188 MHz, CDCl₃): δ -126.23 (ddd, ${}^{2}J_{F,F} = 164.44$, ${}^{3}J_{F,H} = 10.84$, ${}^{3}J_{F,H} = 10.96$, F), -150.54 (d, ${}^{2}J_{F,F} = 164.44$, F'), -166.15 (s, F-C(5')); MS (e.i., 70 eV): 444 (4.3%), 339 (16.4%), 318 (2.9%), 233 (57.1%), 214 (5.7%), 143 (6.4%), 105 (100%), 91 (68.6%), 77 (36.8%); HRMS calcd. for C₂₃H₁₉O₄N₂F₃: 444.1296; found: 444.1295.

(±)-1-[(1 SR, 3 RS)-3-Benzyloxymethyl-2,2-difluorocyclopropylmethyl]-5-fluoro-1,2,3,4tetrahydro-2,4-pyrimidinedione $[(\pm)-18]$ According to the procedure given for 11 compound 17 (0.52 g, 1.17 mmol) was dissolved in methanol (10 ml) and treated with NH₄OH (20 ml, 25 %) for an hour. Purification by column chromatography (ethyl acetate/hexane 1:3) afforded 18 (0.36 g, 90%) as a colorless oil; R_F (ethyl acetate/hexane 1:1) 0.28; UV (methanol): $\lambda_{max} = 273$ nm (log $\varepsilon = 3.70$); IR (film): v 3185w, 3065m, 2870w, 1715s, 1475m, 1370m, 1285m, 1245s, 1205m, 1180m, 1090m, 1075m, 1030m; ¹H NMR (400 MHz, CD₃OD): δ 7.80 (s, 1 H, H-C(6')), 7.33-7.22 (m, phenyl), 4.51 (AB system, $J_{AB} = 11.72, 2$ H, CH2-phenyl), 4.03 (m, 1 H, CH2-N), 3.86-3.80 (m, 2 H, CH2-N and CH2-OBn), 3.79-3.67 (m, 1 H, CH2-OBn), 2.35-2.19 (*m*, 2 H, cyclopropyl); ¹³C NMR (50 MHz, CDCl₃): δ 157.21 (*d*, ²*J*_{C,F} = 26.20, C(4⁴)), 149.66 (s, C(2')), 140.5 (d, ${}^{1}J_{C,F}$ = 238.17, C(5')), 136.98 (s, C_q phenyl), 128.86 (d, ${}^{2}J_{C,F}$ = 36.99, C(6')), 128.57, 128.11, 127.85 (each d, phenyl), 112.65 (dd, ${}^{1}J_{C,F} = 292.88$, 282.07, CF₂), 73.12 (t, CH₂-phenyl), 62.02 (dt, ${}^{3}J_{C,F}$ = 3.77, CH₂-OBn), 42.39 (dt, ${}^{3}J_{C,F}$ = 5.43, CH₂-N), 25.17 (dt, ${}^{2}J_{C,F}$ = 10.05, C(3)), 23.78 (dt, ${}^{2}J_{C,F} = 10.76$, C(1)); ¹⁹F NMR (188 MHz, CDCl₃): δ -126.37 (*ddd*, ${}^{2}J_{F,F} = 164.44$, ${}^{3}J_{F,H} = 14.58$, ${}^{3}J_{F,H} = 14.58$ 14.66, F), -150.58 (d, ${}^{2}J_{F,F}$ = 164.44, F⁴), -166.44 (s, F-C(5⁴)); MS (e.i., 70 eV): 340 (6.4%), 234 (8.5%), 214 (9.5%), 176 (1.8%), 155 (3.5%), 143 (8.9%), 130 (8.2%), 107 (9.2%), 91 (100%), 85 (28.7%); HRMS calcd. for C₁₆H₁₅O₃N₂F₃: 340.1035; found: 340.1034.

(±)-[(1 SR, 3 RS)-2,2-Difluoro-3-hydroxymethyl-cyclopropylmethyl)-5-fluoro-1,2,3,4tetrahydro-2,4-pyrimidinedione (= (\pm) -1-(2,2-difluoro-3-hydroxymethyl-cyclopropylmethyl)-5**fluorouracil** $[(\pm)-19]$ Removal of the benzyl group was performed as described for 12 by treating 18 (0.29) g, 0.85 mmol) with cyclohexene (10 ml) and Pearlman's catalyst (0.66 g, 20%) in refluxing methanol (7 ml) for 4.5 hours. After column chromatography (silica gel, ethyl acetate/hexane 5:4) 19 (0.11 g, 56%) was obtained as a greasy oil; R_F (ethyl acetate/hexane 1:1) 0.18; UV (methanol): $\lambda_{max} = 273$ nm (log $\varepsilon = 3.91$); IR (KBr): v 3455m, 3180m, 3120m, 3050m, 2820w, 2560w, 2305w, 1690s, 1660s, 1480m, 1465m, 1375m, 1350m, 1265m, 1240s, 1195m, 1170m, 1125m, 1110m, 1085w, 1035m, 1010m; ¹H NMR (500 MHz, CD₃OD): δ 7.82 (*d*, ³*J*_{H,H} = 6.39, H-C(6⁴)), 4.08 (*m*, ²*J*_{H,H} = -14.87, ³*J*_{H,H} = 7.23, 1 H, CH₂-N), 3.85 (*m*, ²*J*_{H,H}) $= -12.17, {}^{3}J_{H,H} = 7.10, 1 \text{ H, CH}_{2}\text{-OH}; 3.83 (m, {}^{2}J_{H,H} = -14.87, {}^{3}J_{H,H} = 7.56, 1 \text{ H, CH}_{2}\text{-N}; 3.70 (m, {}^{2}J_{H,H} = -12.17, {}^{3}J_{H,H} = 8.41, 1 \text{ H, CH}_{2}\text{-OH}; 2.19 (m, {}^{3}J_{H,H} = 11.61, 1 \text{ H, H-C}(1)), 2.07 (m, {}^{3}J_{H,H} = 11.61, 1 \text{ H, H-C}(3)); {}^{13}\text{C NMR} (100 \text{ MHz, CD}_{3}\text{OD}): \delta 159,86 (d, {}^{2}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 141.84 (d, {}^{1}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 141.84 (d, {}^{1}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 141.84 (d, {}^{1}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 141.84 (d, {}^{1}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 141.84 (d, {}^{1}J_{C,F} = 26.15, C(4^{\circ})), 151.51 (s, C(2^{\circ})), 151.51 (s,$ 233.75, C(5')), 130.75 (d, ${}^{2}J_{C,F}$ = 33.4, ${}^{1}J_{C,H}$ = 163.85, C(6')), 114.98 (dd, ${}^{1}J_{C,F}$ = 291.74, 281.38, CF₂), 55.48 $(dt, {}^{3}J_{C,F} = 5.43, {}^{1}J_{C,H} = 144.21, CH_{2}OH), 43.18 (dt, {}^{3}J_{C,F} = 5.83, {}^{1}J_{C,H} = 144.9, CH_{2}-N), 28.40 (dt, {}^{2}J_{C,F} = 9.96, {}^{1}J_{C,H} = 165.37, C(1)), 24.67 (dt, {}^{2}J_{C,F} = 10.86, {}^{1}J_{C,H} = 165.10, C(3)); {}^{19}F NMR (470 MHz, CD_{3}OD): \delta$ -126.38 (*dt*, ${}^{2}J_{F,F} = 164.61$, ${}^{3}J_{F,H} = 12.5$, ${}^{3}J_{F,H} = 12.7$, F), -152.60 (*dd*, ${}^{2}J_{F,F} = 164.61$, ${}^{3}J_{F,H} = 1.52$, F⁴), -169.67 $(d, {}^{3}J_{F,H} = 6.11, F-C(5^{\circ})); MS (e.i., 70 eV): 250 (23\%), 233 (74\%), 219 (60\%), 200 (31\%), 176 (23\%), 153$ (67%), 143 (61%), 130 (77%), 113 (19%), 100 (100%), 91 (42%), 87 (52%), 77 (69%), 71 (21%); HRMS calcd. for C₉H₉N₂O₃F₃: 250.0565; found: 250.0565.

References and Notes

Dedicated to Professor Dr. Werner Schroth on the ocassion of his 70th birthday. Ad multos annos!

- ¹ Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571-623.
- ² Marquez, V. E.; Lim, M. I. Med. Res. Rev. 1986, 6, 1-40.
- ³ Csuk, R.; von Scholz, Y.; *Tetrahedron* 1994, 50, 10431-10442; Csuk, R.; von Scholz, Y. *Tetrahedron* 1995, 51, 7193-7206; Csuk, R.; von Scholz, Y. *Tetrahedron* 1996, 52, 6383-6396.
- Zhao, Y.; Yang, T.-F.; Lee, M.; Chun, K. B.; Du, J.; Schinazi, R. F.; Lee, D.; Newton, M. G.; Chu, C. K. *Tetrahedron Lett.* 1994, *35*, 5405-5408; Lee, M.; Lee, D.; Zhao, Y.; Newton, G. M.; Chun, M. W.; Chu, C. K. *Tetrahedron Lett.* 1995, *36*, 3499-3502.
- ⁵ Welch, J. T.; Eswarakrishnan, S., *Fluorine in Bioorganic Chemistry*, Wiley, New York, 1991.
- ⁶ A first example of a nucleoside analogue containing a difluorocyclopropane ring has been reported: Maag, H.; Gutierrez, A. J.; Prisbe, E. J.; Rydzewski, M.; Verheyden, J. P. H., in: *Antibiotics and Antiviral Compounds*, Krohn, K.; Kirst, H. A.; Maag, H., Eds., VCH Weinheim **1993**, p. 421.
- ⁷ Iqbal, J.; Srivastava, R. R. Tetrahedron 1991, 47, 3155-3170.
- ⁸ Kobayashi, Y.; Taguchi, T.; Morikawa, T.; Takase, T.; Takanishi, H. J. Org. Chem. 1982, 47, 3232-3236; Taguchi, T.; Morikawa, T.; Inoe, T. Jpn. Kokai Tokkyo Koho JP 0692918 (Chem. Abs. 1995, 122, 9547d).
- ⁹ Mitsunobu, O. Synthesis 1981, 1-28.
- ¹⁰ 6-Chloro-purine has previously been used in Mitsunobu reactions, cf. Rosenquist, A.; Kvarnstroem, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1996, 61, 6282-6288; Andersen, M. W.; Daluge, S. M.; Kerremans, L.; Herdewijn, P. Tetrahedron Lett. 1996, 37, 8147-8150; Chen, W.; Flavin, M. T.; Filler, R.; Xu, Z.-Q. Tetrahedron Lett. 1996, 37, 8975-8978; Capretta, A.; Bell, R. A. Can. J. Chem. 1995, 73, 2224-2232; Rodriguez, J. B.; Marquez, V. E.; Nicklaus, M. C.; Mitsuya, H.; Barchi, J. J. J. Med. Chem. 1994, 37, 3389-3399; Roberts, S. M.; Shoberu, K. A. J. Chem. Soc. Perkin Trans 1 1991, 2605-2607.
- 11 As determined by ¹⁹F NMR spectroscopy no isomerizations at the cyclopropane unity took place under these conditions.
- N-Benzoyl-thymine (3-benzoyl-5-methyl-1*H*-pyrimidine-2,4-dione) was obtained by benzoylation of thymine with benzoyl chloride/pyridine for 2 h at 80°C in 40-50% yield after recrystallization from ethanol; mp 215-217 °C (lit.: 215 °C, Novacek, A.; Hesoun, D.; Gut, J. *Coll. Czech. Chem. Commun.* 1965, 30, 1890-1899; interestingly enough, a strongly deviating mp of 150-152°C has been reported for this material by Cruickshank, K.A.; Jiricny, J.; Reese, C. B. *Tetrahedron Lett.* 1984, 25, 681-684); selected analytical data: ¹H NMR (200 MHz, CDCl₃): δ 8.88 (br s, 1 H, NH), 7.65 (m, 1 H, H_{para}), 7.05 (m, 1 H, H-C(6)), 7.93 (m, 2 H, H_{ortho}), 7.49 (m, 2 H, H_{meta}), 1.92 (d, ⁴J_{H,H} = 1.2 Hz, 3 H, CH₃); ¹³C NMR (50 MHz, DMSO-d₆): δ 170.22 (s, CO of Bz), 163.66 (s, C(2)), 150.07 (s, C(4)), 138.79 (d, C(6)), 135.37 (s, C_q of Bz), 131.51 (d, C_{para} of Bz), 130.27 (d, C_{ortho} of Bz), 129.52 (d, C_{meta} of Bz), 108.03 (s, C(5)), 11.75 (q, CH₃); MS (e.i., 70 eV): 230 (8.5%), 202 (51.4%), 160 (7.8%), 126 (10.6%), 105 (100%); HRMS calcd. for C₁₂H₁₀O₃N₂: 230.0691; found: 230.0692.
- Previously used in Mitsunobu reactions, cf. Jenny, T. F.; Previsani, N.; Benner, S. A. Tetrahedron Lett. 1991, 32, 7029-7032; Hossain, N.; Rozenski, J.; De Clercq, E.; Herdewijn, P. J. Org. Chem. 1997, 62, 2442-2447; Alexander, P.; Krishnamurty, V. V.; Prisbe, E. J. J. Med. Chem. 1996, 39, 1321-1330; Drake, A. F.; Garofalo, A.; Hillman, J. M. L.; Merlo, V.; McCague, R.; Roberts, S. M. J. Chem. Soc. Perkin Trans 1 1996, 2739-2746.

- N-Benzoyl-uracil (3-benzoyl-1*H*-pyrimidine-2,4-dione) was obtained by benzoylation of uracil with benzoyl chloride/pyridine followed by the debenzoylation of the 2,5-di-*N*-benzoyl derivative with 0.25 M K₂CO₃ in dioxane/water and showed a mp 202-215°C (lit.: mp 148-149°C by Cruickshank, K.A.; Jiricny, J.; Reese, C. B. *Tetrahedron Lett.* 1984, 25, 681-684, 200-202°C by Novacek, A.; Hesoun, D.; Gut, J. *Coll. Czech. Chem. Commun.* 1965, 30, 1890-1899; 216°C by Pitha, P. J. Org. Chem. 1968, 33, 1341); selected analytical data: ¹H NMR (500 MHz, DMSO-d₆): δ 11.62 (br s, 1 H, NH), 7.96 (m, 2 H, H_{ortho}), 7.84-7.58 (m, 4 H, H_{meta}, H_{para}, H-C(6)), 5.77 (d, ³J_{H,H} = 7.73 Hz, 1 H, H-C(5)); ¹³C NMR (50 MHz, DMSO-d₆): δ 169.98 (s, CO of Bz), 162.90 (s, C(2)), 150.03 (s, C(4)), 143.25 (d, C(6)), 135.36 (s, Cq of Bz), 131.31 (d, C_{para}), 130.16 (d, C_{ortho}), 129.46 (d, C_{meta}), 100.07 (d, C(5)); MS (e.i., 70 eV): 216 (7.8%), 188 (56.7%), 146 (5&), 105 (100%); HRMS calcd. for C₁₁H₈O₃N₂: 216.0534; found: 216.0535. It has previously been used in Mitsunobu reactions, *cf.* Altman, K.-H.; Schmit-Chiese, C.; Garcia-Echeverria, C. *Bioorg. Med. Chem. Lett.* 1977, 7, 1119-1122; Capaldi, D. C.; Eleuteri, A.; Chen, Q.; Schinanzi, R. F. *Nucleosides Nucleotides* 1997, 16, 403-416; Perez-Perez, M.-J.; Rozenski, J.; Busson, R.; Herdewijn J. Org. Chem. 1995, 60, 1531-1537.
- Kalinichenko, E.N.; Rubinova, E. B.; Borisov, E. V.; Balzarini, J.; De Clercq, E.; Mikhailogulo, I. A. Nucleosides Nucleotides 1995, 14, 533-536; Perez-Perez, M.-J.; San-Felix, A.; Balzarini, J.; De Clercq, E.; Camarasa, M. J. J. Med. Chem. 1992, 35, 2988-2995; Sells, T. B. Nair, V. Tetrahedron 1994, 50, 117-138.
- ¹⁶ Gourdel-Martin, M.-E.; Huet, F. J. Org. Chem. 1997, 62, 2166-2172.
- N-Benzoyl-5-fluoro-uracil (3-benzoyl-5-fluoro-1*H*-pyrimidine-2,4-dione) was obtained by benzoylation of 5-fluoro-uracil with benzoyl chloride/pyridine for 1h (Lucey, N. M.; McCormick, J. E.; McElhinney, R. S. J. Chem. Soc. Perkin Trans. 1 1990, 795-802) and showed a mp 163-165°C (lit.: 148-152°C by Yamashita, J.-I.; Yamawaki, I.; Ueda, S.; Yasumoto, M.; Unemi, N.; Hashimoto, S. Chem. Pharm. Bull. 1982, 30, 4258-4267), mp 165-167 (by Lucey, N. M., et al., vide supra) or mp 170°C (Ishida, T.; Nishimura, D.; Sugawara, T.; Ooka, T. Ger. Offen. 2602175 (Chem. Abs. 1977, 86, 16695s)); selected analytical data: ¹H NMR (500 MHz, CD₃OD): d 8.05-7.98 (m, 2 H, H_{ortho}), 7.79-7.43 (m, 4 H); ¹³C NMR (125 MHz, CD₃OD): δ 169.17 (s, CO of Bz), 158.74 (d, ²J_{C,F} = 27.9, C(4)), 150.40 (s, C(2)), 141.35 (d, ¹J_{C,F} = 232.4 Hz, C(5)), 136.54 (s, Cq of Bz), 132.68 (d, C_{para}), 131.51 (d, C_{meta}), 130.43 (d, C_{ortho}), 127.64 (dd, ²J_{C,F} = 32.9 Hz, C(6)); ¹⁹F NMR (188 MHz, CD₃OD): δ -168.73; MS (e.i. 70 eV): 234 (11.3%), 206 (11.3%), 130 (14.9%), 105 (100%); HRMS calcd. for C₁₁H₇N₂O₃F: 234.0440; found: 234.0441; previously used in Mitsunobu reactions: Verheggen, I.; Van Aerschat, A.; Van Meervelt, L.; Rozenski, J.; Wiebe, L.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1995, 38, 826-835.
- To obtain several compounds in an enantiomerically pure form a suitable HPLC system (Merck-Hitachi L7450/L7250/L7100/D7000 instrument; UV detection at 265 nm or 255 nm) had to be established and the Daicel Chiralcel OD-column (4.6 x 250 mm, 10µm, Daicel Chemical Industries, flow 0.8 ml/min, 19-20 kg/cm²) using hexane/prop-2-OH mixtures as eluents were shown to give excellent results. We are indebted to Dr. K. Mohr and Mrs. R. Ziehn for their valuable assistance with these HPLC investigations.