Inorganica Chimica Acta 437 (2015) 133-142

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

The dominant steric effect in the synthesis of ammine hydrido- and chlorido-Ru(II)-*N*,*N*-dimethylhydrazine and mixed alkyl–aryl phosphine complexes: Novel methyldiazene reduction intermediates

Inorganica Chimica Acta

Frederick P. Malan, Afsar Ali, Eric Singleton, Reinout Meijboom*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa

ARTICLE INFO

Article history: Received 3 June 2015 Received in revised form 9 August 2015 Accepted 14 August 2015 Available online 2 September 2015

Keywords: Ruthenium Cationic Dimethylhydrazine Nitrogenase Intramolecular strain

ABSTRACT

Novel cationic hydrido complexes $[RuH(1,5-cod)(NH_3)(NH_2NMe_2)_2](X)$ (X = PF₆, BPh₄) and chloridoammine complexes $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)](X)$ (X = PF₆, BPh₄), were isolated from the reaction of the polymeric $[RuCl_2(1,5-cod)]_x$ with NH₂NMe₂. Reaction of the hydrido complexes with the phosphine ligands PMe₃, PMe₂Ph, P(OMe)₂Ph resulted in the formation of monohydrido-phosphine complexes, whereas reaction with the bulkier PMePh₂ ligand gave dihydrido-phosphine complexes. Similar reactions of the chlorido-ammine complexes with the phosphine ligands PMe₃, PMe₂Ph, P(OMe)₂Ph, and PMePh₂ all sequentially substituted the NH₂NMe₂ and the 1,5-cod ligands to give the chlorido-ammine phosphine complexes. All complexes were fully characterised and the single crystal X-ray structures were determined for $[RuH{P(OMe)_2Ph_3](BPh_4), [RuH_2(PMePh_2)_4], [{Ru(PMe_2Ph)_3}_2(\mu-F)_3](PF_6), fac-[RuCl$ $(NH₃)₂(PMe₂Ph)₃](PF₆), and <math>[RuCl(NH_3)(PMe_2Ph)_4](PF_6).$ Intramolecular strain between coordinated σ -donor ligands in the Ru(II)-NH₂NMe₂ precursor complexes as well as the relative steric bulk of incoming σ -donor ligands were found to be chemically directing in the formation of monohydrido-, bishydrido-, mono-ammine, and bis-ammine ruthenium(II) complexes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Synthetic routes to complexes of Ru(II) containing hydrazine and other partially reduced dinitrogen ligands are still of great importance, as their products are shown to be useful intermediates in the numerous synthetic, organic functionalisation, catalytic, and industrial processes, as well as in biologically important nitrogenase and nitrogen fixation processes [1–5]. Numerous recent reports deal with Ru(II)-hydrazine complexes and their role as nitrogenase-relevant molecules whereby the isolation of hydrazine intermediates in the enzyme turnover is of great importance [5a,6– 11]. Ruthenium(II) counterparts of the unstable and reactive iron intermediates are generally more stable, which allows the isolation of intermediate species [1b,5b,10,12,13].

An extensive range of stable cationic and neutral ruthenium(II) species containing the hydrazine ligands NH_2NHR (R = H, Me) have been reported, and primarily includes complexes with carbonyl [1e,6b], phosphine and phosphite [1e,2a,6,14,10,15,16a], 1,5-cyclooctadiene [2b,16], cyclopentadienyl [17d,18], and p-cymene ancillary ligands [6a]. The pioneering work of Singleton et al.

throughout 1977–1987, who reported the synthetic and catalytically active complexes [CpRuX(cod)] (X = H, Cl, Br) [18c] and the first metallacyclopentatriene complex [CpRu(C₄Ph₂H₂)] [18a,18b], all emanated from the use of the Ru(II) complexes of [RuH(1,5-cod)(NH₂NHR)₃](X) (R = H, Me; X = PF₆, BPh₄) as precursors [16,17d,19]. These catalytically important Ru–H complexes were found to be reactive precursors to a range of allyl-and cyclooctadiene ruthenium(II) species which has significance in hydride transfer reactions [16,17,20–21].

In light of the well-documented N–N fission reactions of Ru(II)-NH₂NH₂ complexes to form Ru(II)-NH₃ complexes, along with their important application in DNA binding studies [2c,22], reports on the use of the Ru(II)-hydrazine complexes as precursors in these studies remain limited [2a,10,15,23]. Furthermore, reports of *insitu* decomposition of NH₂NMe₂ to form NH₃ as a by-product are to the best of our knowledge non-existent.

These NH₂NMe₂- and NH₃-ruthenium(II) complexes are stabilised by neutral ancillary phosphine and phosphite ligands, to form isolable intermediates for the conversion of dinitrogen to ammonia [1b,23–24]. Extensive research by Sellman et al. showed that the phosphine-containing [Ru(PⁱPr₃)('N₂Me₂S₂')] complex fragment is capable of binding N₂H₂, N₂H₄, NH₃, and H₂, all nitrogenase-relevant molecules [6,7b,25]. The latter fragment

^{*} Corresponding author. *E-mail address:* rmeijboom@uj.ac.za (R. Meijboom).

containing only the bulky PPh₃ and PCy₃ phosphine ligands allowed for the nitrogenase-relevant molecules $L = N_2$, N_2H_4 , NH_3 , and CO to coordinate, forming the species $[Ru(L)(PR_3)('N_2Me_2S_2')]$ [6b].

We report four novel $Ru(II)-NH_2NMe_2$ complexes, all of which contain the *in-situ* generated ammine ligands produced from the combined effect of nitrogenase-mimicking and NH_4PF_6 hydrolysis. These complexes were isolated during the reinvestigation of the known reaction of $[RuCl_2(1,5-cod)]_x$ with NH_2NMe_2 . The reactivity and ligand-competing behaviour of these complexes are also demonstrated in the reactions with selected phosphine and phosphonite ligands to produce a range of novel monohydrido-, bishydrido-, mono-ammine, and bis-ammine Ru(II) complexes.

2. Material and methods

2.1. General

All experiments were carried out under an Ar atmosphere using standard Schlenk techniques. Solvents were dried using standard techniques. The compound $[RuCl_2(1,5-cod)]_x$ was prepared using the literature procedure [26]. All other chemicals were purchased from Sigma-Aldrich and used without further purification. ¹H (400 MHz), ${}^{13}\text{C}{H}$ (101 MHz), ${}^{31}\text{P}{H}$ (162 MHz) and ${}^{15}\text{N}-{}^{1}\text{H}$ HMBC NMR spectra were recorded on a Bruker Avance III Ultrashield 400 MHz spectrometer fitted with a B-ACS 60 auto-sampler using either CDCl₃, CD₂Cl₂ or (CD₃)₂CO solutions. All measurements were performed at ambient temperature (~296 K), unless otherwise noted. Chemical shifts were referenced to the internal residual protio impurities in the solvent ($\delta_{\rm H}$ 7.24, 5.32, or 2.04 ppm in CDCl₃, CD_2Cl_2 , or $(CD_3)_2CO$ respectively) or carbon signals ($\delta_{\rm H}$ 77.0, 53.8, or 29.8 and 206.3 ppm in CDCl₃, CD₂Cl₂, or (CD₃)₂CO respectively). Solid state FT-IR experiments were carried out on a Bruker Tensor 27 FT-IR as pressed KBr pellets in air. Melting points were performed in air on a Stuart SMP10 and are uncorrected. Microanalytical analyses (%CHNS) were performed at Rhodes University (RSA) using an Elementar Vario Micro cube instrument with a TCD detector. In cases where %Cl was required, the analyses were performed externally at Galbraith Laboratories (USA).

2.2. Syntheses of [RuH(1,5-cod)(NH₃)(NH₂NMe₂)₂](PF₆) **3** and [RuCl (1,5-cod)(NH₃)₂(NH₂NMe₂)](PF₆) **5**

A suspension of $[RuCl_2(1,5-cod)]_x$ (0.497 g, 1.77 mmol) in MeOH (8.0 mL) with NH₂NMe₂ (3.0 mL, 39.4 mmol) and H₂O (0.75 mL) was heated under reflux for 30 min, after which a filtered solution of NH_4PF_6 (0.597 g, 3.7 mmol) in H_2O (3.0 mL) was added. The reaction mixture was concentrated in vacuo, filtered, and washed with EtOH/Et₂O from which an off-white microcrystalline solid (0.218 g) was isolated. The crude product was extracted with CHCl₃ $(\sim 15 \text{ mL})$, followed separately by CH₂Cl₂ ($\sim 15 \text{ mL}$), after which the residue was extracted with acetone ($\sim 15 \text{ mL}$). Concentration of each extracted fraction led to the isolation of the known [RuH (1,5-cod)(NH₂NH₃)₃](PF₆) 1 (CHCl₃ fraction, light brown microcrystals, 62 mg, 26%), 3 (CH₂Cl₂ fraction, brown microcrystals, 47 mg, 22%), and 5 (acetone fraction, beige powder, 74 mg, 34%). Characterisation for **1** is in agreement with literature [16f]. **3**: m.p.: >147 °C (decomposition without melt). IR (v, cm⁻¹): 3375 (w); 3237 (v(NH), w); 3066 (v(NH), w); 2958 (v(=CH), w); 2873 (v(NH), w); 2836 (v(-CH), m); 2789 (m); 2036 (v(RuH), w); 1607 $(\delta(NH), asym, m); 1459 (\delta(-CH), sym, m); 1406 (\delta(-CH), asym, m); 1406 (\delta(-CH$ w); 1168 (δ (NH), sym, m); 1151 (δ (NH), sym, m); 1022 (ν (CN), m); 985 (δ (=CH), m); 918 (ν (NN), m); 830 (ν (PF), s); 556 (δ (PF), s). ¹H NMR (ppm) (400 MHz, CDCl₃, $\delta_{\rm H}$) –5.58 (s, RuH, 1H); 1.23

(s, NH₃, 3H); 1.56 (s, H_2O); 1.67 (t, ${}^{3}J_{HH} = 11$ Hz, CH₂ of cod, 2H); 2.26 (m, CH₂ of cod, 4H); 2.44 (s, NCH₃ trans to cod, 6H); 2.73 (s, NCH₃ cis to cod, 3H); 3.06 (s, CH₂ of cod, 2H); 4.56 (d, ${}^{3}I_{HH} = 10 \text{ Hz}$, =CH of cod, 2H); 4.99 (d, ${}^{3}I_{HH} = 10 \text{ Hz}$, =CH of cod, 2H); 6.08 (br s, NH₂, 2H). ¹³C{¹H} NMR (ppm) (101 MHz, $(CD_3)_2CO, \delta_C$ 27.7 (s, CH₂ of cod); 47.1 (s, NCH₃ cis to cod); 48.8 (s, NCH₃ *trans* to cod); 78.6 (s, =CH of cod); 81.1 (s, =CH of cod); 88.6 (s, =CH of cod); 91.3 (s, =CH of cod). ³¹P{¹H} NMR (ppm) (162 MHz, CD_2Cl_2 , δ_P) -144.3 (sp, ${}^{1}J_{PF}$ = 716 Hz, PF_6). CHN (%): [RuH(1,5-cod)(NH₃)(NH₂NMe₂)₂](PF₆).H₂O: C, 27.99 (28.23); H, 6.65 (6.71); N, 13.82 (13.72). 5: m.p.: >165 °C (decomposition without melt). IR (v, cm⁻¹): 3295 (v(NH), w); 3066 (v(NH), w); 2918 (v(=CH), w); 2877 (v(NH), w); 2846 (v(-CH), m); 2158 (m); 1629 (δ(NH), asym, w); 1571 (δ(NH), asym, m); 1467 (δ(-CH), sym, m); 1408 (δ (-CH), asym, m); 1363 (m); 1317 (m); (m); 1179 (δ (NH), sym, w); 1163 (δ (NH), sym, m); 1024 (ν (CN), m); 978 (δ(=CH), m); 904 (ν(NN), m); 830 (ν(PF), s); 556 (δ(PF), s). ¹H NMR (ppm) (400 MHz, (CD₃)₂CO, $\delta_{\rm H}$) 1.89 (br s, NH₃, 2H); 2.30 (d, ${}^{3}J_{HH}$ = 7 Hz, CH₂ of cod); 2.41–2.53 (m, CH₂ of cod, 3H); 2.58– 2.65 (m, CH₂ of cod, 1H); 2.78 (s, NCH₃, 6H); 3.33 (br s, NH₃, 2H); 3.52 (d, ${}^{3}J_{HH} = 4 \text{ Hz}$, CH_2 of cod, 1H); 3.84 (s, 1H); 4.07 (d, ${}^{3}J_{HH} = 7 \text{ Hz}$, CH_2 and =CH of cod, 4H); 5.94 (d, ${}^{3}J_{HH} = 11 \text{ Hz}$, =CH of cod, 1H); 6.82 (d, ${}^{3}J_{HH}$ = 12 Hz, =CH of cod, 1H). ${}^{13}C{}^{1}H{}$ NMR (ppm) (101 MHz, (CD₃)₂CO, δ_{C}) 27.6 (s, CH₂ of cod); 47.2 (s); 48.8 (s, NCH₃); 78.4 (s, =CH of cod); 81.3 (s, =CH of cod); 88.6 (s, =CH of cod); 91.3 (s, =CH of cod). ³¹P{¹H} NMR (ppm) (162 MHz, (CD₃)₂CO, δ_P) –144.3 (sp, ¹ J_{PF} = 708 Hz, PF_6). CHN (%): [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)](PF₆): C, 24.64 (24.82); H, 5.31 (5.42); N, 11.18 (11.58); Cl 7.54 (7.33).

2.3. Synthesis of [RuH(1,5-cod)(NH₃)(NH₂NMe₂)₂](BPh₄) **4**, and [RuCl (1,5-cod)(NH₃)₂(NH₂NMe₂)](BPh₄) **6**

Similar to the syntheses of 1, 3, and 5, employing NaBPh₄ instead of NH₄PF₆. Concentration of each extracted fraction gave $[RuH(1,5-cod)(NH_2NMe_2)_3](BPh_4)$ **2**, from the $(CH_2Cl_2$ fraction, light brown powder, 135 mg, 43%), 4 (CHCl₃ fraction, brown powder. 83 mg, 28%), and 6 (acetone fraction, beige powder, 39 mg, 13%). Characterisation data for **2** agrees with literature [16f]. **4**: m.p.: >142 °C (decomposition without melt). IR (v, cm⁻¹): 3127 (v(NH), m); 3054 (v(NH), m); 3002 (v(=CH), w); 2870 (v(NH), w); 2831 (*v*(-CH), w); 2039 (*v*(RuH), w); 1602 (δ(NH), asym, w); 1579 (δ (NH), asym, w); 1453 (δ (–CH), sym, m); 1401 (δ (–CH), asym, s); 1387 (s); 1157 (δ (NH), sym, w); 1095 (δ (NH), sym, w); 1022 (v(CN), m); 974 (δ (=CH), w); 916 (v(NN), w); 735 (v(BC), m); 706 (ν (BC), m); 609 (m). ¹H NMR (ppm) (400 MHz, CDCl₃, $\delta_{\rm H}$) -5.72 (s, RuH, 1H); 1.67 (m, H₂O, 2H); 1.94 (d, ³J_{HH} = 14 Hz, CH₂ of cod, 1H); 2.07 (br s, NH₃, 3H); 2.24 (t, ³J_{HH} = 15 Hz, NCH₃ trans to cod, 6H); 2.41 (s, NCH₃ cis to cod, 6H); 2.47 (s, CH₂ of cod, 2H); 2.55 (d, ${}^{3}J_{HH}$ = 24 Hz, CH₂ of cod, 2H); 2.96 (s, CH₂ of cod, 1H); 3.53 (s, =CH of cod, 0.5H); 3.73 (s, =CH of cod, 0.5H); 4.05 $(dd, {}^{3}J_{HH} = 9 and 43 Hz, =CH of cod, 1H); 4.71 (dd, {}^{3}J_{HH} = 10 and$ 44 Hz, =CH of cod, 1H); 5.12 (d, ${}^{3}J_{HH}$ = 10 Hz, =CH of cod, 0.5H); 5.27 (d, ${}^{3}J_{HH} = 10 \text{ Hz}$, =CH of cod, 0.5H); 5.81 (d, ${}^{3}J_{HH} = 10 \text{ Hz}$, NH₂, 2H); 6.90 (t, ${}^{3}J_{HH} = 7$ Hz, C₆H₅, 4H); 7.04 (t, ${}^{3}J_{HH} = 7$ Hz, C₆H₅, 8H); 7.41 (s, C₆H₅, 8H). ${}^{13}C{}^{1}H{}$ NMR (ppm) (75 MHz, CD₂Cl₂, δ_{C}) 26.2 (s, CH₂ of cod); 28.5 (d, ${}^{3}J_{CC}$ = 34 Hz, CH₂ of cod); 31.0 (s, CH₂ of cod); 33.1 (s, CH₂ of cod); 48.8 (s, NCH₃ trans to cod); 49.9 (s, NCH₃ cis to cod); 88.1 (s, =CH of cod); 91.5 (s, =CH of cod); 122.4 (s, C_6H_5); 126.2 (d, ${}^{3}J_{CC}$ = 3 Hz, C_6H_5); 136.3 (s, C_6H_5), 164.4 (m, C_6H_5). ¹⁵N NMR (ppm) (51 MHz, (CD₃)₂CO, δ_N) 58 (s, NH_3); 86 (s, NMe₂); 106 (s, NMe₂); 132 (s, NH₂). CHN (%): [RuH(1,5-cod) (NH₃)(NH₂NMe₂)₂](BPh₄).3H₂O: C, 60.13 (59.99); H, 7.76 (8.11); N, 9.44 (9.72). **6**: m.p.: 142–144 °C. IR (v, cm⁻¹): 3127 (v(NH), m); 3054 (v(NH), m); 3027 (v(=CH), w); 2867 (v(NH), w); 2845 $(v(-CH), w); 1627 (\delta(NH), asym, w); 1596 (w); 1562 (\delta(NH),$

asym, w); 1456 (δ (-CH), sym, m); 1400 (δ (-CH), asym, s); 1385 (s); 1152 (δ (NH), sym, w); 1091 (δ (NH), sym, w); 1030 (ν (CN), m); 972 $(\delta = CH), w$; 908 (v(NN), w); 802 (m); 736 (v(BC), m); 709 (v(BC), m); 700 (m); 606 (m). ¹H NMR (ppm) (400 MHz, $(CD_3)_2CO, \delta_H$) 1.79 (q, ${}^{3}J_{HH}$ = 8 Hz, CH₂ of cod); 1.92 (s, NH₃, 1H); 2.25 (d, ${}^{3}J_{HH}$ = 12 Hz, CH_2 of cod, 1H); 2.31 (s, CH_2 of cod, 2H); 2.49 (t, ${}^{3}J_{HH} = 8$ Hz, CH_2 of cod, 2H); 2.60 (s, NCH₃, 6H); 3.04 (m, CH₂ of cod, 1H); 3.83 (s, =CH of cod, 1H); 4.01 (t, ${}^{3}J_{HH} = 7$ Hz, =CH of cod, 2H); 4.12 (s, =CH of cod, 1H); 4.46 (br s, NH₃, 2H); 5.56 (d, ${}^{3}J_{HH}$ = 11 Hz, 1H); 5.99 (m, NH₂, 1H); 6.77 (t, ${}^{3}J_{HH} = 7$ Hz, C₆H₅, 4H); 6.92 $(t, {}^{3}J_{HH} = 7 \text{ Hz}, C_{6}H_{5}, 8H); 7.33 (s, C_{6}H_{5}, 8H). {}^{13}C{}^{1}H} \text{ NMR (ppm)}$ (101 MHz, CD_2Cl_2 , δ_C) 28.7 (s, CH_2 of cod); 33.2 (s, CH_2 of cod); 48.8 (s, NCH₃ trans to cod); 64.7 (s, =CH of cod); 70.3 (s, =CH of cod); 122.2 (s, C_6H_5); 126.0 (q, ${}^{3}J_{CC} = 2$ Hz, C_6H_5); 136.4 (s, C_6H_5); 164.5 (m, C_6H_5). ¹⁵N NMR (ppm) (51 MHz, (CD₃)₂CO, δ_N) –18 (s, NH₃); 57 (s, NMe₂); 69 (s, NMe₂); 116 (s, NH₂); 344 (s). CHN (%): [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)](BPh₄).H₂O: C, 60.39 (60.40); H, 7.44 (7.16); N, 9.49 (9.29).

2.4. Synthesis of $[{Ru(PMe_2Ph)_3}_2(\mu-F)_3](PF_6)$ (10)

To a dark yellow solution of *cis*- and *trans*-[RuH₂(PMe₂Ph)₄] (PF₆) [30] (2.856 g, 4.4 mmol) in EtOH (60 mL) was added PMePh₂ (0.6 mL, 4.2 mmol) and HPF₆ (0.8 mL, 9.0 mmol) and the resulting reaction mixture was heated under reflux for 2 h. After cooling, the clear light yellow solution was filtered using vacuum filtration, and washed with EtOH (5 mL) and Et₂O (10 mL) to give a light yellow powder. This was recrystallized as light yellow needles using CH₂Cl₂/EtOH (2.314 g, 43%). m.p.: 212–214 °C. IR (v, cm⁻¹): 3137 (v(=CH), m); 3057 (v(=CH), w); 3001 (v(-CH), m); 1619 (v(C=C), w); 1486 (m); 1432 (δ(-CH), sym, s); 1402 (δ(-CH), asym, s); 1296 (δ(=CH), m); 1277 (δ(=CH), m); 1100 (s); 938 (δ(=CH), s); 903 (δ(para =CH), s); 839 (ν(PF), s); 747 (δ(ortho =CH), s); 702 (δ (-CH), s); 676 (δ (meta =CH), s); 557 (δ (PF), s). ¹H NMR (ppm) (400 MHz, $(CD_3)_2CO$, δ_H) 1.49 (br s, P(CH₃), 36H); 7.55 (m, P (C_6H_5) , 18H); 8.28 (m, P(C_6H_5), 12H). ¹³C{¹H} NMR (ppm) (101 MHz, CDCl₃, δ_C) 17.7 (s, P(CH₃)); 18.4 (s, P(CH₃)); 128.6 (t, ${}^{2}J_{CC}$ = 140 Hz, P(C₆H₅)); 129.5 (d, ${}^{2}J_{CC}$ = 27 Hz, P(C₆H₅)); 131.1 (s, P (C_6H_5)). ³¹P{¹H} NMR (ppm) (162 MHz, CDCl₃, δ_P) -144.3 (sp, ${}^{1}J_{PF}$ = 713 Hz, PF₆); 33.9 (ddd, ${}^{1}J_{PP}$ = 171 Hz and ${}^{2}J_{PP}$ = 36 and 88 Hz, PMe₂Ph). CHN (%): [{Ru(PMe₂Ph)₃}₂(μ-F)₃](PF₆): C, 46.87 (46.76); H, 5.40 (5.40); N, 0.00 (0.00).

2.5. Synthesis of [RuCl(NH₃)₂(PMe₃)₃](PF₆) (**11**)

To a brown solution of $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)](PF_6)$ (5) (1.057 g, 2.2 mmol) in EtOH (30 mL) was added PMe₃ (0.8 mL, 7.8 mmol) and the resulting reaction mixture was heated under reflux for 1 h. The dark brown solution was concentrated, filtered, and washed with EtOH (10 mL) and Et₂O (10 mL) from which a blue-green precipitate was isolated. Recrystallisation using acetone/EtOH gave a dark blue powder (0.456 g, 38%). m.p.: >300 °C (decomposition without melt). IR (v, cm⁻¹): 3367 (v(NH), w); 3303 (v(NH), w); 2981 (v(-CH), w); 2924 (v(-CH), w); 1626 (δ (NH), asym, m); 1435 (δ (–CH), sym, m); 1311 (m); 1298 (m); 1130 (δ (NH), sym, w); 947 (m); 828 (ν (PF), s); 739 (m); 672 (δ (-CH), m); 556 (δ (PF), s). ¹H NMR (ppm) (400 MHz, (CD₃)₂CO, δ _H) 1.56 (m, P(CH₃)₃, 27H); 2.08 (br s, NH₃, 2H); 3.30 (br s, NH₃, 2H). ¹³C{¹H} NMR (ppm) (101 MHz, (CD₃)₂CO, δ_{C}) 20.1 (t, ³J_{CC} = 20 Hz, P(CH₃)₃); 49.6 (s). ³¹P{¹H} NMR (ppm)(162 MHz, (CD₃)₂CO, δ_P) -144.3 (sp, ${}^{1}J_{PF}$ = 708 Hz, PF_{6}); 20.8 (s, PMe_{3}); 22.4 ppm (d, ${}^{2}J_{PP}$ = 24 Hz, *P*Me₃). CHN (%): [RuCl(NH₃)₂(PMe₃)₃](PF₆): C, 19.98 (19.88); H, 5.90 (6.12); N, 4.95 (5.15).

2.6. Synthesis of fac-[RuCl(NH_3)₂(PMe_2Ph)₃](PF_6) (12)

To a brown solution of $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)](PF_6)$ (5) (2.367 g, 4.9 mmol) in MeOH (40 mL) was added PMe₂Ph (2.4 mL, 16.9 mmol) and the resulting reaction mixture was heated under reflux for 1 h. After cooling the yellow crystalline product was filtered and washed with EtOH (5 mL) and Et₂O (5 mL) from which the title compound was isolated as deep yellow cuboid crystals (1.289 g, 36%). m.p.: 156–158 °C. IR (v, cm⁻¹): 3371 (v(NH), m); 3346 (v(NH), w); 3060 (v(=CH), w); 2987 (v(-CH), m); 2924 (w); 1829 (w); 1617 (δ (NH), asym, s); 1482 (m); 1433 (δ (-CH), sym, s); 1405 (δ (-CH), asym, s); 1288 (s); 1262 (s); 1222 (δ (=CH), s); 1100 (δ(NH), sym, m); 1051 (m); 1000 (δ(=CH), w); 945 (s); 904 (s); 869 (δ (para =CH), s); 839 (ν (PF), s); 749 (δ (ortho =CH), s); 703 (s); 677 (δ (meta =CH), s); 556 (δ (PF), s). ¹H NMR (ppm) (400 MHz, (CD₃)₂CO, $\delta_{\rm H}$) 1.11 (t, $J_{\rm HH}$ = 7 Hz, CH₃CH₂OH, 1H); 1.73 (d, J_{HH} = 8 Hz, P(CH₃)₂, 6H); 1.75 (s, NH₃, 3H); 1.96 (t, J_{HH} = 4 Hz, $P(CH_3)_2$, 6H); 2.01 (d, $J_{HH} = 4$ Hz, $P(CH_3)_2$, 3H); 2.08 (s, $P(CH_3)_2$, 3H); 3.30 (s, NH₃, 3H); 3.55 (s, CH₃OH, 1H); 7.27-7.35 (m, P (C_6H_5) , 4H); 7.46 (d, J_{HH} = 7 Hz, P (C_6H_5) , 6H); 7.62 (s, P (C_6H_5) , 5H). ¹³C{¹H} NMR (ppm) (101 MHz, CDCl₃, δ_{C}) 17.9 (s, P(CH₃)₂); 18.2 (s, P(CH₃)₂); 18.4 (s, P(CH₃)₂); 18.7 (m, P(CH₃)₂); 128.9 (t, ${}^{3}J_{CC} = 4 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.2 \text{ (t, } {}^{3}J_{CC} = 4 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.4 \text{ (d, } {}^{3}J_{CC} = 9 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (s, } P(C_{6}\text{H}_{5})); 129.9 \text{ (s, } P(C_{6}\text{H}_{5})); 136.6 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (s, } P(C_{6}\text{H}_{5})); 129.9 \text{ (s, } P(C_{6}\text{H}_{5})); 136.6 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (s, } P(C_{6}\text{H}_{5})); 129.9 \text{ (s, } P(C_{6}\text{H}_{5})); 136.6 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 129.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC} = 0 \text{ Hz}, P(C_{6}\text{H}_{5})); 120.8 \text{ (t, } {}^{3}J_{CC$ $(d, {}^{3}J_{CC} = 45 \text{ Hz}, P(C_{6}H_{5})). {}^{31}P\{{}^{1}H\} \text{ NMR (ppm) (162 MHz, (CD_{3})_{2}CO, 162 MHz))}$ $\delta_{\rm P}$) -144.2 (sp, ¹J_{PF} = 708 Hz, *P*F₆); 19.2 (d, ²J_{PP} = 34 Hz, *P*Me₂Ph *cis* to equatorial NH₃); 25.9 (t, ${}^{2}J_{PP}$ = 32 Hz, PMe₂Ph trans to equatorial NH₃). ¹⁵N NMR (ppm) (51 MHz, CDCl₃, δ_N) –8 (s, NH₃). CHN (%): [RuCl(NH₃)₂(PMe₂Ph)₃](PF₆).0.5EtOH: C, 39.26 (39.87); H, 6.70 (5.62); N, 3.37 (3.72).

2.7. Synthesis of $[RuCl(NH_3)(PMe_2Ph)_4](PF_6)$ (13)

To a brown solution of [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)](PF₆) (5) (2.228 g, 4.6 mmol) in MeOH (50 mL) was added PMe₂Ph (3.0 mL, 21.1 mmol) and heated under reflux for 1 h. After cooling, vellow crystals formed from the clear reddish-brown solution and was filtered, washed with MeOH (10 mL) and Et₂O (10 mL) to give light yellow cuboid crystals (1.641 g, 42%). m.p.: 175–177 °C. IR (v, cm⁻¹): 3365 (v(NH), w); 3056 (v(=CH), w); 2988 (v(-CH), w); 1608 $(\delta(NH), asym, m); 1595 (v(C=C), w); 1484 (m); 1436 (\delta(-CH), sym, m); 1484 (m); 1436 (\delta(-CH), sym, m); m)$ m); 1412 (δ (-CH), asym, m); 1317 (m); 1239 (δ (=CH), m); 1095 (δ (NH), sym, w); 943 (m); 897 (δ(para =CH), s); 831 (ν(PF), s); 760 (m); 744 (δ (ortho =CH), s); 725 (m); 703 (δ (-CH), s); 676 (δ (meta =CH), s); 556 (δ (PF), s). ¹H NMR (ppm) (400 MHz, CD₂Cl₂, δ _H) 0.32 (br s, NH₃, 3H); 1.19 (s, P(CH₃)₂ trans to Cl, 6H); 1.93 (s, P $(CH_3)_2$ cis to Cl, 9H); 1.98 (q, ${}^{3}J_{HH} = 8$ Hz, P(CH₃)₂ cis to Cl, 9H); 7.20 (m, $P(C_6H_5)$, 2H); 7.32 (s, $P(C_6H_5)$, 10H); 7.47 (s, $P(C_6H_5)$, 3H); 7.55–7.65 (m, P(C₆H₅), 5H). ¹³C{¹H} NMR (ppm) (101 MHz, CDCl₃, $\delta_{\rm C}$) 16.0 (t, ²*J*_{CC} = 29 Hz, P(CH₃)₂ *cis* to Cl); 21.6 (d, ²*J*_{CC} = 30 -Hz, P(CH₃)₂ cis to Cl); 23.5 (s, P(CH₃)₂ trans to Cl); 129.5 (s, P (C_6H_5) ; 129.7 (m, P(C_6H_5)); 130.5 (d, ${}^{3}J_{CC}$ = 23 Hz, P(C_6H_5)); 130.8 (d, ${}^{3}J_{CC} = 20 \text{ Hz}$, P(C₆H₅)). ${}^{31}P{}^{1}H$ NMR (ppm) (162 MHz, CD₂Cl₂, $\delta_{\rm P}$) -144.5 (sp, ¹*J*_{PF} = 711 Hz, *P*F₆); -1.2 (t, ²*J*_{PP} = 30 Hz, *P*Me₂Ph trans to NH₃); 11.7 (q, ${}^{2}J_{PP}$ = 32 Hz, PMe₂Ph cis to NH₃); 15.3 (q, $^{2}J_{PP}$ = 28 Hz, *P*Me₂Ph *trans* to Cl). ¹⁵N NMR (ppm) (51 MHz, CDCl₃, δ_N) -7 (s, NH₃). CHN (%): [RuCl(NH₃)(PMe₂Ph)₄](PF₆): C, 45.04 (45.16); H, 5.73 (5.57); N, 1.64 (1.65).

2.8. X-ray crystallography of compounds 8, 9, 10, 12, and 13

Single crystals of compounds **8**, **9**, **10**, **12**, and **13** were mounted on a fine glass rod and diffracted with graphite-monochromated Mo K α radiation (k = 0.71069 Å) using a Bruker APEX-II CCD areadetector diffractometer. X-ray diffraction measurements were made at 293(2) K (**8**), 293(2) K (**9**), 100(1) K (**10**), 150(2) K (**12**), and 293(2) K (**13**). Absorption corrections were carried out using sADABS [27]. All structures were solved by direct methods with sHELXS-97 [28] using the OLEX2 [29] interface. All H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms. Crystal data and experimental parameters for complexes **8**, **9**, **10**, **12**, and **13** are given in Table 1.

3. Results and discussion

3.1. Synthesis of hydrido- and chlorido-ammine-Ru(II) complexes

Due to the interest in the highly reactive synthetic precursor $[RuH(1,5-cod)(NH_2NMe_2)_3](PF_6)$ during the years of 1977–1986, a number of by-products in the preparative reactions of the latter complex were missed or simply not further investigated [16]. The complex $[RuH(1,5-cod)(NH_2NMe_2)_3](PF_6)$ was mainly employed as a synthon to a vast range of catalytically active Ru (II) and Ru(IV) complexes, for which access to vacant coordination sites at the metal centre is readily obtained through NH₂NMe₂ and/ or 1,5-cod ligand dissociation [16–18]. However, the formation of Ru(II)-ammine species from reactions involving Ru(II)-NH₂NMe₂ and NH₄PF₆/NaBPh₄ salts in our laboratories lead us to reinvestigate the known reaction of the polymeric $[RuCl_2(1,5-cod)]_x$ and NH₂NMe₂, and the synthetic and catalytic properties that these novel Ru(II)-ammine complexes may exhibit.

The known [16f] reaction involves heating a methanol slurry of the polymer with 6 equivalents of NH₂NMe₂ in the presence of H₂O for 30 min, after which anion exchange with NH₄PF₆ (in H₂O) or NaBPh₄ (in MeOH) occurs. Concentration of the resulting solutions gave beige microcrystalline precipitates, from which in both cases three products were isolated (Scheme 1). Extraction of both the PF₆- and BPh₄-salts with CHCl₃ followed by CH₂Cl₂, and finally acetone gave the following complexes respectively: *fac*-[RuH(1,5-cod)(NH₂NMe₂)₃](PF₆) (1) (known), [RuH(1,5-cod)(NH₃) (NH₂NMe₂)₂](PF₆) (3) (novel), and [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)₃](PF₆) (5) (novel); and the complexes [RuH(1,5-cod)(NH₃) (NH₂NMe₂)₂](BPh₄) (4) (novel), *fac*-[RuH(1,5-cod)(NH₂NMe₂)₃](BPh₄) (2) (known), and [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)](BPh₄) (6) (novel).

To the best of our knowledge, complexes **5** and **6** are the first reported chloro-cyclooctadiene bis-ammine ruthenium(II) complexes. The appearance of NH_3 as a coordinated ligand in these reactions from $[RuCl_2(1,5-cod)]_x$ and NH_2NMe_2 is proposed to have two sources. The first is the catalytic decomposition, or nitrogenase [24b,30], of a molecule of NH_2NMe_2 to form NH_3 and $HNMe_2$ as by-products (Scheme 2). The catalysed decomposition of NH_2NH_2 in particular is well-documented, and only one report on the decomposition of phenylhydrazine as a substituted hydrazine has

Scheme 2. The Chatt cycle [5a] derived for methyldiazene and *N*,*N*-dimethylhydrazine counterparts in the N₂ reduction process.

been reported [1e,24b,30]. This is the first reported instance of the catalytic decomposition of NH₂NMe₂ by Ru(II), and forms some of the first examples where NH₂NMe₂ Ru(II)-ammine intermediate complexes are isolated in the N₂ and methyldiazene activation routes [15]. Another source for the formed NH₃ is the conjugated acid-base pairs NH_3 and HPF_6 from the aqueous NH_4PF_6 salt employed. The *in situ* formation of NH₃ as ligand specifically in Ru(II) systems are rather common, as cited in reports involving the use of NH₄PF₆, where it is used in the activation of ammonia and the formation of alkynylamine [4a,14,31]. The complexes [RuH $(1,5-cod)(NH_3)(NH_2NMe_2)_2](BPh_4)$ (2) and [RuCl(1,5-cod)](NH₃)₂(NH₂NMe₂)](BPh₄) (**6**) were isolated, albeit in low yields, in the absence of any external source of NH₃ which indicates NH₂NMe₂ decomposition. Complexes [RuH(1,5-cod)(NH₃) $(NH_2NMe_2)_2](PF_6)$ (3) and $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)](PF_6)$ (5) were isolated in higher yields due to the combined effect of NH₂NMe₂ decomposition and the conjugated base pair formation from NH₄PF₆. We found that when >1.8 M equivalents of NH₄PF₆ is used, an increase in the formation of **3** and **5** is observed, suggesting the NH₄PF₆ salt does play a major role in the *in situ* formation of NH₃.

The steric requirements of a coordinated chloride-ion together with three relatively bulky NH_2NMe_2 ligands may drive the molecule to react either by conversion to the smaller hydride ligand through an intermolecular hydride formation mechanism using MeOH, or through a catalytic decomposition of a NH_2NMe_2 ligand to form NH_3 . Attempts to convert the chlorido-ammine complexes **5** and **6** into the hydrido-ammine complexes **3** and **4** respectively by the reactions of excess NH_2NMe_2 in MeOH failed. However, upon heating reaction mixtures containing **3** and **4** with an excess of NH_2NMe_2 in MeOH, complexes **1** and **2** are eventually obtained, albeit in low yields (~30%).

Scheme 1. Synthesis of NH₂NMe₂-Ru(II) complexes from the polymeric [RuCl₂(1,5-cod)]_x.

The ¹H NMR spectrum of **3** contains a singlet assigned to the Ru–H at $\delta_{\rm H}$ –5.58, signals for NH₂NMe₂ in a 1:1 ratio at $\delta_{\rm H}$ 2.44 (NMe *trans* to 1,5-cod) and 2.73 (NMe *cis* to 1,5-cod) ppm respectively, and a broad singlet at $\delta_{\rm H}$ 1.23 for the NH₃ proton. The ¹H NMR spectrum of **5** showed two broad singlets at $\delta_{\rm H}$ 1.89 and 3.33 for the protons of two NH₃ in chemically different environments. The ¹H- and ¹³C{¹H} NMR spectra for the BPh₄-anion analogues (**2**, **4**, and **6**) were generally comparable to the PF₆-anion analogues.

3.2. Reactions of $[RuH(1,5-cod)(NH_2NMe_2)_3](A)$ (A = PF₆, **1**; BPh₄, **2**)

The majority of the following reactions described in this section are known reactions that lead to methyldiazene activation intermediates that have not been identified or fully characterised before. The reaction of the complexes $[RuH(1,5-cod)(NH_2NMe_2)_3]$ (X) (X = PF₆, **1**; BPh₄, **2**) with 5.2 equivalents of P(OMe)₂Ph in boiling MeOH under a N₂ atmosphere gave the known complexes [RuH{P(OMe)₂Ph}₅](X) (X = PF₆, **7**; BPh₄, **8**) in high yields (86% for **7**, 88% for **8**). Upon employing the slightly larger PMe₂Ph ligand the known complexes $[RuH(1,5-cod)(PMe_2Ph)_3](PF_6)$ and $[RuH(PMe_2Ph)_5](PF_6)$ were isolated under similar reaction conditions [16a,d].

The unknown molecular structure of complex **8** shows a slightly distorted octahedron of the cation with five coordinated $P(OMe)_2$ -Ph ligands, four in the same equatorial plane, and the fifth in the apical position, *trans* to the hydride ligand (Fig. 1). With the hydride ligand in the apical position, a structural *trans*-influence of the hydride ligand on the *trans*-coordinated P13 ligand is expected although the Ru1–P13 bond (2.3408(2)Å), is only the second longest Ru-P bond observed. The bond angles of P11–Ru1–P14 = 177.067(2)°, and P12–Ru1–P15 = 159.174(1)° are indicative of the inherent distortion (Table 2). The ligands P12 and P15 show a degree of folding towards the smaller hydride ligand, as indicated by the P12–Ru1–P15 bond angle as well as the bond angles P12–Ru1–H1 = 80.221(1)° and P15–Ru1–H1 = 78.977(1)°.

The reaction of $[RuH(1,5-cod)(NH_2NMe_2)_3](X)$ (1) or $[RuH(1,5-cod)(NH_3)(NH_2NMe_2)_2](PF_6)$ (2) with excess PMePh₂ in EtOH, gave light yellow crystals of the known complex *cis*- $[RuH_2(PMePh_2)_4]$ (9), whose molecular structure is unknown. As the intraligand repulsion of the bulkier phosphine ligands is increased, the tendency for halide ligand substitution by hydride ligands increases, and therefore suggests a steric-controlled outcome in these reactions (Scheme 3) [32].

The molecular structure of **9** shows three phosphine ligands (P1, P2, P4) coordinated to the ruthenium atom in the same (equatorial) plane, with the fourth phosphine ligand (P3) occupying the apical position *trans* to one apical hydride ligand (H1b) (Fig. 2). The equatorial plane itself is disordered, with P1–Ru1–P2 = 146.41(2)°, and H1a–Ru1–P4 = 172.33(2)°, both deviating from the ideal 180° expected (Table 2). Significant folding in of P1 and P2 towards the smaller hydrido atom is observed with angles H1a–Ru1–P1 = 80.34(2)°, and H1a–Ru1–P2 = 77.90(2)°. H1a is coordinated in an equatorial plane with three phosphine ligands, resulting in a shorter Ru–H bond length (Ru1–H1a = 1.5943(4) Å), as compared to H1b (Ru1–H1b 1.6479(5) Å).

In an attempt to convert the dihydrido complexes $[RuH_2(L)_4]$ $(L = PMe_2Ph, PMePh_2)$ into the monohydrido complexes $[RuH(L)_5]$ (PF_6) , the complex $[RuH_2(PMe_2Ph)_4]$ [32a] was reacted with 2 equivalents each of both HPF₆ and PMe₂Ph under reflux. The fluoro-bridged known dimeric triply complex, [{Ru $(PMe_2Ph)_3_2(\mu-F)_3](PF_6)$ (10), was isolated in moderate yields (43%). The labilization of fluoride ions from a PF_6^- source to form triply-bridged fluoride dimers is not uncommon, and has been reported for the reactions of [RuH(1,5-cod)(NH₂NMe₂)₃](A) $(A = PF_6, BPh_4)$ with PMe₂Ph in acetone/methanol mixtures in the presence of H₂O, H₂S, HSMe, or HF to give [{Ru(PMe₂Ph)₃}₂(µ- X_{3} (A) (A = PF₆, BPh₄, X = OH, F, SH, SMe) [16g,33a]. These reactions occur due to the minimisation of intraligand strain, and the overall stabilization of ruthenium(II) complexes by anionicbridges [33].

The ³¹P NMR of **10** shows a single multiplet at δ_P 33.9 (ddd, ¹ J_{PP} = 171 Hz and ² J_{PP} = 36 and 88 Hz) for symmetrical arrangement

Table 1

Crystal data and experimental parameters for complexes 8, 9, 10, 12, and 13.

Complex	8	9	10	12	13
Emp. formula	C128H152B2O20P10Ru2	C52H54P4Ru	C48H66F9P7Ru2	C25H42ClF6N2O0.5P4Ru	C32H47ClF6NP5Ru
Formula weight (g mol $^{-1}$)	2543.95	903.90	1232.93	753.00	851.07
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	Pca2 ₁	$P2_1/n$	C2/c	$P2_1/c$	$P2_1/n$
Crystal descr.	Brown prism	Yellow cuboid	Yellow needle	Orange needle	Yellow cuboid
Crystal size (mm)	$0.331 \times 0.162 \times 0.08$	$0.342\times0.216\times0.179$	$0.365 \times 0.080 \times 0.074$	$0.385 \times 0.24 \times 0.182$	$0.223\times0.129\times0.126$
a (Å)	28.469(4)	9.903(1)	31.3480(2)	10.1732(1)	16.367(3)
b (Å)	11.957(3)	38.116(2)	16.3711(8)	19.072(2)	12.042(5)
<i>c</i> (Å)	36.635(5)	11.667(1)	28.4795(2)	17.343(2)	20.301(0)
α (°)	90.000	90.000	90.000	90.000	90.000
β(°)	90.000	90.702(5)	121.8850(1)	105.483(5)	113.035(1)
γ(°)	90.000	90.000	90.000	90.000	90.000
V (Å ³)	12,471(4)	4404.3(6)	12410.3(1)	3242.8(7)	3682(2)
Ζ	4	4	8	4	4
$D_{\text{calc}} (\text{mg m}^{-3})$	1.355	1.363	1.320	1.542	1.535
Abs. coefficient (m mm ⁻¹)	0.437	0.537	0.844	0.819	0.771
F(000)	5312.0	1880.0	5024.0	1540.0	1744.0
2θ range (°)	4.312-41.66	2.136-56.98	1.68-56.76	4.672-67.566	2.73-50.086
Independent reflections	28,752	11,092	15,481	7465	6398
Index ranges	$-37 \leqslant h \leqslant 37$	$-13 \leqslant h \leqslant 13$	$-41 \leqslant h \leqslant 41$	$-13 \leqslant h \leqslant 13$	$-15\leqslant h\leqslant 19$
	$-15 \leqslant k \leqslant 15$	$-50 \leqslant k \leqslant 50$	$-21 \leqslant k \leqslant 21$	$-24 \leqslant k \leqslant 24$	$-13 \leqslant k \leqslant 14$
	$-47 \leqslant l \leqslant 47$	<i>−</i> 15 ≤ <i>l</i> ≤ 15	$-38 \leqslant l \leqslant 37$	$-22 \leqslant l \leqslant 22$	$-24 \leqslant l \leqslant 24$
Completeness (%)	99.7	99.3	99.5	99.9	98.0
Abs. corr. method	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
Data/restraints/parameter	13,027/1/1487	11,092/0/526	15,481/0/607	12,982/0/398	6398/0/433
Goodness-of-fit (GOF) on F ²	1.050	1.097	1.008	1.080	1.060
Final R ₁ indices	0.0278	0.0292	0.0410	0.0302	0.0259
wR ₂ indices (all data)	0.0619	0.0719	0.1096	0.0787	0.0585
Largest difference in peak and hole ($e Å^{-3}$)	0.53 and -0.24	0.42 and -0.39	0.67 and -0.75	1.11 and -0.69	0.35 and -0.47

Table 2

Fig. 1. (a) Molecular diagram of [RuH{P(OMe)₂Ph}₅](BPh₄) (**8**), with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms (apart from the hydride ligand) are omitted for clarity.

of the PMe₂Ph ligands around each ruthenium centre. The Ru1–Ru2 interatomic distance of 3.1097(4) Å is slightly longer than that reported for [{Ru(PMe₂Ph)₃}₂(μ -OH)₃](BPh₄) (3.08 Å), but compares well with the complex [{Ru(PEt)₃}₂(μ -F)₃](CF₃SO₃) [3.1081 (4) Å] (Table 2) [33a]. Three equivalent PMe₂Ph ligands are *fac*-coordinated to each ruthenium centre, with typical Ru–P bond lengths varying between 2.2413(9)–2.2474(8) Å, which is slightly shorter than the reported Ru–P bond lengths for the similar [{Ru (PEt)₃}₂(μ -F)₃](CF₃SO₃) complex (Fig. 3) [33a].

3.3. Reactions of [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)](PF₆) (5)

Contrasting to the reactions of **1–4** bearing hydride moieties that are known, reactions of the novel chlorido-Ru(II)–ammine complexes results in the isolation of novel chloride methyldiazene and ammine intermediates. Reaction of $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)_3](PF_6)$ (**5**) with 3.5 equivalents of PMe₃ in boiling MeOH gave $[RuCl(NH_3)_2(PMe_3)_3](PF_6)$ (**11**) and the known dimeric complex $[\{Ru(PMe_3)_3\}_2(\mu-Cl)_3]$. Recrystallization of the mixture

Selected bond distances (Å) and angles (°) for complexes 8, 9, and 10. 8 g 10 Ru1-P11 2.3258(2)Ru1–P1 2.3038(8) Ru1-Ru2 3.1097(4)Ru1-P12 2.3111(1) Ru1-P2 2.3050(7) Ru1-P11 2.2425(8) Ru1-P13 2.3409(9)Ru1-P3 2.3675(9)Ru1-P12 2.2460(8) Ru1-P13 Ru1-P14 2.3427(1) Ru1-P4 2.3390(7) 2.2432(8) Ru1-P15 2.3142(9)Ru1-H1a 1.5943(4)Ru2-P21 2.2413(9)Ru1-H1 1.4987(2)Ru1-H1b 1.6479(5)Ru2-P22 2.2430(8)B1-CA1 1.648(5)H1a-Ru1-H1b 87.31(2) Ru2-P23 2.2474(8) B1-CA7 1.649(6) H1a-Ru1-P1 80.34(2) Ru1-F1 2.1345(2) P11-Ru1-P12 Ru1-F2 9127(4)H1a-Ru1-P2 77.90(2)2.1372(2)P11-Ru1-P13 90.84(3)H1a-Ru1-P3 87.59(2) Ru1-F3 2.1528(2)P11-Ru1-P14 177.08(4) H1b-Ru1-P1 72.24(2) Ru1-F1-Ru2 93.30(6) P12-Ru1-P15 159.14(3) H1b-Ru1-P4 86.46(2) Ru1-F2-Ru2 93.58(7) P14-Ru1-P15 89.76(3) P1-Ru1-P2 146.41(2)Ru1-F3-Ru2 92.87(6) P11-Ru1-P12 H1-Ru1-P12 80.22(5) P1-Ru1-P3 106.83(3)95.67(3) H1-Ru1-P13 179.46(5) P1-Ru1-P4 101.97(3) P11-Ru1-P13 93.77(3) P2-Ru1-P3 H1-Ru1-P15 78.98(5) 97.52(3) P12-Ru1-P13 93.44(3) Ru1-P13-O131 P2-Ru1-P4 P21-Ru2-P22 108.70(1)96.72(3)95.73(3)Ru1-P13-0132 P3-Ru1-P4 P21-Ru2-P23 93.49(3) 113.20(1)98.62(3)

Scheme 3. Syntheses of $[RuH_1](X)$ and $[RuH_2(L_2)_4]$ species using different $L_1 = PMe_3$, PMe_2Ph , $P(OMe)_2Ph$, and $L_2 = PMe_2Ph$, $PMePh_2$ phosphines.

Fig. 2. (a) Molecular diagram of *cis*-[RuH₂(PMePh₂)₄] (**9**), with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms (apart from the hydride ligands) are omitted for clarity.

yielded **11** as a dark blue powder in low yield (38%), which was difficult to analyse. It is concluded that dimerization is a secondary reaction occurring after the formation of **11**, possibly due to the stabilization effect brought about by the halogen bridges. The ¹H NMR spectrum shows two unique broad singlets for the *cis* NH₃ ligands at $\delta_{\rm H}$ 2.08 and 3.30 ppm. The presence of the PMe₃ ligands in two unique chemical environments are shown in the NMR spectra of **11**: a multiplet at $\delta_{\rm H}$ 1.56 in the ¹H NMR spectrum; two signals at $\delta_{\rm C}$ 20.1 (t, ³J_{CC} = 20 Hz) and 49.6 (s) in the ¹³C NMR spectrum; and two resonances at $\delta_{\rm P}$ 20.8 (s) and 22.4 (d, ²J_{PP} = 24 - Hz) in the ³¹P NMR spectrum.

Upon reacting **5** with 3 equivalents of PMe_2Ph in MeOH, *fac*-[RuCl(NH₃)₂(PMe₂Ph)₃](PF₆) (**12**) was isolated as deep yellow crystals. Both NH₃ ligands remained coordinated to the ruthenium centre, similar to the analogous [RuCl(NH₃)₂(PMe₃)₃](PF₆) (**11**). In

the reaction of $[RuCl(1,5-cod)(NH_3)_2(NH_2NMe_2)_3](PF_6)$ (5) with 4 equivalents of PMe₂Ph, one molecule of NH₃ dissociates (in addition to NH_2NMe_2 and 1,5-cod) to give $[RuCl(NH_3)(PMe_2Ph)_4](PF_6)$ (13) (Scheme 4). It has been found that 12 may be converted to **13** by reaction of an additional equivalent of PMe₂Ph. The ¹H NMR spectrum of **12** exhibits two distinct NH₃ singlets at $\delta_{\rm H}$ 1.75 and 3.30, indicating that each of these ligands occupies a different chemical environment, whereas a single broad singlet at $\delta_{\rm H}$ 0.32 was observed for the NH₃ ligand in **13**. The ¹⁵N-¹H HMBC NMR spectra of **4** and **6** both showed similar signals for the non-equivalent ammine ligands at δ_N 58 (**4**) and -18 (**6**). Other typical ¹⁵N resonances observed included those of the NH₂NMe₂ ligands, which were similar for all the complexes around δ_N 57–69 (NMe₂), 86–106 (NMe₂) and 116–132 (NH₂). The ammine signals shifted in the phosphine-substituted complexes 12 and 13, with signals resonating at δ_N –8 (two doublets for non-equivalent NH₃ ligands) (**12**), and $\delta_{\rm N}$ –7 (one doublet for a single NH₃ ligand) (**13**).

Addition of a few drops of D₂O to $(CD_3)_2CO$ solutions of both **5** and **13** bearing NH₃ moieties resulted in the disappearance of the NH₃ proton signals. Both 2D COSY ¹H–¹H and ¹⁵N–¹H HMBC spectra also showed no coupling between the D₂O and NH₃ signals, which indicate spontaneous exchange of the Ru-NH₃ and Ru-OD₂ species, as opposed to Ru–NH₃ and Ru–ND₃ exchange. The ³¹P NMR spectrum of **12** revealed three PMe₂Ph ligands in two chemically unique environments: δ_P 19.2 (d, ²J_{PP} = 34 Hz) and 25.9 (t, ²J_{PP} = 32 Hz); whereas for **13** signals for four PMe₂Ph in three chemically different environments were observed: δ_P –1.2 (t, ²J_{PP} = 30 Hz, PMe₂Ph *trans* to NH₃); 11.7 (q, ²J_{PP} = 32 Hz, PMe₂Ph *cis* to NH₃); 15.3 (q, ²J_{PP} = 28 Hz, PMe₂Ph *trans* to Cl).

The complex [RuCl(NH₃)(PMe₂Ph)₄](PF₆) (**13**), exhibits only one NH₃ ligand in the equatorial position, along with three PMe₂Ph ligands in the same plane. In both **12** and **13** the chlorido-ligand is coordinated *cis* to the equatorial NH₃ ligand, along with two other PMe₂Ph ligands (Figs. 4 and 5). In **12**, the bond angles N1–Ru1–P2 (170.40(5)°), Cl1–Ru1–P1 (170.28(2)°), and N2–Ru1–P3 (169.85(6)°) all show distortion along the apical plane (Table 3). The relative degree of steric strain in the equatorial plane of the complex brought about by phosphines P1 and P3 is illustrated in the increased P1–Ru1–P3 bonding angle of 96.25(2)°, together with

Fig. 3. Molecular diagram of [{Ru(PMePh₂)₃]₂(µ-F)₃](PF₆) (10), with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Scheme 4. Syntheses of mono- and bis-ammine Ru(II)-PMe₂Ph complexes.

the smaller Cl1–Ru1–P3 and P1–Ru1–N2 angles of 91.61(2)° and 92.82(6)° respectively. The folding in of Cl and N2 due to the presence of P1 and P3 results in the significantly smaller Cl1–Ru1–N2 bonding angle of 78.92(6)°. The degree of resulting intraligand repulsion increased in **13** due to an additional PMe₂Ph ligand. This was evident in the equatorial plane, where the reduced Cl1–Ru1–P1 and Cl1–Ru1–P4 bond angles of 84.41(3)° and 80.82(3)°, respectively were observed. The folding in of the substituents of P1 and P4 towards Cl1 resulted directly in the increased P1–Ru1–P3 and P3–Ru1–P4 bond angles of 92.91(3)° and 101.18(3)°, respectively.

3.4. ¹H NMR spectrometry of successive PMe₃ additions

In light of the reactions of complexes **1–4** with phosphines and phosphonites to form the cationic $[RuH(P)_5]^+$ and related species, we were interested in the ligand substitution route followed and how it agrees with our steric-controlled reaction outcomes. Firstly, it is known that the complexes $[RuH(1,5-cod)(NH_2NMe_2)_3](X)$ (X = PF₆, **1**; BPh₄, **2**) reacts with 3 equivalents of phosphines (P = P(OMe)_3, PMe_3, PMe_2Ph, PMePh_2) to form the complexes $[RuH(1,5-cod)(P)_3](X)$ (X = PF₆, BPh₄). These complexes react further with excess phosphine to substitute the diene ligand to produce the complexes $[RuH(P)_5](X)$ (X = PF₆, BPh₄). An acetone-d₆ solution of $[RuH(1,5-cod)(NH_2NMe_2)_3](BPh_4)$ (**2**) shows a hydride

Fig. 4. Molecular diagram of *fac*-[RuCl(NH₃)₂(PMePh₂)₃](PF₆)·0.5EtOH (**12**·0.5EtOH). Thermal ellipsoids were drawn at 50% probability level, and hydrogen atoms (apart from the NH₃ and OH functionalities) are omitted for clarity.

Fig. 5. Molecular diagram of $[RuCl(NH_3)(PMePh_2)_4](PF_6)$ (13). Thermal ellipsoids were drawn at 50% probability level, and hydrogen atoms (apart from the NH₃ ligand) are omitted for clarity.

signal in the ¹H NMR spectrum at -5.28 ppm, which upon addition of 1 M equivalent of PMe₃ resolves to 6 different hydride singlets of variable intensities (Scheme 5). This is ascribed to a mixture of complexes resulting from the mono-substitution of PMe₃ at two different coordination positions (equatorial and apical). In addition, the *in situ* substitution of NH₂NMe₂ by (CD₃)₂CO as a competing ligand in high concentration readily occurs. This solution behaviour was not observed in a CDCl₃ solution of **2**. Further

Table 3
Selected bond distances (Å) and angles (°) for complexes 12 and 13

12		13	
Ru1-P1	2.2875(5)	Ru1-P1	2.3847(7)
Ru1-P2	2.2886(6)	Ru1-P2	2.3110(8)
Ru1-P3	2.2962(6)	Ru1-P3	2.3263(7)
Ru1-Cl1	2.4654(6)	Ru1-P4	2.4110(7)
Ru1-N1	2.1907(2)	Ru1-Cl1	2.4948(9)
Ru1-N2	2.1973(2)	Ru1-N1	2.2038(2)
P1-Ru1-P2	96.80(2)	P5-F1	1.5987(2)
P1-Ru1-P3	96.25(2)	P1-Ru1-P2	90.96(3)
P2-Ru1-P3	93.06(2)	P1-Ru1-P3	92.91(3)
P1-Ru1-Cl1	170.28(2)	P1-Ru1-P4	165.086(2)
P1-Ru1-N1	91.68(5)	P2-Ru1-P3	99.09(2)
P2-Ru1-N1	170.40(5)	P2-Ru1-P4	91.63(3)
P3-Ru1-N1	90.47(6)	P3-Ru1-P4	101.18(3)
Cl1-Ru1-N1	82.52(5)	P1-Ru1-Cl1	84.41(3)
N2-Ru1-N1	84.73(7)	P3-Ru1-Cl1	168.50(2)
N2-Ru1-Cl1	78.92(6)	P4-Ru1-Cl1	80.82(3)
N2-Ru1-P3	169.85(6)	N1-Ru1-Cl1	80.18(5)
P3-Ru1-Cl1	91.61(2)	N1-Ru1-P2	172.32(5)

Scheme 5. Stacked ¹H NMR spectrum of the sequential PMe₃ addition to [RuH(1,5-cod)(NH₂NMe₂)₃](BPh₄) (2).

addition to a total of 2 equivalents PMe₃ reveals a triplet at -10.98 ppm (²J_{HP} = 55 Hz) which is ascribed to the coupling of the hydride ligand with two different phosphorous nuclei. The concentration of this complex increases, where signals for the complex [RuH(1,5-cod)(PMe)₃](BPh₄) appears. Addition of 4 M equivalents of PMe₃ results in direct substitution of the 1,5-cod ligand to give [RuH(PMe₃)₄(L)](BPh₄) (L = NH₂NMe₂, (CD₃)₂CO) and finally [RuH (PMe₃)₅](BPh₄). It is unclear at this stage if direct substitution of the 1,5-cod ligand by two molecules of PMe₃ is concerted at the relative high concentrations of PMe₃. The prevalence of the PMe₃ ligand to coordinate over the (CD₃)₂CO ligand at high PMe₃ concentrations, however, is evident.

A doublet of pentets are expected for the complex [RuH(PMe₃)₅] (BPh₄), but only a partially resolved doublet of pentets is observed for the final *in situ* product, even after prolonged exposure to excess PMe₃. The ¹H NMR spectra obtained for isolated complexes **7** and **8** in CDCl₃, shows an overlapping doublet of pentets for the hydride ligand at $\delta_{\rm H}$ –8.78 (dp, ²*J*_{HP} = 19 and 88 Hz) and –8.90 (dp, ²*J*_{HP} = 19 and 89 Hz), respectively. The ³¹P NMR spectra of the latter complexes corresponds to the equivalence of the phosphines through the appearance of singlets observed at $\delta_{\rm P}$ 20.3 (**7**) and 20.9 ppm (**8**) for the P(OMe)₂Ph moieties.

These results demonstrate how the bulkier NH₂NMe₂ ligands is readily substituted by smaller ligands (such as NH₃), especially in the presence of the much larger chlorido-anion as opposed to the small hydrido-ligand. The coupling provided by the hydride and phosphorous nuclei acted as a probe to identify at which stage each ligand is substituted in complexes that form intermediates which are extremely difficult to isolate or identify otherwise.

4. Conclusions

Through the synergistic effect of nitrogenase-type activity and NH₄PF₆ hydrolysis, the novel ammine hydrido- and chlorido-ruthenium(II) complexes [RuH(1,5-cod)(NH₃)(NH₂NMe₂)₂]X (X = PF₆, BPh₄) and [RuCl(1,5-cod)(NH₃)₂(NH₂NMe₂)]X (X = PF₆, BPh₄) were synthesised as products in a mixture containing the known complexes [RuH(1,5-cod)(NH₂NMe₂)₃]X (X = PF₆, BPh₄). All of these complexes served as reactive precursors to a range of neutral and cationic ruthenium(II)-ammine complexes from the reactions with tertiary phosphines and phosphonites. These complexes were stable, isolable intermediates of the N₂ and methyldiazene activation processes, which allows for further catalytic and synthetic investigations. Intramolecular strain of the precursor complexes, as well as the steric bulk and electronic properties of the incoming σ -donating ligands was found to be two determining factors to the selective formation of monohydrido-, bishydrido-, as well as mono-ammine, and bis-ammine ruthenium(II) complexes.

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 85386). The New Generation Scholarship (NGS) of the University of Johannesburg (UJ) is gratefully acknowledged for a stipend for FPM. Single crystal X-ray diffraction collections by Prof Petrus van Rooyen (**8**, **12**), Dr Hong Su (**9**), and Mr Leo Kirsten (**10**, **13**) are greatly acknowledged.

Appendix A. Supplementary material

CCDC 997437, 997438, 997675, 997674 and 997676 contains the supplementary crystallographic data for **8**, **9**, **10**, **12** and **13**, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ica.2015.08.019.

References

- [1] (a) S.S. Rozenel, J. Arnold, Inorg. Chem. 51 (2012) 9730;
- (b) L.D. Field, H.L. Li, S.J. Dalgarno, P. Jensen, R.D. McIntosh, Inorg. Chem. 50 (2011) 5468;
 - (c) L.D. Field, H.L. Li, S.J. Dalgarno, Inorg. Chem. 49 (2010) 6214;

Singleton, N.J. Coville, Bull. Chem. Soc. Ethiop. 27 (3) (2013) 405;

- (d) D.J. Fox, R.G. Bergman, Organometallics 23 (2004) 1656. and references therein.
- (e) G. Albertin, S. Antoniutti, L. Bonaldo, J. Castro, Polyhedron 67 (2014) 295; (f) C.M. Kozak, P. Mountford, Angew. Chem., Int. Ed. 43 (2004) 1186.
- [2] (a) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, P.M. Dolcetti, G. Pelizzi, J. Chem. Soc., Dalton Trans. (1997) 4435;
 (b) S.O. Owalude, E.O. Odebunmi, U.B. Eke, R. Meijboom, V.N. Nesterov, E.

(c) N. lizuka, S. Motoki, M. Nakai, Y. Nakabayashi, Inorg. Chem. Commun. 46 (2014) 145.

- [3] (a) I. Dance, Z. Anorg, Allg. Chem. 641 (1) (2015) 91;
- (b) I.V. Fedoseev, N.V. Solov'ev, Russ. J. Inorg. Chem. 52 (2007) 994;
 (c) N. Khoenkhoen, B. de Bruin, J.N.H. Reek, W.I. Dzik, Eur. J. Inorg. Chem. (2015) 567.
- [4] (a) P.J. West, M.P. Cifuentes, T. Schwich, M.D. Randles, J.P. Morrall, E. Kulasekera, S. Petri, R. Stranger, M.G. Humphrey, Inorg. Chem. 51 (2012) 10495;
 - (b) M. Ito, M. Hirakawa, K. Murata, T. Ikariya, Organometallics 20 (2001) 379; (c) Y. Kayaki, H. Ikeda, J. Tsurumaki, I. Shimizu, A. Yamamoto, *Bull. Chem. Soc. Jpn.* 81 (9) (2008) 1053.
- [5] (a) B.M. Barney, H.-I. Lee, P.C. Dos Santos, B.M. Hoffman, D.R. Dean, L.C. Seefeldt, Dalton Trans. (2006) 2277;
 - (b) B.A. MacKay, M.D. Fryzuk, Chem. Rev. 104 (2004) 385;
 - (c) U.K. Das, M. Bhattacharjee, J. Organomet. Chem. 700 (2012) 78.
- [6] (a) G. Albertin, S. Antoniutti, J. Castro, J. Organomet. Chem. 697 (2012) 6;
 (b) D. Sellman, A. Hille, A. Rösler, F.W. Heinemann, M. Moll, Inorg. Chim. Acta 357 (2004) 3336;
 - (c) D. Sellman, A. Hille, F.W. Heineman, M. Moll, A. Rösler, J. Sutter, G. Brehm, M. Reiher, B.A. Hess, S. Schneider, Inorg. Chim. Acta 348 (2003) 194.
- [7] (a) D. Sellman, A. Fürsattel, Angew. Chem., Int. Ed. 38 (1999) 2023;
- (b) D. Sellman, R. Prakash, F.W. Heinemann, Eur. J. Inorg. Chem. (2004) 4291.
 [8] Q.-F. Zhang, H. Zheng, W.-Y. Wong, W.-T. Wong, W.-H. Leung, Inorg. Chem. 39 (2000) 5255.
- [9] B.M. Barney, M. Laryukhin, R.Y. Igarashi, H.-I. Lee, P.C. Dos Santos, T.-C. Yang, B. M. Hoffman, D.R. Dean, L.C. Seefeldt, Biochemistry 44 (22) (2005) 8030.
- [10] S.L. Dabb, B.A. Messerle, G. Otting, J. Wagler, A. Willis, Chem. Eur. J. 14 (2008) 10058.
- [11] L.D. Field, H.L. Li, A.M. Magill, Inorg. Chem. 48 (2009) 5.
- [12] (a) J.L. Crossland, D.R. Tyler, Coord. Chem. Rev. 2010 (1883) 254;
- (b) G. Albertin, S. Antoniutti, E. Bordignon, F. Chimisso, Inorg. Chem. Commun. 4 (2001) 402.
- [13] (a) B.A. MacKay, R.F. Munha, M.D. Fryzuk, J. Am. Chem. Soc. 128 (29) (2006) 9472;
 (b) J.L. Crossland, L.N. Zakharov, D.R. Tyler, Inorg. Chem. 46 (2007) 10476;
 - (c) B.M. Barney, T.-C. Yang, R.Y. Igarashi, P.C. Dos Santos, M. Larykhin, H.-I. Lee, B.M. Hoffman, D.R. Dean, L.C. Seefeldt, J. Am. Chem. Soc. 127 (2005) 14960.
- [14] (a) D. Touchard, L. Morice, V. Cadierno, P. Haquette, L. Toupet, P.H. Dixneuf, J. Chem. Soc., Chem. Commun. (1994) 859; (b) D. Touchard, P. Haquette, S. Guesmi, L. Le Pichon, A. Daridor, L. Toupet, P.H.
 - (b) D. Touchard, P. Haquette, S. Guesmi, L. Le Pichon, A. Daridor, L. Touper, P.H. Dixneuf, Organometallics 16 (1997) 3640.
- [15] G. Albertin, S. Antoniutti, A. Bacchi, F. De Marchi, G. Pelizzi, Inorg. Chem. 44 (2005) 8947.
- [16] (a) T.V. Ashworth, E. Singleton, M. Laing, L. Pope, J. Chem. Soc., Dalton Trans. 1032 (1978);
 - (b) T.V. Ashworth, M.J. Nolte, E. Singleton, J. Chem. Soc., Dalton Trans. (1976) 2184;
 - (c) T.V. Ashworth, E. Singleton, M. Laing, J. Chem. Soc., Chem. Commun. (1976) 875;
 - (d) T.V. Ashworth, M.J. Nolte, E. Singleton, J. Chem. Soc., Dalton Trans. 1977 (1816);
 - (e) T.V. Ashworth, M.J. Nolte, R.H. Reimann, E. Singleton, J. Chem. Soc., Chem. Commun. (1977) 937;

(f) T.V. Ashworth, E. Singleton, J.J. Hough, J. Chem. Soc., Dalton Trans. 1977 (1809);

- (g) T.V. Ashworth, M.J. Nolte, E. Singleton, J. Chem. Soc. Chem. Commun. (1977) 936. and references therein.
- [17] (a) T.V. Ashworth, A.A. Chalmers, E. Meintjies, H.E. Oosthuizen, E. Singleton, Organometallics 3 (1984) 1485;

(b) T.V. Ashworth, D.C. Liles, E. Singleton, J. Chem. Soc., Chem. Commun. (1984) 1317;

(c) D.C. Liles, H.E. Oosthuizen, A. Shaver, E. Singleton, M.B. Wiege, Organometallics 5 (1985) 591;
(d) T.V. Ashworth, D.C. Liles, E. Singleton, Organometallics 1984 (1851) 3.

- (a) M.O. Albers, D.J.A. De Waal, D.C. Liles, D.J. Robinson, E. Singleton, J. Organomet. Chem. 326 (1987) C29;
 (b) M.O. Albers, D.J.A. De Waal, D.C. Liles, D.J. Robinson, E. Singleton, M.B. Wiege, J. Chem. Soc., Chem. Commun. (1986) 1680;
 - (c) M.O. Albers, D.J. Robinson, A. Shaver, E. Singleton, Organometallics 5 (1986) 2199;

(d) M.O. Albers, S.F.A. Crosby, D.C. Liles, D.J. Robinson, A. Shaver, E. Singleton, Organometallics 1987 (2014) 6.

- [19] M. Schlaf, A.J. Lough, R.H. Morris, Organometallics 16 (1997) 1253.
- [20] D.S. Perekalin, E.E. Karslyan, A.O. Borissova, A.R. Kudinov, Mendeleev Commun. 21 (2011) 82.
- [21] A. Àli, F.P. Malan, E. Singleton, R. Mejboom, Organometallics 33 (2014) 5983.
 [22] Y. Nakabayashi, H. Nakamura, Y. Kubota, M. Morimoto, T. Kawasaki, M. Nakai, O. Yamauchi, Inorg. Chim. Acta 423 (2014) 109.
- [23] D.A. Hall, G.J. Leigh, J. Chem. Soc., Dalton Trans. (1996) 3539.
- [24] (a) G. Papp, H. Horváth, G. Laurenczy, I. Szatmári, Á. Kathó, F. Joó, J. Chem. Soc., Dalton Trans. 42 (2013) 521;
 (b) J.D. Gilbertson, N.K. Szymczak, D.R. Tyler, J. Am. Chem. Soc. 127 (2005)
- (b) J.D. Gilbertson, N.K. Szymczak, D.R. Tyler, J. Am. Chem. Soc. 127 (2005) 10184. and references therein.
 [25] (a) D. Sellman, A. Hille, A. Rösler, F.W. Heinemann, M. Moll, G. Brehm, S.
- [25] (a) D. sennan, A. Hine, A. Koster, F.W. Heinemann, M. Mon, G. Brenn, S. Schneider, M. Reiher, B.A. Hess, W. Bauer, Chem. Eur. J. 10 (2004) 819;
 (b) A.-Q. Jia, Q. Ma, H.-T. Shi, Q. Chen, W.-H. Leung, Q.-F. Zhang, Inorg. Chim. Acta 392 (2012) 99.
- [26] M.O. Albers, T.V. Ashworth, H.E. Oosthuizen, E. Singleton, Inorg. Synth. 26 (1989) 68.
- [27] G.M. Sheldrick, SHELXL96, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1996.
- [28] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
- [29] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 42 (2009) 339.
- [30] S. Kuwata, Y. Mizobe, M. Hidai, Inorg. Chem. 33 (1994) 3619.
- [31] A.D. Burrows, D.M.P. Mingos, S.E. Lawrence, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans. (1997) 1295.
 [32] (a) S.P. Nolan, T.R. Belderrain, R.H. Grubbs, Organometallics 16 (1997) 5569;
- (b) R.A. Jones, G. Wilkinson, I.J. Colquohoun, W. McFarlane, A.M.R. Galas, M.B. Hursthouse, J. Chem. Soc., Dalton Trans. (1980) 2480;
 (c) J. Shen, E.D. Stevens, S.P. Nolan, Organometallics 17 (1998) 3875.
- [33] (a) N.A. Jasim, R.N. Perutz, S.J. Archibald, J. Chem. Soc., Dalton Trans. (2003) 2184:
 - (b) K. Mashima, N. Komura, T. Yamagata, K. Tani, Inorg. Chem. 36 (1997) 2908; (c) K.S. Coleman, J.H. Holloway, E.G. Hope, J. Langer, J. Chem. Soc., Dalton Trans. (1997) 4555.