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Abstract: Asymmetric palladium catalyzed allylic amination5fvith Table 1. Enantioselective palladium catalyzed allylic amination of
various amines has been studied using a new class of chiral pyridin¢ rac-(£)-5a or 5b with various amines
phosphine ligands. High enantioselectivities of up to @4%ave been

Ph
. ) . ) : Ph
observed using benzylamine, veratrylamine or morpholine as Ph\/\{”‘ + K SN—H [PdEbDCl; -1 \/\l/

nucleophiles. SR R 16h —N—pz
S5a:R=Ac 6 7
In recent years, variousy@ymmetric and non symmetric chiral ligands Sb iR =CoOMe
bearing phosphine(s), nitrogen(s) and/or sulfur(s) have been develope Entry® Ligand Temp Substrate Amine Conv e (%)°
and used in numerous transition metal catalyzed reattisumch as (°C) (%)b
hydrogenatior’s and allylic substitutiors Thus, a wide class of non 1 1 -10 5a PhCH,NH, 70 77(S)°
symmetric chiral PN-, SN- type ligands were efficiently used as ligands 5 1 .10 5a PhCHLNH; 100 79 (S)°
for catalytic asymmetric reactions, on the basis of their electronic a "
well as steric effects. In almost these cases, the phosphorus atom is 3 ! 20 Sa PhCH;NH, 100 84(5)
not stereogenic, the chirality being induced by a chiral oxazoline or 4 1 20 5b PhCH:NH, 100 80 (5)°
imidazoline group which have been recognized as effective partt 5 1 20 5a PhCH,NH, 100 73 (S
inducing high enantioselectivit}: 6 1 -10 5a PhCH,NH; 95 93 (S5)°
Recently, we described the use of a new non symmetric chiral ligani 5 2 10 5a PhCH,NH, 36 78(S5)
bearing the chirality at the phosphorus atom in a palladium catalyzes 4
asymmetric alkylation with enantioselectivities up to 87%e report 8 3 -10 Sa PhCHLNH, 70926
the preparation of various analogues of chiral ligdnénd their 9 4 -10 5a PhCH;NH; 95 93(5)°
application to the palladium catalyzed asymmetric allylic amination 10 1 -10 5a PhCH,NH; 75 92(85)°
Diastereoselective synthesis of ligandis4 was accomplished by 11 1 -10 5q Veratrylamine 97  94(S)°
e>.<ch§nge r.eactlon . in requxmg toluene . .between 12 1 10 sb Veratrylamine 98 93 (S)°
tris(dimethylamino)phosphine andS){2-anilinomethylpyrrolidine or . c
13 1 -10 5a Morpholine 88 88(S)

(9-2-naphthylaminomethylpyrrolidine followed by addition of the
correspond.ln.g 9 hydroxyqumohne, hydroxymethylpyrldlne or a All experiments were performed on a 0.5 mmole scale in toluene during 16 hours
hydroxypyrldlné" . using 2 mol% of [{(n3-C3H5)PdC1}2] (Pd/L  =1/4) except for entry 1 and 2,
respectively performed in diethylether and dichloromethane. ® Conversion determined
by HPLC analysis. ° Ee measured on a Daicel Chiralcel OD-H column at A = 254 nm. d

PONMey, . Toluene Me:N—PIN gy flow rate 0.5 mL/Min ; eluent : hexane{i—PrOH 200/1 , tr = 21.0 min, tg =.22.3 min. ©
I?I A2h Me N flow rate 1.2 mL/Min ; eluent : hexane/i-PrOH/NEt; 90/10/0.05 , tr = 9.9 min, ts = 18.9
H II‘I—R‘ | . min. { Ee measured by CPG analysis on a chiral Lipodex E column
H R
R? —QH | Toluene
1-4 A2h Using benzylamine as test nucleophile, a dramatic solvent effect on the
conversion is observed. Thus, under various experimental conditions no
= reaction occurred in THF. Diethylether (entry 1) and dichloromethane
\ N N (entry 2) led respectively to 70% and 100% conversiohaofith a
O,P'_ \'H good enantiomeric excesseg( (77 and 79% ee respectively).
) Nevertheless, the best results were obtained using toluene as solvent. A
5 Naphth . . . .
total conversion was observed and the desired prddobtained with
an ee up to 93% (entry 6). Moreover, a significant effect of the
=N N, temperature has been noticed and the best results were obtained at -10°C
\_/ / o°F H (entries 3-6). The effect of the ligand used has also been taken into
\ % . Ph account. Ligandsl and 4 led to excellent results in terms of

enantioselectivity at -10°C (93%e€ (entries 6 and 9). Nevertheless,
under the best experimental conditions, ligagdand 3 led to the
Asymmetric allylic amination of 1,3-diphenyl-2-propenyl aceter desired product with lower ee and an incomplete conversion (entries 7
1,3-diphenyl-2-propenyl carbonatéb with primary or secondary and 8). Even with 1 mol% of the palladium catalyst, the reaction
amines was carried out with palladium(ll)-phosphiried complex  proceeded in high enantioselectivity (92% entry 10) and the product
catalysts (Table 1). was isolated in 80% chemical yield. Excellent results have been also
obtained using veratrylamine (94% ee, entries 11 and 12) and
morpholine (88%ee entry 13) as nucleophiles.
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It is generally well assumed that the enantioselective step in palladiui6)
catalyzed allylic amination is the substitutionteéllyl complexes with
nucleophiles, the nucleophilic attack occurring predominantly at thgz)
alkyl terminustransto the bettertacceptor (P>>N)1%11 Since the9
product was obtained as the major enantiomer the reaction probably
proceeds through an M-type.

®)

Pho . _Ph
N
R g2

Minor enantiomer

Major enantiomer

This model proposes that trapping of tieallyl species occurs opposite
to the phosphine, as its supenmaccepting properties makes C-1 of the
allylic acetate electron deficient. Therefore, based on this anaysis,
rather thar® would be the diastereomeric complex responsible for the
product?

9)
In summary, we have demonstrated that palladium complexes derived
from new chiral pyridine-phosphine ligands are efficient catalysts for
allylic aminations leading to enantioselectivities up to S&4urther
studies are under current investigation in order to use these new ligands
in other asymmetric reactions.
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NMR & (ppm, CDC}) 1.51-2.12 (m, 4H), 3.29-3.42 (m, 2H), 3.74-
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121.2,121.5, 121.7, 123.2, 124.8, 127.2, 128.9, 130.1, 135.7, 148.7 ;
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CH,Cl,) ; *H NMR & (ppm, CDC}) 1.77-1.99 (m, 5H), 3.12-3.46
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