Terminal Platinum(II) Perfluoroacyl Phosphido Complexes: Synthesis and Dynamic Processes

Denyce K. Wicht and David S. Glueck*

Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755

Louise M. Liable-Sands and Arnold L. Rheingold

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received May 18, 1999

The Pt(II) phosphido methyl complexes Pt(dppe)(Me)(PPhR) (dppe = $Ph_2PCH_2CH_2PPh_2$, R = i-Bu, 1; R = Is = 2,4,6-(i-Pr)₃C₆H₂, 2) have been prepared by proton transfer from secondary phosphines to the methoxide ligand of Pt(dppe)(Me)(OMe). Oxidative addition of $ClC(O)C_{3}F_{7}$ to $Pt(PPh_{2}Me)_{4}$ gives *trans*- $Pt(PPh_{2}Me)_{2}(COC_{3}F_{7})(Cl)$ (3); treatment of 3 with dppe yields $Pt(dppe)(COC_3F_7)(Cl)$ (4). Complexes 3.0.5 CH_2Cl_2 and 4 were structurally characterized by X-ray crystallography. Reaction of 4 with AgBF4 and a secondary phosphine or treatment of $[Pt(dppe)(COC_3F_7)(NCMe)][BF_4]$ (5) with a secondary phosphine gives the cations $[Pt(dppe)(COC_3F_7)(PHPhAr)][BF_4]$ (Ar = Mes = 2,4,6-Me_3C_6H_2, **6**; Ar = *o*-anisyl, **7**; Ar = Is, **8**; Ar = Mes-F₉ = 2,4,6-(CF₃)₃C₆H₂, **9**; Ar = Ph, **10**). Deprotonation of the cations with $LiN(SiMe_3)_2$ affords the phosphido complexes $Pt(dppe)(COC_3F_7)(PPhAr)$ (Ar = Mes, 11; Ar = o-anisyl, 12; Ar = Is, 13; Ar = Mes-F₉, 14; Ar = Ph, 15). Fluxional processes in complexes **11–15** were studied by variable-temperature multinuclear NMR spectroscopy; the spectra are consistent with rapid phosphorus inversion on the NMR time scale at room temperature.

Introduction

Pyramidal inversion at phosphorus in metal phosphido complexes is rapid on the NMR time scale.¹ This process has been studied in complexes containing two chiral centers; fast exchange gives an averaged NMR spectrum, and signals due to the two different diastereomers are observed when exchange is slow at low temperature.^{1a,b,d,i} In the accompanying article, for example, we report NMR data characterizing rapid inversion at phosphorus in the chiral platinum(II) phosphido complexes Pt(diphos)(R)(PR'R").² A disadvantage of this approach is that one diastereomer may be so much higher in energy than the other that it is not observed, so the barrier to the dynamic process cannot be measured experimentally. To avoid this problem, phosphorus inversion can be studied in complexes with one chiral center. If two diastereotopic nuclei

are present, these exhibit different NMR chemical shifts if inversion is slow on the NMR time scale, and rapid inversion at phosphorus makes them equivalent. For example, Malisch obtained a phosphido inversion barrier of 14.4 kcal/mol in W(Cp)(CO)₂(PMe₃)(P(*i*-Pr)₂) by analysis of the dynamic ¹H NMR behavior of the isopropyl methyl groups.^{1e} Here we report variabletemperature NMR studies of the complexes Pt(dppe)-(R)(PPhR'), which contain diastereotopic nuclei either in a phosphido substituent or in a perfluoroacyl group coordinated to platinum.

Results and Discussion

The phosphido methyl complexes Pt(dppe)(Me)(PPhi-Bu) (1) and Pt(dppe)(Me)(PPhIs) (Is = $2,4,6-(i-Pr)_3C_6H_2$, 2), which contain diastereotopic *i*-Bu and *i*-Pr Me groups, respectively, were prepared by proton transfer from secondary phosphines to the methoxide ligand of Pt(dppe)(Me)(OMe).³ The ¹H NMR spectrum (toluene d_8) of previously reported⁴ 1 at room temperature exhibits a doublet (${}^{3}J_{HH} = 6$ Hz, 6H) at δ 0.99, assigned to the *i*-Bu Me groups. This signal decreases in intensity and broadens to a single peak as the temperature is decreased to -15 °C. At -50 °C, two broad peaks begin to grow in, but they do not sharpen as the temperature is further decreased to -70 °C. These inconclusive

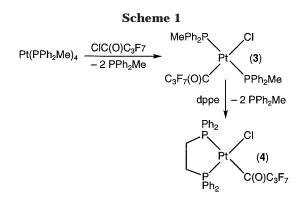
⁽¹⁾ For examples, see: (a) Zwick, B. D.; Dewey, M. A.; Knight, D. A.; Buhro, W. E.; Arif, A. M.; Gladysz, J. A. Organometallics 1992, 11, 2673–2685. (b) Buhro, W. E.; Zwick, B. D.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. *J. Am. Chem. Soc.* **1988**, *110*, 2427–2439. (c) J. P.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 2427–2439. (c)
Simpson, R. D.; Bergman, R. G. Organometallics 1992, 11, 3980–3993.
(d) Crisp, G. T.; Salem, G.; Wild, S. B.; Stephan, F. S. Organometallics 1989, 8, 2360–2367. (e) Malisch, W.; Maisch, R.; Meyer, A.; Greissinger, D.; Gross, E.; Colquhoun, E. J.; McFarlane, W. Phosphorus Sulfur 1983, 18, 299–302. (f) Baker, R. T.; Whitney, J. G.; Wreford, S. S. Organometallics 1983, 2, 1049–1051. (g) Bonnet, G.; Kubicki, M. M.; Moise, C.; Lazzaroni, R.; Salvadori, P.; Vitulli, G. Organometallics 1992, 11, 964–967. (h) Fryzuk, M. D.; Joshi, K.; Chadha, R. K.; Rettig, S. J. J. Am. Chem. Soc. 1991, 113, 8724–8736. (i) Malisch, W.; Gunzelmann, N.; Thirase, K.; Neumayer, M. J. Organomet. Chem. 1998, 571, 215–222. (j) For a review, see: Rogers, J. R.; Wagner, T. 1998, 571, 215–222. (j) For a review, see: Rogers, J. R.; Wagner, T. P. S.; Marynick, D. S. *Inorg. Chem.* 1994, *33*, 3104–3110.
(2) Wicht, D. K.; Kovacik, I.; Glueck, D. S.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L. *Organometallics* 1999, *18*, 5141.

⁽³⁾ Bryndza, H. E.; Calabrese, J. C.; Wreford, S. S. Organometallics **1984**, *3*, 1603–1604.

 ⁽⁴⁾ Wicht, D. K.; Paisner, S. N.; Lew, B. M.; Glueck, D. S.; Yap, G.
 P. A.; Liable-Sands, L. M.; Rheingold, A. L.; Haar, C. M.; Nolan, S. P.
 Organometallics 1998, 17, 652–660.

observations were further complicated by the overlap of this methyl signal with that of the Pt-Me group (m, δ 1.06-0.98).

The ¹³C{¹H} NMR spectrum of phenyl(isobutyl)phosphine shows two signals due to the diastereotopic Me carbons at δ 24.2 and 24.1 (C₆D₆); each exhibits ${}^{3}J_{PC}$ = 8 Hz. In contrast, in the ${}^{13}C{}^{1}H$ NMR spectrum of 1 (C_6D_6) , the Me signal appears as a doublet $({}^3J_{PC} = 7$ Hz) at δ 25.2. This could be due either to rapid inversion at phosphorus or to the two diastereotopic Me groups having the same chemical shifts. Further study of 1 was hampered by its rapid decomposition in solution.


Diarylphosphido complex 2, an orange-yellow solid, is stable in solution and has a ³¹P NMR spectrum similar to those of previously reported Pt(dppe)(Me)-(PRR') complexes.⁴ In the ¹H NMR spectrum (toluene d_8) at room temperature, the signal for the ortho *i*-Pr Me groups is a doublet (${}^{3}J_{HH} = 7$ Hz, 12H) at δ 1.21; the same chemical shift and coupling constant are observed for these protons in the ¹H NMR spectrum (C₆D₆) of the free phosphine PHPhIs.⁵ This signal in **2** broadens as the temperature is lowered and begins to decoalesce into two peaks at -35 °C. However, at lower temperatures, all the ¹H NMR signals become broad and complete decoalescence is indiscernible.

In the ${}^{13}C{}^{1}H$ NMR spectrum (toluene- d_8), the *o-i-*Pr Me signal is a sharp singlet at δ 25.7. At -15 °C, the ³¹P NMR signals for the dppe phosphorus trans to the methyl and for the phosphido ligand become broad and low in intensity. This broadening continues until -70 °C, when both signals completely disappear into the baseline.⁶ However, at this temperature, the signal for the dppe phosphorus trans to the phosphido ligand remains sharp and neither the chemical shift nor the coupling constants change.

The NMR observations in 1 and 2 are consistent with rapid inversion at phosphorus, but could also be explained if the diastereotopic Me groups have coincident chemical shifts. Therefore, to exploit the larger chemical shift dispersion of ¹⁹F NMR in comparison to ¹H NMR spectra, we prepared complexes containing diastereotopic CF₂ groups.

Bennett and co-workers previously reported oxidative addition of ClC(O)CF₃ and ClC(O)C₂F₅ to Pt(PPh₂Me)₄.⁷ A similar reaction with the perfluoropropyl analogue gives $trans-Pt(PPh_2Me)_2(COC_3F_7)(Cl)$ (3). Addition of dppe to a solution of 3 gives the cis compound Pt(dppe)-(COC₃F₇)(Cl) (4) (Scheme 1). ³¹P and ¹⁹F NMR data for 4 and its derivatives 5-15 (see below) are given in Tables 1 and 2.

The ³¹P NMR spectrum of **3** (CDCl₃) shows a triplet at δ 6.5 (² $J_{PF} = 5$ Hz, ¹ $J_{Pt-P} = 2916$ Hz). In the ¹⁹F NMR spectrum (CDCl₃), the signal for the CF₃ group is a wellresolved triplet at δ -81.2 with F–F coupling of 9 Hz. Under some conditions, the CF₂ resonances in this and the subsequent compounds are multiplets (δ –111.5 to -111.6 (COCF₂) and δ -127.6 to -127.7 (CF₂CF₃) for 3). However, we usually observed them as broad sin-

glets. The C=O stretch observed in the IR (KBr) spectrum at 1672 cm⁻¹ is similar to those reported for $Pt(PPh_2Me)_2(COCF_3)(Cl)$ (1670 cm⁻¹) and $Pt(PPh_2Me)_2$ - $(COC_2F_5)(Cl)$ (1675 cm⁻¹).⁷ IR data for the perfluoroacyl derivatives 4-15 (see below) are similar.

The X-ray crystal structures of 3.0.5CH₂Cl₂ and 4 are shown in Figures 1 and 2, respectively; selected bond lengths and angles are given in the figure captions. The crystallographic data are given in Table 3, and further details are in the Experimental Section and the Supporting Information.

The crystal structure of **3** shows the expected square planar geometry at platinum; the angles around the metal center range from 89.70(6)° to 90.6(2)°. The structure is similar to that of the related complex trans-Pt(PPh₂Me)₂(COCF₃)(Cl).⁸ The Pt-Cl, Pt-C(O), and carbonyl bond lengths for 3 (2.402(2), 1.990(7), and 1.191(9) Å, respectively) are the same within experimental error as those in the trifluoroacyl complex (2.390(1), 2.028(6), and 1.210(5) Å). The Pt-P bond lengths are slightly longer in 3 (2.332(2) and 2.338(2) Å) than in the trifluoroacyl complex (2.316(1) and 2.321-(1) Å), although the difference is small.

The structure of **4** shows a slightly distorted square planar geometry due to the P-Pt-P bite angle of 85.71-(3)° imposed by the dppe ligand. The Pt-Cl bond in 4 (2.3774(10) Å) is slightly shorter than the Pt–Cl bond in **3** (2.402(2) Å), consistent with a larger trans influence for the perfluoroacyl ligand than for the phosphine. The Pt-C(O) and carbonyl bond lengths in **4** are 2.051(3) and 1.221(4) Å, respectively. The Pt-phosphine bond lengths are 2.3525(9) Å for the P trans to COC₃F₇ and 2.2431(9) Å for the P trans to Cl; these results and the ${}^{1}J_{\text{Pt-P}}$ values suggest that the perfluoroacyl ligand has a greater trans influence than Cl.

Treatment of **4** with AgBF₄ generates the acetonitrile cation $[Pt(dppe)(COC_3F_7)(NCMe)][BF_4]$ (5) (Scheme 2), whose ³¹P NMR spectrum is similar to that of the previously reported methyl complex [Pt(dppe)(Me)(NC-Me)][BF₄].⁹ The cationic complexes [Pt(dppe)(COC₃F₇)- $(PHPhAr)][BF_4]$ (Ar = Mes = 2,4,6-(Me)_3C_6H_2, 6; Ar = o-anisyl, 7; Ar = Is, 8; Ar = Mes-F₉ = $2,4,6-(CF_3)_3C_6H_2$, **9**: Ar = Ph, **10**) were prepared by treatment of **5** with the appropriate phosphine or directly from 4 (Scheme 2). The ³¹P NMR spectra of **6–10** (Table 1) exhibit the expected AMX patterns with the resonances due to the coordinated phosphines appearing upfield between δ -7

⁽⁵⁾ Brauer, D. J.; Bitterer, F.; Dörrenbach, F.; Hebler, G.; Stelzer, O.; Krüger, C.; Lutz, F. Z. Naturforsch. 1996, 51B, 1183-1196.

⁽⁶⁾ The accompanying article (ref 2) reports similar observations for Pt(S,S-Chiraphos)(Me)(PPhIs). We assume that the unusual broadness observed in the ³¹P NMR spectrum is due to a dynamic process involving rotation around the Pt–PPhIs bond (see below).

⁽⁷⁾ Bennett, M. A.; Chee, H.-K.; Robertson, G. B. Inorg. Chem. 1979, 18, 1061-1070.

⁽⁸⁾ Bennett, M. A.; Ho, K.-C.; Jeffery, J. C.; McLaughlin, G. M.; Robertson, G. B. *Aust. J. Chem.* **1982**, *35*, 1311–1321. (9) In CDCl₃, δ 49.1 (¹*J*_{Pt-P} = 1809 Hz, P trans to Me) and δ 38.9 (¹*J*_{Pt-P} = 4370, P trans to NCMe). Appleton, T. G.; Bennett, M. A. *Inorg.*

Chem. 1978, 17, 738-747.

Table 1. ³¹P NMR Data for $[Pt(dppe)(COC_{3}F_{7})(X)]^{n+}$ Complexes^{*a*-*d*}

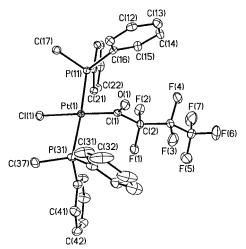
Table 1. "P NMR Data for $[Pt(dppe)(COC_3 F_7)(X)]$ " Complexes" "						
J_{13}	J_{23}					
306	24					
314	24					
305	23					
325	21					
304	22					
107	5					
86						
99						
82						
106						
112						
102						
111						
111						
92	12					
	111 111					

^{*a*} n = 0 for **4** and **11–15**; n = 1 for **5–10**. ^{*b*}Temperature = 22 °C except where noted. Chemical shifts in ppm, external reference 85% H₃PO₄, coupling constants in Hz. 'P₁ and P₂ are the dppe P nuclei; P₃ is trans to P₁. ^{*d*}Solvents: CD₂Cl₂ for **4**, **6**, **7**, **9**, **10**; CDCl₃ for **5**, **8**; THF- d_8 for **11**, **12**, **15**; toluene- d_8 for **13**, **14**. ^{*e*}Labels: major isomer **a**, minor isomer **b**.

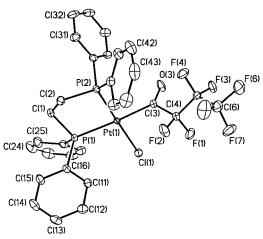
Table 2. ¹⁹	⁹ F NMR Data	for [Pt(dpp	$e(COC_3F_7)(X)]^n$	+ Complexes ^{<i>a,b,c</i>}
------------------------	-------------------------	-------------	---------------------	-------------------------------------

Table		T NMR Data for $[1 t(uppe)(COC_3 T_7)(X)] + Complexes$			
Х	no.	$\delta(\mathrm{CF}_3)^d$	$\delta(\text{COCF}_2) (J_{\text{FF}})$	$\delta(\mathrm{CF}_2\mathrm{CF}_3)$ (J _{FF})	
Cl	4	-81.6	-112.9 to -113.0 (m)	-126.5 to -126.6 (m)	
NCMe	5	-81.2	-114.4	-127.0	
PH(Ph)(Mes)	6	-81.6	-112.6	-127.4	
PH(Ph)(o-An)	7	-81.7	-112.6, -114.2 (314)	-127.5 to -127.6 (m)	
PH(Ph)(Is)	8	-81.5	-111.5, -112.5 (307)	-126.6, -127.5 (300)	
$PH(Ph)(Mes-F_9)^e$	9	-79.1	-109.8 (broad)	-124.5	
PHPh ₂	10	-81.6	-113.2	-127.3	
P(Ph)(Mes) (70 °C)	11	-82.6	-112.9	-127.7	
(-15 °C)		-82.6	-111.5, -114.4 (308)	-127.7	
P(Ph)(o-An) (60 °C)	12	-82.0	-113.2	-127.1	
(-50 °C)	12a	-82.0^{f}	-114.9, -117.1 (306)	-128.6, -129.9 (310)	
(1.3:1 ratio)	12b		-114.0, -115.3 (313)	-129.4	
P(Ph)(Is) (60 °C)	13	-81.2	-112.2	-126.7	
(-70 °C)	13a	-81.2^{f}	-112.4, -115.3 (310)	-127.4 (broad)	
(1.7:1 ratio)	13b		-111.6 to -112.1 (m)	-127.1 (broad)	
P(Ph)(Mes-F ₉) (60 °C)	14	-81.3	-111.8	-126.8	
(-70 °C)	14a	-81.6	-111.7 (broad m)	-127.0, -128.6 (300)	
(5:1 ratio)	14b	-81.1			
PPh ₂	15	-81.4	-112.2	-126.7	
(-40 °C)		-81.4	-112.9, -113.9 (308)	-127.9, -128.9 (308)	

^{*a*} n = 0 for **4** and **11–15**; n = 1 for **5-10**. For cations **5–10**, an additional peak due to the BF₄ anion was observed near –153 ppm. ^{*b*} Temperature = 22 °C except where noted. Chemical shifts in ppm, external reference CFCl₃, coupling constants in Hz. ^{*c*} Solvents: CD₂Cl₂ for **4**, **6**, **7**, **9**, **10**; CDCl₃ for **5**, **8**, THF-*d*₈ for **11**, **12**, **15**; toluene-*d*₈ for **13**, **14**. ^{*d*} The CF₃ signals are triplets with *J*_{FF} values of 9–10 Hz. ^{*e*} Additional data for Mes-F₉ derivatives: for **9** δ –53.2 (d, ⁴*J*_{FP} = 12, *o*-CF₃), –61.8 (*p*-CF₃); for **14** δ –55.5 (d, ⁴*J*_{PF} = 42, *o*-CF₃), –63.6 (*p*-CF₃). For **14** at –70 °C, see text, and δ –56.8 (broad), –63.2 and –62.9 (5:1 ratio, *p*-CF₃). ^{*f*} Different CF₃ resonances were not observed for the two isomers.


and -33. The large ${}^{2}J_{PP(trans)}$ (304-325 Hz), ${}^{1}J_{Pt-P}$ (2500-2700 Hz), and ${}^{1}J_{PH}$ (388-410 Hz) are characteristic of cationic Pt(II) phosphine complexes.⁹ The signal for the coordinated phosphine PHPhMes-F₉ in **9** is quite broad, presumably due to P–F coupling.

The presence of a chiral phosphorus center in **6**–**9** makes the fluorine atoms of the CF₂ groups diastereotopic. However, due to accidental chemical shift equivalence in **6** and **9**, the perfluoroacyl ligands in these complexes show only three signals, with chemical shifts and F–F coupling constants similar to those for **3**–**5** (Table 2). As expected, a similar ¹⁹F NMR spectrum is observed for **10**, because the phosphido ligand is symmetric. In the case of **7** and **8**, however, the CF₂ fluorine signals are AB patterns that exhibit F–F coupling. In **8**, the ortho *i*-Pr Me groups are diastereotopic; two signals appear at δ 0.95 (d, ³J_{HH} = 7 Hz, 6H) and 0.76 (broad, 6H).

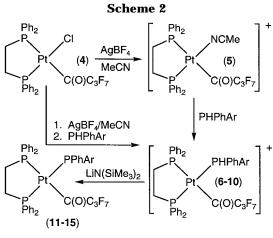

Deprotonation of the cationic complexes 6-10 with LiN(SiMe₃)₂ affords the neutral Pt(II) phosphido com-

plexes $Pt(dppe)(COC_3F_7)(PPhAr)$ (Ar = Mes, 11; Ar = o-anisyl, **12**; Ar = Is, **13**; $Ar = Mes-F_9$, **14**; Ar = Ph, **15**) (Scheme 2). These yellow or orange solids were characterized by NMR (¹H, ³¹P, ¹⁹F) spectroscopy, IR spectroscopy, and elemental analysis. They are stable in the solid state, but decompose slowly in solution to unidentified products. The phosphido resonances are observed in the ³¹P NMR spectra from δ 4.0 to -28.4 (Table 1). The signal due to the phosphido ligand in 14 is very broad, presumably as a consequence of P-F coupling to the ortho CF3 groups of Mes-F9. As expected, the observed P-P(trans) couplings (~90-120 Hz) and Pt-P couplings (~900-1100 Hz) are small in comparison to those of the coordinated phosphine precursors 6-10, because of decreased s-character in the Pt-phosphido bond upon deprotonation.¹⁰

Variable-Temperature NMR Behavior. As in the cationic precursors, the chiral phosphorus centers in 11-14 make the fluorines in the CF₂ groups diastereotopic, as observed in variable-temperature ¹⁹F NMR

Figure 1. ORTEP diagram of $3 \cdot 0.5$ CH₂Cl₂ with thermal ellipsoids at 30% probability. Solvent molecule and hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pt-C(1) = 1.990(7), Pt-Cl(1) = 2.402-(2), Pt-P(31) = 2.338(2), Pt-P(11) = 2.332(2), C(1)-O(1) = 1.191(1), C(1)-Pt-P(11) = 90.6(2), P(11)-Pt-Cl(1) = 89.7(6), Cl(1)-Pt-P(31) = 89.95(7), P(31)-Pt-C(1) = 90.0-(2), P(11)-Pt-P(31) = 173.23(5), C(1)-Pt-Cl(1) = 177.6-(2).

Figure 2. ORTEP diagram of **4** with thermal ellipsoids at 30% probability and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Pt-C(3) = 2.051(3), Pt-Cl(1) = 2.3774(10), Pt-P(1) = 2.3525(9), Pt-P(2) = 2.2431(9), C(3)-O(3) = 1.221(4), C(3)-Pt-P(2) = 92.32(10), P(2)-Pt-P(1) = 85.71(3), P(1)-Pt-C(1) = 96.18-(3), Cl(1)-Pt-C(3) = 85.89(1), C(3)-Pt-P(1) = 176.72(10), P(2)-Pt-Cl(1) = 177.10(3).


spectra (Table 2). In some cases, variable-temperature ³¹P and ¹H NMR spectra provided additional information about the dynamics of these molecules in solution.

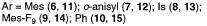
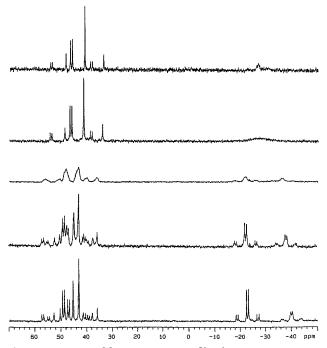

For example, the ¹⁹F NMR spectrum (THF- d_8) of Pt-(dppe)(COC₃F₇)(PPhMes) (**11**) at 60 °C contains sharp signals due to the CF₃ and CF₂CF₃ groups, but a broad COCF₂ resonance. At room temperature this signal decoalesces into two peaks, and at -15 °C it is an AB quartet (²J_{FF} = 308 Hz) which continues to sharpen as the temperature is lowered to -50 °C. Some additional

Table 3. Crystallographic Data for trans-Pt(PPh₂Me)₂(COC₃F₇)(Cl) (3)·0.5CH₂Cl₂ and Pt(dppe)(COC₃F₇)(Cl) (4)

	((-)		
	$3 \cdot 0.5 CH_2 Cl_2$	4		
formula	C _{30.5} H ₂₇ Cl ₂ F ₇ OP ₂ Pt	C ₃₀ H ₂₄ ClF ₇ OP ₂ Pt		
fw	870.45	825.97		
space group	$P\overline{1}$	$P2_1/n$		
a, Å	10.1465(2)	9.2231(2)		
<i>b</i> , Å	12.2675(2)	27.2944(4)		
<i>c</i> , Å	15.0834(3)	12.4868(3)		
α, deg	102.9967(6)	90		
β , deg	100.4318(9)	104.8681(8)		
γ , deg V , Å ³	114.3832(6)	90		
$V, Å^3$	1584.85(3)	3038.18(3)		
Ζ	2	4		
cryst color, habit	colorless rod	pale yellow rod		
D(calc), g cm ⁻³	1.824	1.806		
μ (Mo K α), cm ⁻¹	47.62	48.78		
temp, K	223(2)	198(2)		
diffractometer	Siemens	P4/CCD		
radiation	Mo K α ($\lambda = 0.71073$ Å)			
$R(F), \%^{a}$	4.27	2.80		
$R(wF^2), \%^a$	14.49	5.87		

^{*a*} Quantity minimized = $R(wF^2) = \sum [w(F_0^2 - F_c^2)^2 / \sum [(wF_0^2)^2]^{1/2}; R = \sum \Delta / \sum (F_0), \Delta = |(F_0 - F_c)|$



signal broadening was observed at -70 °C. The ³¹P NMR peaks for **11** remain sharp from 60 to -15 °C; they broaden slightly at -35 °C and continue to decrease in intensity as the temperature reaches -70 °C. In the ¹H NMR spectra (THF-*d*₈), the sharp singlet observed for the two aryl *o*-Me groups at δ 2.44 (22 °C, 6H) does not broaden into the baseline until -70 °C, an indication that rotation around the P–C(Mes) bond does not appear to be restricted at lower temperatures.

Similar ¹⁹F NMR decoalescence behavior resulting in AB quartets was observed at -50 °C for Pt(dppe)-(COC₃F₇)(PPho-anisyl) (**12**); in addition, two different isomers (1:1.3 ratio) were observed at this temperature by ¹⁹F and ³¹P NMR (Tables 1 and 2 and Figure 3). Variable-temperature ¹H NMR spectra are consistent with the ¹⁹F and ³¹P NMR results. At room temperature in the ¹H{³¹P} NMR spectrum (THF-*d*₈), the OMe signal is a singlet at δ 3.85; at -50 °C the peak decoalesces into two peaks at δ 4.01 and 3.82 in a 1.3:1 ratio.

The variable-temperature NMR spectra of Pt(dppe)-(COC₃F₇)(PPhIs) (**13**) are similar to those of **12**; at low temperature there is a 1.7:1 ratio of isomers (Tables 1 and 2). This behavior is also observed in the ${}^{1}H{}^{31}P{}$

^{(10) (}a) Bohle, D. S.; Jones, T. C.; Rickard, C. E. F.; Roper, W. R. *Organometallics* **1986**, *5*, 1612–1619 (b) Deeming, A. J.; Doherty, S.; Marshall, J. E.; Powell, J. L.; Senior, A. M. *J. Chem. Soc., Dalton Trans.* **1993**, 1093–1100. (c) Handler, A.; Peringer, P.; Müller, E. P. *J. Chem. Soc., Dalton Trans.* **1990**, 3725–3727. (d) Ref 1b.

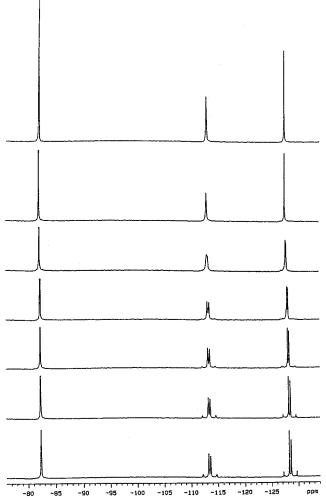


Figure 3. Variable-temperature ${}^{31}P{}^{1}H{}$ NMR spectra (THF- d_8) of Pt(dppe)(COC₃F₇)(PPh*o*-anisyl) (**12**) at the following temperatures: 60 °C (top), 22 °C, -15 °C, -34 °C, -50 °C (bottom).

NMR spectra of **13** (toluene-*d*₈). As in complex **2**, the ortho *i*-Pr Me groups give rise to a broad doublet at δ 1.19 (12H, ³*J*_{HH} = 6 Hz) and a methine signal (m, δ 4.72–4.67). Both of these signals as well as the dppe CH₂ and aryl proton peaks broaden as the temperature is lowered. At -50 °C two new methine peaks begin to grow in, and at -70 °C the signals are broad and in a ratio of approximately 1.7:1 (δ 5.03 and 4.69).

The variable-temperature NMR data for the PPhMes-F₉ analogue (14) is somewhat more complicated because of the presence of the bulky Mes-F₉ group. At -15 °C, the signal for its equivalent ortho CF₃ groups decoalesces into two peaks at δ –54.8 and –56.2, presumably due to restricted rotation around the $P-C(Mes-F_9)$ bond, and the two CF₂ resonances also broaden and split into two peaks at δ -111.6 and -112.0 (COCF₂) and δ -127.0 and -127.2 (CF₂CF₃). The ¹⁹F NMR spectrum at -70 °C is complicated (Table 2). One of the two peaks due to the ortho CF_3 group splits; it is unclear if these are two different peaks at δ –54.1 and –54.4 or simply P-F coupling of 77 Hz. The other peak due to the ortho CF₃ group is slightly broad. Decoalesence into two peaks of different intensities (ca. 1:5) is also seen for the para CF₃ signal and the CF₂CF₃ group. The α CF₂ signal is a broad multiplet, and the β CF₂ resonance is an apparent AB quartet. The low-temperature ³¹P NMR spectra, however, do not differ much from those at room temperature (Table 1), and ¹H NMR spectra were not particularly informative.

As shown in Figure 4, the low-temperature ¹⁹F NMR spectra of the higher-symmetry complex Pt(dppe)-(COC₃F₇)(PPh₂) (**15**) are similar to those observed for **11–14**, with AB quartet signals observed for both CF₂ groups at -40 °C. The ³¹P spectrum does not change at this temperature. The dppe CH₂ protons appear as two multiplets at δ 2.32–2.30 and δ 2.18–2.13 in the ¹H-{³¹P} NMR spectrum (THF-*d*₈) at room temperature.

Figure 4. Variable-temperature ¹⁹F NMR spectra (THF- d_8) of Pt(dppe)(COC₃F₇)(PPh₂) (**15**) at the following temperatures: 25 °C (top), 12 °C, -5 °C, -25 °C, -40 °C, -60 °C, -70 °C (bottom).

These peaks start to broaden at -5 °C and coalesce into one broad peak at -22 °C. The broad peak becomes sharper at lower temperatures; at -60 °C there are three signals at δ 2.64–2.60 (1H), 2.40–2.36 (1H), and 2.08–2.04 (2H) in the ¹H{³¹P} NMR spectrum.

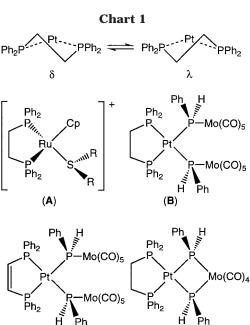
Measurement of the coalescence temperatures in the multinuclear NMR spectra of these complexes provides approximate free energies of activation for the dynamic processes.¹¹ The results are shown in Table 4. There is good agreement between data obtained from spectra of different nuclei, and the barriers (ca. 11–13 kcal/mol) are similar in this series of perfluoroacyl complexes.

Dynamic Processes. The perfluoroacyl groups in phosphido complexes **11–14** were intended to serve as ¹⁹F NMR spectroscopic probes of phosphorus inversion. As described briefly in the Introduction, the diastereotopic fluorine nuclei in a CF₂ group are expected to have different NMR chemical shifts if inversion is slow on the NMR time scale, while rapid phosphorus inversion through a planar transition state makes them equivalent. As foreseen, the ¹⁹F NMR signals due to the CF₂ groups in these compounds are singlets in the high-

⁽¹¹⁾ Friebolin, H. In *Basic One- and Two-Dimensional NMR Spectroscopy*, 2nd ed.; VCH: New York, 1993; pp 287–314. See the Experimental Section for more details and error analysis.

 Table 4. Variable-Temperature NMR Data for Perfluoroacyl Pt(II) Phosphido Complexes^a

	5	· /			
complex	resonance ^b	$\Delta \nu$ (Hz) ^c	J_{AB} (Hz) ^d	<i>T</i> _c (K)	$\Delta G_{\rm c}^{\pm}$ (kcal/mol)
11	$COCF_2$	818	308	295	12.7
12	$\mathrm{COC}F_2$ (a)	367	313	253	10.9
	$COCF_2$ (b)	621	306	253	10.9
	CF_2CF_3	367	310	263	11.4
	PPh(o-An)	2089		283	11.8
	cis dppe P	219		243	11.1
	trans dppe P	255		243	11.1
	OMe	57		243	11.8
13	$COCF_2$	818	310	278	11.9
15	$COCF_2$	282	308	263	11.4
	CF_2CF_3	282	308	263	11.4


^{*a*} Solvent: THF-*d*₈ for **11**, **12** and **15**, toluene-*d*₈ for **13**. Estimated errors are different for each resonance; the largest estimated errors are on the order of 5 Hz in $\Delta \nu$ and *J*_{AB}, 10 °C in *T*_c, and 0.5 kcal/mol in ΔG_c^* . Cis and trans are defined with respect to the phosphido ligand. ^{*b*}The italics indicate ¹⁹F, ³¹P, or ¹H nuclei. ^{*c*} $\Delta \nu$ values from slow-exchange spectra at 248 K (**11**), 223 K (**12**), 203 K (**13** and **15**). ^{*d*}*J*_{FF} in CF₂ from slow-exchange ¹⁹F NMR spectra.

temperature limit, consistent with rapid inversion at phosphorus. In the low-temperature spectra, AB quartets are observed for the fluorine signals, consistent with slow inversion on the NMR time scale. The barriers calculated for these dynamic processes, ca. 11–13 kcal/mol, are similar to those reported for phosphorus inversion in other transition metal phosphido complexes.¹

However, the observation of singlet resonances in the high-temperature $^{19}\mathrm{F}$ NMR spectra might be due to accidental chemical shift equivalence of the diastereotopic CF₂ fluorine nuclei, as observed in the $^{19}\mathrm{F}$ NMR spectra of two of the four cations (**6** and **9**). In this case, the low-temperature observations of inequivalent fluorines must be explained not by slow inversion, but by a different fluxional process.

Several dynamic processes could give rise to the observed ¹⁹F NMR AB patterns. It is convenient to discuss each in terms of the highest symmetry conformation possible in these perfluoroacyl phosphido complexes, in which a plane of symmetry lies in the square plane of the molecule. The diastereotopic fluorines in a CF₂ group are equivalent in the high-symmetry conformation when the carbonyl group is in the square plane and the fluorine nuclei of each CF₂ group are positioned above and below the plane. This perfluoroacyl geometry should be accessible on the NMR time scale unless there is restricted rotation about the Pt–C or C–C bond, which seems unlikely, given the ca. 4 kcal/mol rotational barrier in C_2F_6 .¹²

Slow interconversion between the two isomers (δ and λ) that are possible due to different dppe ring conformations (Chart 1) could remove the effective (square) plane of symmetry and make the fluorines of a CF₂ group inequivalent. However, literature reports suggest that the barrier to this process is lower than the ones we observe. Thus, $\delta - \lambda$ interconversion in the ruthenium complexes [Ru(Cp)(dppe)(SR₂)]⁺ (R = Ph, Et; Chart 1, **A**) was found to have a barrier less than ca. 7 kcal/mol.¹³

Similarly, Deeming and Doherty rejected $\delta - \lambda$ interconversion as a possible dynamic process to account for the low-temperature ³¹P NMR observations in *meso*-Pt-(dppe)(μ -PPhH)₂{Mo(CO)₅}₂ (**B**, Chart 1).¹⁴ For example, the analogous complex Pt(Ph₂PCH=CHPPh₂)(μ -PPhH)₂-{Mo(CO)₅}₂ (**C**, Chart 1) exhibited similar fluxional behavior, although $\delta - \lambda$ interconversion is impossible with this rigid ligand. Consistent with these precedents, no evidence of dynamic behavior was found in the low-temperature ¹⁹F NMR spectrum of Pt(dppe)(COC₃F₇)-(Cl) (**4**).

(**C**)

 (\mathbf{D})

The ³¹P NMR observations on **B** and **C** were ascribed to restricted rotation around the Pt– μ -P bond. This conclusion was supported by the lack of dynamic behavior observed in Pt(dppe)(μ -PPhH)₂{Mo(CO)₄} (**D**, Chart 1), where the single Mo center bridges the two phosphido ligands, thereby restricting rotation around the Pt– μ -P bonds. Hindered rotations similar to those observed in **B** and **C** have been observed in related complexes containing M- μ -PR₂ ligands.¹⁵

Similar slow rotation about Pt-P bonds may be occurring at low temperature in phosphido complexes **11–15**. In the perfluoroacyl complex with the highest symmetry, diphenylphosphido compound **15**, the fluorine nuclei of a CF_2 group can become equivalent at high temperature by rotation about the Pt-P bond; the phosphorus phenyl groups become equivalent when the P lone pair is in the square plane. Phosphorus inversion can also make the fluorines equivalent via the transition state in which the PC_2 unit is either coplanar with or perpendicular to the Pt square plane. Note that this requires Pt-P rotation to be unhindered so that the planar phosphido group can occupy the square plane of symmetry. The low-temperature ¹⁹F NMR results for

⁽¹²⁾ Gallaher, K. L.; Yokozeki, A.; Bauer, S. H. J. Phys. Chem. 1974, 78, 2389-2395.

⁽¹³⁾ Ohkita, K.; Kurosawa, H.; Hirao, T.; Ikeda, I. J. Organomet. Chem. **1994**, 470, 179-182.

⁽¹⁴⁾ Deeming, A. J.; Doherty, S. *Polyhedron* 1996, *15*, 1175–1190.
(15) (a) Deeming, A. J.; Cockerton, B. R.; Doherty, S. *Polyhedron* 1997, *16*, 1945–1956. (b) Dobbie, R. C.; Mason, P. R. *J. Chem. Soc., Dalton Trans.* 1976, 189–191. (c) Maassarani, F.; Davidson, M. F.; Wehman-Ooyevaar, I. C. M.; Grove, D. M.; van Koten, M. A.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. *Inorg. Chim. Acta* 1995, *235*, 327–338.

15 thus require that *both* Pt–P rotation and P inversion be slow on the NMR time scale at low temperature.¹⁶

Since the aryl groups in unsymmetrical phosphido complexes 11–14 are bulkier than phenyl, it is likely that Pt-P(Ph)(Ar) rotation is also slow on the NMR time scale at low temperature for those compounds.¹⁷ In these cases, inversion at phosphorus can make the fluorines of a CF_2 group equivalent only if the planar PC_2 unit of the phosphido group can occupy the square plane of the molecule. Thus, if restricted rotation about the Pt-P bond makes this impossible, rapid inversion may still occur, but the fluorine nuclei of a CF_2 group are inequivalent. In other words, unlike the situation for symmetrical PPh₂ complex **15**, Pt–P rotation alone cannot make the fluorines of a CF₂ group equivalent in 11–14; P inversion is required to do this. Therefore, the observation in these cases of CF₂ singlet resonances in the ¹⁹F NMR spectra at room temperature or above requires that P inversion is rapid on the NMR time scale at these temperatures. By extension, this process is also likely to be rapid for 15 at room temperature, although we cannot reach this conclusion from the data for 15 in isolation (that is, P inversion could have a high barrier for 15, as long as Pt-P rotation was rapid at room temperature).

With these ideas in mind, it is possible to rationalize the observed low-temperature spectra of complexes 11-14. For (o-anisyl)phenylphosphido complex 12, the simplest explanation (A) for the observation of inequivalent fluorines (¹⁹F NMR) and of two different isomers is that both phosphorus inversion and Pt-P rotation are slow on the NMR time scale at low temperature. In this case, the two observed isomers are diastereomers in which either the P-Ph or the P-anisyl group is close in space to the perfluoroacyl ligand. These isomers would be interconverted by a combination of Pt-P rotation and P inversion. The lack of symmetry of the anisyl group means that other combinations of dynamic processes could explain the spectroscopic observations. First, slow inversion at phosphorus plus slow rotation about the P-C(anisyl) bond (B) would give two diastereomers that differ in the position of the anisyl group. Second, slow Pt–P rotation plus slow P–C rotation (C) could give two analogous isomers, with the proviso (see above) that the PC_2 unit is not in the square plane. Due to its simplicity and in analogy with 13 and 14 (see below), we favor explanation A above.

If both P inversion and Pt-P rotation are slow in **11**, **13**, and **14**, we would also expect to see two different isomers. Therefore, the data for mesitylphosphido complex **11**, in which only one isomer is observed, are puzzling. They could be explained if one of the expected diastereomers were much higher in energy than the other, so it is not observed, i.e., if the Mes group is preferentially oriented close to the perfluoroacyl group. Alternatively, slow Pt-P rotation, which prevents the PPh(Mes) group from entering the square plane, would make the CF₂ fluorines inequivalent even if inversion were fast on the NMR time scale, as discussed for **15**.

For isityl- and fluoromesitylphosphido complexes **13** and **14**, the low-temperature NMR spectra are not as well-resolved as for **11**, **12**, and **15**. However, in both these cases, there is evidence for the existence of two low-temperature diastereomers, as is clear for anisyl complex **12**. As in that case, the simplest explanation of these observations is that both P inversion and Pt–P rotation are slow at low temperature. Although the ¹⁹F NMR spectrum at -15 °C shows that rotation about the P–C(Mes-F₉) bond in **14** is slow, the symmetry of the Mes-F₉ group means that this process cannot give rise to the two isomers seen at this temperature. With these extremely bulky aryl groups, we cannot, however, rule out other conformational equilibria which might also lead to the inequivalence of the CF₂ fluorines.

According to these analyses, the dynamic processes for which barriers were extracted from the NMR spectra involve a combination of phosphorus inversion and Pt-P rotation. We cannot determine the relative contributions from each of these processes to the overall barriers, but we conclude that phosphorus inversion in these complexes has a maximum barrier of ca. 11-13 kcal/mol. A referee called this conclusion and those of the accompanying article "intrinsically flawed since the inversion process is coupled with rotation about the Pt-PRR' bond. This arises due to the fact that these systems contain cis-bidentate diphosphine ligands in a square-planar array". However, this problem is not unique to square planar systems; it also arises in, for example, octahedral^{1c} and pseudo-tetrahedral (threelegged piano stool)^{1a,b} phosphido complexes. The referee also commented that "all of the data are not definitive unless the assumption that rotation is barrierless is made". In our view, the importance of these results is not the exact value of the phosphorus inversion barriers, but the fact that they are so much lower than the ones observed in tertiary phosphines. We cannot determine if rotation occurs through the pyramidal or the planar form of the phosphido ligand. It may, however, be possible to obtain "pure" inversion barriers in related systems by restricting the rotation of metal phosphido ligands.


Why are inversion barriers in these platinum(II) phosphido complexes and the ones reported in the accompanying article so low? Our previously reported X-ray structures of platinum(II) phosphido complexes confirm that the geometry at phosphorus is pyramidal.⁴ The transition state for pyramidal inversion presumably includes a trigonal planar phosphido P with a lone pair in a p-orbital. For inversion barriers to be low, the energy difference between the planar transition state and the pyramidal ground state must be relatively small.

The barrier to pyramidal inversion in tertiary phosphines is greatly reduced by the presence of an electropositive substituent on phosphorus.¹⁸ For example, the inversion barriers in P(Ph)(*i*-Pr)(EMe₃) (E = Si, Ge, Sn) are at least 10 kcal/mol lower than the inversion barrier in P(Ph)(Me)(CMe₃). Mislow and co-workers suggested that the electropositive Si, Ge, and Sn substituents increase s-character in the P–E bond, which results in a concomitant increase in the p-character of the lone

⁽¹⁶⁾ Alternatively, slow Pt–P rotation, which prevents the PPh_2 group from entering the square plane, would make the CF_2 fluorines inequivalent even if inversion were fast on the NMR time scale.

⁽¹⁷⁾ Restricted rotation around the Pt-phosphido bond may also account for the dynamic process that is apparent in the low-temperature ³¹P NMR spectrum of Pt(dppe)(Me)(PPhIs) (**2**).

⁽¹⁸⁾ Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. **1971**, 93, 773–774.

pair. Since the lone pair occupies an orbital of essentially pure p-character in the planar transition state, the energy difference between the ground state and the transition state is reduced.¹⁹ Although Pt(II) is an electropositive substituent, our crystallographic and ³¹P NMR results are consistent with *low* s-character in the Pt–P bonds. This should lead to a high inversion barrier, due to the rehybridization energy necessary to reach the sp² transition state.

Low inversion barriers in early metal transition metal phosphido complexes are often rationalized in terms of stabilization of the planar transition state by donation of the lone pair of electrons to an empty d-orbital on the metal. For example, the X-ray structure of Hf(Cp)₂-(PEt₂)₂ shows two distinct bonding modes for the Hf-PEt₂ ligand.^{1f} One is pyramidal with a Hf-PEt₂ bond length of 2.682(1) Å, and the other is planar with a Hf-PEt₂ bond length of 2.488(1) Å. The room-temperature ³¹P NMR spectra for a series of Hf and Zr complexes show a singlet, consistent with rapid interconversion of the pyramidal and planar phosphido ligands, and the barrier to phosphido interconversion in $Hf(Cp)_2(PCy_2)_2$ was found to be 6.0 ± 0.2 kcal/mol. A theoretical study for a series of Ti(IV) phosphido complexes also cites phosphido to metal π -interaction as an important contribution to stabilization of the planar transition state in early metal phosphido complexes.^{1j}

However, stabilization of the planar transition state through interaction of the phosphido lone pair with d-orbitals on the metal cannot be invoked in these d⁸ Pt(II) complexes, as the metal d-orbitals of appropriate symmetry are filled. In fact, compared to other transition metal phosphido complexes, one might expect Pt-(II) phosphido complexes to show increased inversion barriers due to unfavorable interactions between filled d-orbitals on platinum and the lone pair of electrons on phosphorus. This type of unfavorable metal–ligand antibonding π -interaction has been suggested to explain the lack of terminal oxo complexes of the late transition metals.²⁰

However, in the related d⁸ Rh(I) terminal phosphido complex Rh(bupp₂Ph₄)(PCy₂) (Chart 2, bupp₂Ph₄ = (*t*-Bu)P(CH₂CH₂CH₂PPh₂)₂; Cy = cyclo-C₆H₁₁), based on the ³¹P NMR chemical shift of the phosphido ligand (δ 186) and the large J_{Rh-P} (154 Hz) as compared to the diphenylphosphido complex Rh(bupp₂Ph₄)(PPh₂) (δ 26, J_{Rh-P} = 92 Hz), Dahlenburg et al. suggested some degree of Rh–P double-bond character.²¹ A Rh(p₂)–P(p) π -interaction was proposed on the basis of MO calculations for the square planar model complex Rh(PH₃)₃-(PH₂) with an sp²-hybridized phosphido ligand in the RhL₃ plane.

A similar bonding picture has been invoked for iodideto-platinum π -bonding in the Pt(II) cation [Pt(P(*i*-Pr)₃)₂- $(H)(\eta^{1}-IPh)][BAr_{f}]$ (Chart 2, $BAr_{f} = B(3,5-(CF_{3})_{2}C_{6}H_{3})_{4}).^{22}$ Kubas and co-workers proposed a π -bonding interaction between the iodide lone pair in a p_z -orbital and a Pt MO formed by mixing of the filled $Pt(d_{yz})$ orbital and the empty Pt(pz) orbital.²³ This interaction was proposed to outweigh the filled $Pt(d_{yz})$ -iodide lone pair repulsion to give a net stabilization of about 10 kcal/mol and overcome steric repulsion between the phenyl and isopropyl groups, which are unusually close in the solid state. It was further suggested that the iodide lone pair electrons are able to interact favorably with Pt(II) pand d-orbitals because they are higher in energy than those of analogous alkoxide, hydroxide, or amido ligands and are, thereby, better suited for overlap with these Pt(II) orbitals.

In our system, a similar interaction between the phosphorus lone pair and the d_{yz} - and p_z -orbitals of Pt-(II) may be responsible for planar transition state stabilization and, consequently, the reduced inversion barriers observed for these perfluoroacyl phosphido complexes.

Conclusion

We prepared Pt(dppe)(R)(PPhR') complexes that contain either diastereotopic methyl groups on the phosphido substituent or diastereotopic CF₂ fluorines on a Pt-bound perfluoroacyl ligand. NMR analysis of Pt-(dppe)(Me)(PPhi-Bu) (1) and Pt(dppe)(Me)(PPhIs) (2) was inconclusive, but dynamic behavior was observed for the complexes Pt(dppe)(COC₃F₇)(PPhAr) (11-15). The fluxional behavior in the perfluoroacyl complexes 11–15 is consistent with the operation of two dynamic processes: rotation around the Pt-phosphido bond and inversion at the phosphido phosphorus. To explain the observed NMR data, both processes must be fast at room temperature in complexes 11-15. Therefore, we conclude that the calculated energy barriers (ca. 11-13 kcal/mol) for these processes provide an upper limit for the barrier to pyramidal inversion in these complexes, consistent with phosphido inversion barriers calculated for other transition metal phosphido complexes. The reduced inversion barriers in these Pt(II) complexes may be explained by interaction of the phosphido lone pair with the d_{yz} and p_z platinum orbitals, which could lower the energy of the planar transition state relative to the pyramidal ground state.

Experimental Section

General Details. Unless otherwise noted, all reactions and manipulations were performed in dry glassware under a nitrogen atmosphere at 20 °C in a drybox or using standard Schlenk techniques. Petroleum ether (bp 38-53 °C), ether, THF, and toluene were dried and distilled before use from Na/benzophenone. CH₂Cl₂ and acetonitrile were distilled from CaH₂.

Unless otherwise noted, all NMR spectra were recorded on a Varian 300 MHz spectrometer. ¹H and ¹³C NMR chemical

⁽¹⁹⁾ Mislow, K. Trans. N. Y. Acad. Sci. 1973, 35, 227-242.

 ⁽²⁰⁾ Maslow, R. Hands, N. I. Acad. Sci. 1976, 53, 521 (20)
 (20) Mayer, J. M. Comments Inorg. Chem. 1988, 8, 125–135.
 (21) Dahlenburg, L.; Hock, N.; Berke, H. Chem. Ber. 1988, 121,

⁽²¹⁾ Dahlenburg, L.; Hock, N.; Berke, H. *Chem. Ber.* **1988**, *121* 2083–2093.

⁽²²⁾ Butts, M. D.; Scott, B. L.; Kubas, G. J. J. Am. Chem. Soc. 1996, 118, 11831–11843.

⁽²³⁾ Dahlenburg and co-workers (ref 21) include similar mixing with a d-orbital of this symmetry, but use a slightly different coordinate system.

shifts are reported relative to Me₄Si and were determined by reference to the residual ¹H or ¹³C solvent peaks. ³¹P NMR chemical shifts are reported relative to H₃PO₄ (85%) used as an external reference. ¹⁹F NMR chemical shifts are reported relative to CFCl₃ used as an external reference. Unless otherwise noted, peaks in NMR spectra are singlets. Coupling constants are reported in hertz. Infrared spectra were recorded using KBr pellets on a Perkin-Elmer 1600 series FTIR machine. Elemental analyses were provided by Schwarzkopf Microanalytical Laboratory. Unless otherwise noted, reagents were from commercial suppliers. The following compounds were made by the literature procedures: Pt(dppe)(Me)(OMe),³ PHPhIs,⁵ Pt(PPh₂Me)₄,⁷ PHPh*o*-anisyl,²⁴ PH(Ph)(Mes).²⁵

Pt(dppe)(Me)(PPhIs) (2). To a stirred slurry of Pt(dppe)-(Me)(OMe) (98 mg, 0.15 mmol) in THF (5 mL) was added PHPhIs (57 mg, 0.18 mmol) in THF (2 mL). The reaction mixture immediately became homogeneous, and the color turned bright orange. The solvent was removed under vacuum, and the yellow residue was washed twice with petroleum ether (2 mL portions). The solid was dried and dissolved in a minimum amount of THF. The THF solution was filtered, and petroleum ether was added. Cooling of this solution to -25 °C overnight gave 92 mg (65%) of a yellow solid. ¹H NMR (toluened₈): δ 7.57–7.52 (m, 8H, Ar), 7.22–7.16 (m, 4H, Ar), 7.05– 6.99 (m, 12H, Ar), 6.74-6.68 (m, 3H, Ar), 4.79-4.68 (m, 2H, o-CHMe₂), 2.85 (septet, ${}^{3}J_{\text{HH}} = 7$, 1H, p-CHMe₂), 1.86-1.76 (m, 4H, dppe CH₂), 1.27 (d, ${}^{3}J_{HH} = 7$, 6H, *p*-CHMe₂), 1.21 (d, ${}^{3}J_{\text{HH}} = 7, 12\text{H}, \text{ o-CH}Me_{2}, 0.89-0.83 \text{ (m, } {}^{2}J_{\text{Pt-H}} = 67, 3\text{H}, \text{Pt-}$ Me). ${}^{13}C{}^{1}H$ NMR (toluene- d_8): δ 155.3–155.1 (m, quat. Ar), 147.7 (quat. Ar), 133.8-133.1 (m, Ar), 132.9 (quat. Ar), 132.4 (quat. Ar), 132.0 (quat. Ar), 131.5 (quat. Ar), 130.5 (Ar), 130.1 (År), 128.6 (År), 128.5 (År), 128.3 (År), 128.2 (År), 126.6-126.5 (m, Ar), 125.4 (quat. Ar), 125.1 (quat. Ar), 124.7 (quat. Ar), 123.3 (Ar), 121.3-121.2 (m, Ar), 34.6 (*p*-*C*HMe₂), 33.9 (d, ³*J*_{PC} $= 17, o-CHMe_2$, 32.6-31.9 (m, dppe CH₂), 29.5-28.9 (m, dppe CH₂), 25.7 (*o*-CHMe₂), 24.4 (*p*-CHMe₂), 2.7 (dd, ${}^{2}J_{PC} = 83, 8$, Pt-Me, Pt satellites were not resolved). ³¹P{¹H} NMR (toluene d_8): δ 49.3 (d, ${}^2J_{PP} = 174$, ${}^1J_{Pt-P} = 1969$, P trans to PPhIs), 45.4 (${}^{1}J_{Pt-P} = 1915$, P trans to Me), -25.3 (d, ${}^{2}J_{PP} = 174$, ${}^{1}J_{Pt-P}$ = 1118, PPhIs). IR: 3055, 2955, 2866, 1483, 1461, 1427, 1383, 1305, 1183, 1100, 1016, 877, 822, 744, 694, 644, 533, 488 cm⁻¹. Anal. Calcd for C₄₈H₅₅P₃Pt: C, 62.66; H, 6.04. Found: C, 62.10; H, 5.72.

trans-Pt(PPh2Me)2(COC3F7)(Cl) (3). To a stirred suspension of $Pt(PPh_2Me)_4$ (656 mg, 0.656 mmol, recrystallized from toluene/petroleum ether at -25 °C) in petroleum ether (80 mL) was added dropwise a solution of C_3F_7COCl (300 µL, 2.01 mmol, distilled) in petroleum ether (5 mL) over a period of 15 min. The reaction mixture was allowed to stir at room temperature for 2 h, during which time the bright yellow solid gradually turned white. The solvent was removed via cannula filter, and the white solid was washed twice with petroleum ether (20 mL portions). Recrystallization from THF/petroleum ether at -25 °C gave 418 mg (77%) of product as a white solid. Further recrystallization from CH2Cl2/EtOH/ether gave crystals suitable for X-ray diffraction. ¹H NMR (CDCl₃): δ 7.70 (broad, 8H, Ar), 7.44 (12H, Ar), 2.17 (apparent t, J = 4, ${}^{3}J_{Pt-H}$ = 32, 6H, P–Me). ³¹P{¹H} NMR (CDCl₃): δ 6.5 (t, ²J_{PF} = 5, ${}^{1}J_{\text{Pt-P}} = 2916$). ${}^{19}\text{F}$ NMR (CDCl₃): δ -81.2 (t, $J_{\text{FF}} = 9$, CF₃), -111.5 to -111.6 (m, COCF₂CF₂), -127.6 to -127.7 (m, COCF₂CF₂). IR: 3057, 2920, 1691, 1672 (C=O), 1485, 1436, 1334, 1209, 1183, 1105, 894, 734, 692, 659, 505, 487, 456 cm⁻¹. Anal. Calcd for C₃₀H₂₆ClF₇OP₂Pt: C, 43.51; H, 3.17. Found: C, 43.35; H, 3.17.

Pt(dppe)(COC₃F₇)(Cl) (4). To a stirred solution of *trans*-Pt(PPh₂Me)₂(COC₃F₇)(Cl) (350 mg, 0.423 mmol) in THF (10 mL) was added a solution of dppe (202 mg, 0.507 mmol) in THF (5 mL). The reaction mixture immediately turned yellow. The solvent was removed under vacuum, and the yellow residue was washed twice with petroleum ether (5 mL portions). The solid was dissolved in CH₂Cl₂ and filtered, and ether was added. Cooling of this solution to -25 °C overnight yielded 245 mg (70%) of product. Subsequent recrystallization from CH₂Cl₂/ether gave crystals suitable for X-ray diffraction. ¹H NMR (CD₂Cl₂): δ 7.87–7.80 (m, 4H, Ar), 7.73–7.67 (m, 4H, Ar), 7.55-7.47 (m, 12H, Ar), 2.54-2.40 (m, 2H, dppe CH₂), 2.18–2.02 (m, 2H, dppe CH₂). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): δ 134.0-133.4 (m, Ar), 132.5-132.4 (m, quat. Ar), 131.9-131.8 (m, quat. Ar), 129.6-128.9 (m, Ar), 127.5 (quat. Ar), 126.7 (quat. Ar), 31.8–31.1 (m, dppe CH₂), 24.9–24.4 (m, dppe CH₂). The carbons of the COC₃F₇ ligand were not resolved. IR: 3059, 2916, 1662 (C=O), 1482, 1435, 1339, 1225, 1201, 1177, 1106, 876, 825, 747, 716, 706, 690, 535 cm⁻¹. Anal. Calcd for C₃₀H₂₄-ClF7OP2Pt: C, 43.62; H, 2.93. Found: C, 43.51; H, 2.92

[Pt(dppe)(COC₃F₇)(NCMe)][BF₄] (5). To a slurry of Pt-(dppe)(COC₃F₇)(Cl) (300 mg, 0.363 mmol) in THF (5 mL) and CH₃CN (3 mL) was added AgBF₄ (71 mg, 0.36 mmol) in CH₃-CN (2 mL). Immediate formation of AgCl occurred as indicated by a white precipitate. The reaction mixture was stirred vigorously overnight. The cloudy gray reaction mixture was filtered through a fine frit with Celite to give a yellow filtrate. The solvent was removed under vacuum, and the pale yellow residue was washed with petroleum ether (three 5 mL portions) and dried to give 305 mg (91%) of crude product, which was pure enough to use in subsequent reactions. A sample for elemental analysis was recrystallized first from THF/petroleum ether at -25 °C and then from CH₂Cl₂/ether at -25 °C to give a yellow powder. ¹H NMR (CDCl₃): δ 7.34–7.16 (broad m, 20H, Ar), 2.43-2.31 (m, 2H, dppe CH₂), 2.14-1.98 (m, 2H, dppe CH₂), 2.00 (3H, NCMe). IR: 3055, 2933, 2300 (CN), 1672 (C=O), 1483, 1439, 1411, 1339, 1205, 1111, 1061 (BF₄), 822, 750, 711, 688, 533, 489 cm⁻¹. Anal. Calcd for C₃₂H₂₇NBF₁₁-OP₂Pt: C, 41.85; H, 2.96; N, 1.53. Found: C, 41.19; H, 2.96; N, 1.33.

[Pt(dppe)(COC₃F₇)(PHPhMes)][BF₄] (6). To a solution of [Pt(dppe)(COC₃F₇)(NCMe)][BF₄] (263 mg, 0.286 mmol) in THF (5 mL) was added PHPhMes (73 mg, 0.32 mmol) in THF (2 mL). The reaction mixture turned slightly darker yellow, and the solvent was removed under vacuum. The yellow residue was washed twice with petroleum ether (3 mL portions) and dried to give 305 mg (96%) of crude product. Double recrystallization from THF/petroleum ether at -25 °C gave analytically pure light yellow powder. ¹H NMR (CD₂Cl₂): δ 7.83-7.35 (broad m, 22H, Ar), 7.38-7.17 (m, 4H, Ar), 7.09 (dm, ${}^{1}J_{\rm PH} = 390, 1H, P-H$), 6.82 (2H, Ar), 2.70–2.17 (m, 4H, dppe CH₂), 2.32 (6H, o-Me), 2.25 (3H, p-Me). IR: 3055, 2922, 2322 (w, P-H), 1672 (C=O), 1483, 1433, 1411, 1377, 1333, 1227, 1205, 1055 (BF₄), 1000, 883, 850, 816, 744, 694, 533, 483 cm⁻¹. Anal. Calcd for C₄₅H₄₁BF₁₁OP₃Pt: C, 48.89; H, 3.74. Found: C, 49.06; H, 3.66.

[Pt(dppe)(COC₃F₇)(PHPho-anisyl)][BF₄] (7). To a solution of [Pt(dppe)(COC₃F₇)(NCMe)][BF₄] (266 mg, 0.290 mmol) in THF (3 mL) was added PHPho-anisyl (69 mg, 0.32 mmol) in THF (2 mL). The solvent was removed under vacuum. The pale yellow residue was washed twice with petroleum ether (3 mL portions) and dried to give 266 mg (84%) of crude product. Recrystallization from THF/petroleum ether at −25 °C gave analytically pure off-white powder. ¹H NMR (CD₂-Cl₂): δ 7.75–7.51 (m, 14H, Ar), 7.44–7.35 (m, 7H, Ar), 7.31–7.25 (m, 5H, Ar), 6.97–6.93 (m, 1H, Ar), 6.83–6.79 (m, 1H, Ar), 6.65–6.58 (m, 1H, Ar), 6.39 (dm, ¹J_{PH} = 410, 1H, P–H), 4.03 (3H, OMe), 2.71–2.34 (m, 4H, dppe CH₂). IR: 3051, 2354 (w, P–H), 1670 (C=O), 1474, 1436, 1338, 1278, 1218, 1060 (BF₄), 907, 869, 820, 749, 695, 537, 488 cm⁻¹. Anal. Calcd for C₄₃H₃₇BF₁₁O₂P₃Pt: C, 47.23; H, 3.41. Found: C, 47.46; H, 3.25.

[Pt(dppe)(COC₃ F_7)(PHPhIs)][BF₄] (8). To a stirred solution of Pt(dppe)(COC₃ F_7)(Cl) (177 mg, 0.214 mmol) and PHPhIs

⁽²⁴⁾ Vedejs, E.; Donde, Y. *J. Am. Chem. Soc.* **1997**, *119*, 9293–9294. (25) Wicht, D. K.; Kourkine, I. V.; Kovacik, I.; Glueck, D. S.; Concolino, T. E.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L. *Organometallics*, accepted for publication.

(74 mg, 0.24 mmol) in CH₂Cl₂ (5 mL) was added AgBF₄ (42 mg, 0.21 mmol) in CH₃CN (2 mL). Immediate formation of AgCl was observed, and the reaction mixture was stirred vigorously for 30 min at room temperature. Filtration and removal of solvent under vacuum gave a yellow residue. The solid was washed twice with petroleum ether (3 mL portions) and dissolved in THF. The solution was filtered, and petroleum ether was added. Cooling of this solution to -25 °C overnight gave 215 mg (84%) of product. ¹H NMR (CDCl₃): δ 7.96-7.92 (m, 2H, Ar), 7.81-7.31 (m, 15H, Ar), 7.24-7.01 (m, 8H, Ar), 6.93-6.91 (m, 2H, Ar), 6.76 (dm, ${}^{1}J_{PH} = 388$, 1H, P-H), 2.97-2.93 (m, 3H, dppe CH₂ and p-CHMe₂), 2.86-2.79 (m, 2H, o-CHMe₂), 2.37-2.30 (m, 2H, dppe CH₂), 1.17 (d, ³J_{HH} = 7, 6H, *p*-CHMe₂), 0.95 (d, ${}^{3}J_{HH} = 7$, 6H, *o*-CHMe₂), 0.76 (broad, 6H, *o*-CHMe₂). ¹³C{¹H} NMR (CDCl₃): δ 153.6-153.5 (m, quat. Ar), 152.6-152.5 (m, quat. Ar), 134.6-134.4 (m, Ar), 133.9-133.6 (m, Ar), 133.3-133.1 (m, Ar), 132.4-132.1 (m, Ar), 131.7-131.6 (m, Ar), 130.0-129.8 (m, Ar), 129.4-129.0 (m, Ar), 127.0-124.3 (m, quat. Ar), 123.1-122.9 (m, Ar), 117.8-117.7 (m, quat. Ar), 117.0-116.9 (m, quat. Ar), 34.2 (p-CHMe₂), 33.6 (o-CHMe₂), 33.5 (o-CHMe₂), 27.8-26.8 (m, dppe CH₂), 24.2 (p-CHMe₂), 23.6 (o-CHMe₂), 23.5 (o-CHMe₂). The carbons of the COC₃F₇ ligand were not resolved. IR: 3044, 2955, 2866, 2322 (w, P-H), 1672 (C=O), 1483, 1463, 1437, 1336, 1227, 1208, 1184, 1105, 1057 (BF4), 998, 879, 822, 746, 706, 692, 531, 484 cm⁻¹. Anal. Calcd for C₅₁H₅₃BF₁₁OP₃Pt·THF: C, 52.34; H, 4.88. Found: C, 52.49; H, 4.61. The presence of THF in the analytical sample was confirmed by ¹H NMR.

Synthesis of PHPhMes-F₉ and [Pt(dppe)(COC₃F₇)-(PHPhMes-F₉)][BF₄] (9). LiMes-F₉ was prepared according to the reported procedure,²⁶ and the secondary phosphine was prepared by a modification of the procedure for PH₂Mes-F_{9.}²⁷ To a Schlenk flask containing 2,4,6-tris(trifluoromethyl)benzene (3.23 g, 11.4 mmol) in ether (10 mL) was transferred n-BuLi (7.9 mL, 1.6 M in hexanes, 12.6 mmol) dropwise via cannula. The addition was done over a period of 30 min at room temperature, and the cloudy yellow solution was stirred for an additional 30 min. A flask containing PPhCl₂ (1.7 mL. 12.6 mmol) in ether (15 mL) was fitted with an addition funnel, and the LiMes-F₉ solution was transferred to the addition funnel via cannula. The PPhCl₂ solution was cooled to -78 °C with a dry ice/acetone bath, and the lithium reagent was added to this solution dropwise over a period of 45 min. The reaction mixture was warmed to room temperature, and the solution was filtered. The remaining LiCl was washed with ether (20 mL), and the filtrates were combined. The PClPhMes-F9 solution was transferred via cannula to a cold (dry ice/acetone) gray slurry of LiAlH₄ (836 mg, 22.9 mmol) in ether (20 mL). The cold bath was removed, and the reaction mixture was stirred at room temperature for 1 h. The reaction was carefully quenched with degassed, distilled water, and then an additional 40 mL of H₂O was added. The ether layer was filtered off, and the aqueous layer was washed twice with ether (20 mL portions). The combined ether layers were dried over MgSO₄. ³¹P NMR showed the desired product and phenylphosphine (caution, STENCH). The ether and phenylphosphine were removed under vacuum to give a brownish oil. Degassed 2-propanol was added, and the yellow solution was cooled to -25 °C to give 1.04 g (23%) of PH(Ph)Mes-F₉ as a white solid in two crops. ¹H NMR (C_6D_6): δ 7.84 (2H, Ar), 7.17–7.12 (m, 2H, Ar), 7.00-6.69 (m, 3H, Ar), 5.73 (d septet, ${}^{1}J_{\rm PH} = 234$, ${}^{5}J_{\rm HF} = 4$, P–H). ${}^{31}P{}^{1}H}$ NMR (C₆D₆): $\delta - 59.0$ (septet, ${}^{4}J_{\rm PF} =$ 27 Hz). ³¹P NMR (C₆D₆): δ -59 (dm, ¹J_{PH} = 234). ¹⁹F NMR (C₆D₆): δ -58.0 (dd, ⁴J_{PF} = 27, ⁵J_{HF} = 4, *o*-CF₃), -63.7 (*p*-CF₃).

To a solution of [Pt(dppe)(COC₃F₇)(NCMe)][BF₄] (176 mg, 0.192 mmol) in THF (3 mL) was added PHPhMes-F₉ (82 mg, 0.21 mmol) in THF (2 mL). The solvent was removed under vacuum. The yellow residue was washed twice with petroleum ether (3 mL portions) and three times with ether (2 mL portions) until the sticky solid became completely insoluble in ether. Recrystallization from CH₂Cl₂/ether at -25 °C gave 162 mg (67%) of product. ¹H NMR (CD₂Cl₂): δ 8.28-8.15 (broad m, 2H, Ar), 8.01-7.94 (m, 2H, Ar), 7.78-7.24 (m, 23H, Ar), 7.22 (broad d, ${}^{1}J_{PH} = 400$, 1H, P–H), 2.81–2.41 (m, 4H, dppe CH₂). IR: 3055, 2322 (w, P-H), 1677 (C=O), 1627, 1583, 1483, 1433, 1338, 1283, 1200, 1061 (BF₄), 916, 872, 855, 816, 744, 694, 533, 483 cm⁻¹. Anal. Calcd for $C_{45}H_{32}BF_{20}OP_3Pt$: C, 42.64; H, 2.55. Found: C, 42.85; H, 2.50.

[Pt(dppe)(COC₃F₇)(PHPh₂)][BF₄] (10). To a solution of [Pt(dppe)(COC₃F₇)(NCMe)][BF₄] (176 mg, 0.192 mmol) in THF (3 mL) was added PHPh₂ (37 μ L, 0.21 mmol) via microliter syringe. The solvent was removed under vacuum. The pale vellow solid was washed twice with petroleum ether (2 mL portions) and dried to yield 167 mg (82%) of crude product. Double recrystallization from THF/petroleum ether at -25 °C gave analytically pure light yellow powder. ¹H NMR (CD₂-Cl₂): δ 7.72–7.26 (m, 30H, Ar), 6.33 (dm, ¹J_{PH} = 395, 1H, P-H), 2.70-2.33 (m, 4H, dppe CH₂). IR: 3055, 2343 (w, P-H), 1672 (C=O), 1483, 1438, 1339, 1216, 1105, 1050 (BF₄), 927, 905, 861, 822, 744, 700, 527, 477 cm $^{-1}$. Anal. Calcd for $C_{42}H_{35}\text{--}$ BF₁₁OP₃Pt: C, 47.43; H, 3.32. Found: C, 47.56; H, 3.19.

Pt(dppe)(COC₃F₇)(PPhMes) (11). To a solution of [Pt-(dppe)(COC₃F₇)(PHPhMes)][BF₄] (300 mg, 0.271 mmol) in THF (5 mL) was added LiN(SiMe₃)₂ (55 mg, 0.33 mmol) in THF (3 mL). Alternatively, the phosphine complex could be generated in situ by the addition of PHPhMes to [Pt(dppe)(COC₃F₇)-(NCMe)][BF₄] as described, identified spectroscopically, and treated with base directly. The solvent was removed under vacuum, and the yellow residue was washed with petroleum ether (three 2 mL portions). The yellow solid was extracted with ca. 50 mL of toluene and filtered through a fine frit with Celite. The filtrate was concentrated to ca. 10 mL, and petroleum ether was added. Cooling of this solution to -25 °C gave 190 mg (69%) of product in two crops. ¹H NMR (THFd₈): δ 7.74 (broad, 3H, Ar), 7.63-7.57 (m, 4H, Ar), 7.46-7.16 (m, 13H, Ar), 6.89-6.88 (m, 2H, Ar), 6.89-6.63 (m, 3H, Ar), 6.45 (2H, Ar), 2.44 (6H, o-Me), 2.36-2.24 (m, 2H, dppe CH₂), 2.18-2.05 (m, 2H, dppe CH₂), 2.10 (3H, p-Me). IR: 3055, 2922, 1661 (C=O), 1572, 1483, 1433, 1333, 1227, 1205, 1105, 1027, 1000, 883, 850, 822, 744, 694, 527, 483 cm⁻¹. Anal. Calcd for C45H40F7OP3Pt: C, 53.10; H, 3.97. Found: C, 53.27; H, 4.03.

Pt(dppe)(COC₃F₇)(PPho-anisyl) (12). To a solution of [Pt- $(dppe)(COC_3F_7)(PHPho-anisyl)][BF_4]$ (225 mg, 0.206 mmol) in THF (8 mL) was added LiN(SiMe₃)₂ (38 mg, 0.23 mmol) in THF (5 mL). The reaction mixture immediately turned bright yellow, and the solvent was removed under vacuum. The vellow residue was extracted with toluene (20 mL) and filtered through a fine frit with Celite. The filtrate was concentrated to a volume of \sim 3 mL, and petroleum ether was added. Cooling of this solution overnight at -25 °C gave 100 mg (45%) of bright yellow powder in two crops. Recrystallization from THF/ petroleum ether at -25 °C gave a sample for analysis. ¹H NMR (THF- d_8): δ 7.68 (broad, 6H, Ar), 7.41–7.21 (broad m, 16H, Ar), 6.86–6.71 (m, 5H, Ar), 6.55–6.53 (m, 1H, Ar), 6.37–6.33 (m, 1H, Ar), 3.85 (3H, OMe), 2.44-2.14 (m, 4H, dppe CH₂). IR: 3052, 1648 (C=O), 1577, 1463, 1436, 1338, 1267, 1229, 1202, 1104, 1027, 880, 815, 744, 695, 531, 488 cm⁻¹. Anal. Calcd for C₄₃H₃₆F₇O₂P₃Pt: C, 51.35; H, 3.62. Found: C, 51.20; H. 3.90.

Pt(dppe)(COC₃F₇)(PPhIs) (13). To a stirred suspension of [Pt(dppe)(COC₃F₇)(PHPhIs)][BF₄] (358 mg, 0.301 mmol) in THF (10 mL) was added LiN(SiMe₃)₂ (61 mg, 0.36 mmol) in THF (5 mL). The reaction mixture immediately became bright orange and was allowed to stir at room temperature for 15 min. The solvent was removed under vacuum, and the yelloworange residue was washed three times with petroleum ether (5 mL portions). The solid was extracted with 20 mL of toluene

⁽²⁶⁾ Carr, G. E.; Chambers, R. D.; Holmes, J. F.; Parker, D. G. J.

 ⁽²⁷⁾ Schollz, M.; Roesky, H. W.; Stalke, D.; Keller, K.; Edelmann,
 F. T. J. Organomet. Chem. 1989, 366, 73–85.

and filtered through a fine frit with Celite. The bright orange filtrate was concentrated to 5 mL, and petroleum ether was added. Cooling of this solution to -25 °C gave 237 mg (71%) of bright yellow product. ¹H NMR (toluene- d_8): δ 7.67–7.61 (m, 4H, Ar), 7.53-7.47 (m, 4H, Ar), 7.36-7.32 (m, 2H, Ar), 7.14-6.91 (m, 14H, Ar), 6.73-6.71 (m, 3H, Ar), 4.72-4.67 (m, 2H, o-CHMe₂), 2.79 (septet, ${}^{3}J_{HH} = 7$, 1H, p-CHMe₂), 1.87-1.57 (m, 4H, dppe CH₂), 1.24 (d, ${}^{3}J_{HH} = 7$, 6H, *p*-CH*Me*₂), 1.19 (broad d, ${}^{3}J_{HH} = 6$, 12H, *o*-CH*Me*₂). ${}^{13}C{}^{1}H{}$ NMR (toluened₈): δ 154.9-154.7 (m, quat. Ar), 148.3 (quat. Ar), 146.6-146.2 (m, quat. Ar), 136.6 (quat. Ar), 136.3 (quat. Ar), 135.2 (Ar), 134.9 (Ar), 134.0-133.7 (m, Ar), 131.5 (quat. Ar), 131.2 (Ar), 130.9 (quat. Ar), 130.5 (Ar), 128.8 (Ar), 128.7 (Ar), 128.3 (Ar), 128.2 (År), 126.6-126.5 (m, Ar), 125.4 (quat. Ar), 125.1 (quat. Ar), 124.7 (Ar), 121.6-121.5 (m, Ar), 34.5 (p-CHMe₂), 34.1 (d, ³*J*_{PC} = 17, *o*-*C*HMe₂), 29.5–28.8 (m, dppe CH₂), 25.8 (*o*-CH*Me*₂), 24.2 (p-CHMe2). IR: 3054, 2957, 2865, 1651 (C=O), 1579, 1482, 1462, 1436, 1414, 1335, 1225, 1204, 1104, 1026, 879, 823, 742, 694, 650, 594, 529, 484 cm⁻¹. Anal. Calcd for C₅₁H₅₂F₇OP₃Pt: C, 55.58; H, 4.77. Found: C, 55.66; H, 4.97.

Pt(dppe)(COC₃F₇)(PPhMes-F₉) (14). To a solution of [Pt-(dppe)(COC₃F₇)(PHPhMes-F₉)][BF₄] (224 mg, 0.177 mmol) in THF (5 mL) was added LiN(SiMe₃)₂ (30 mg, 0.18 mmol) in THF (3 mL). Alternatively, the phosphine complex could be generated in situ by the addition of PHPhMes-F₉ to [Pt(dppe)-(COC₃F₇)(NCMe)][BF₄] as described, identified spectroscopically, and treated with base directly. The solvent was removed under vacuum to give a dark orange residue. The residue was extracted with toluene (~ 10 mL) and filtered through a fine frit with Celite. The solvent was removed under vacuum, and the orange residue was dissolved in ether. The ether solution was filtered and concentrated under vacuum to a volume of \sim 3 mL. Petroleum ether was added, and cooling of this solution to -25 °C overnight gave 148 mg (71%) of orange-red product. ¹H NMR (toluene-*d*₈): δ 8.05 (2H, Ar), 7.51 (broad, 6H, Ar), 7.41-7.36 (m, 3H, Ar), 7.05 (broad, 6H, Ar), 6.90 (broad, 6H, Ar), 6.78-6.65 (m, 4H, Ar), 1.82-1.61 (m, 4H, dppe CH₂). IR: 3055, 1661 (C=O), 1572, 1483, 1433, 1366, 1333, 1277, 1189, 1133, 1072, 1028, 905, 883, 861, 822, 744, 700, 533, 483, 433 cm⁻¹. Anal. Calcd for $C_{45}H_{31}F_{16}OP_3Pt$: C, 45.81; H, 2.65. Found: C, 45.40; H, 2.65.

Pt(dppe)(COC₃F₇)(PPh₂) (15). To a solution of [Pt(dppe)-(COC₃F₇)(PHPh₂)][BF₄] (142 mg, 0.134 mmol) in THF (3 mL) was added LiN(SiMe₃)₂ (25 mg, 0.15 mmol) in THF (2 mL). The reaction mixture immediately became bright yellow, and the solvent was removed under vacuum. The yellow residue was washed three times with petroleum ether (1 mL portions) and dried. The yellow solid was extracted with toluene (20 mL) and filtered through a fine frit with Celite. The filtrate was concentrated to a volume of ~ 2 mL, and petroleum ether was added. Cooling of this solution overnight at -25 °C gave 79 mg (61%) of product in two crops. ¹H NMR (THF- d_8): δ 7.62– 7.23 (broad m, 9H, Ar), 7.10-6.71 (broad m, 21H, Ar), 1.91-1.58 (m, 4H, dppe CH₂). IR: 3055, 1655 (C=O), 1483, 1433, 1333, 1228, 1205, 1111, 1027, 994, 877, 822, 744, 694, 527, 483 cm⁻¹. Anal. Calcd for C₄₂H₃₄F₇OP₃Pt: C, 51.70; H, 3.52. Found: C, 51.77; H, 3.81.

Variable-Temperature NMR Data. The reported temperatures were calibrated from the chemical shift difference of the signals in the ¹H NMR spectrum of a standard sample of methanol (temperatures < 20 °C) or ethylene glycol (temperatures > 20 °C). The uncertainty in the $\Delta G^{t}(T_{c})$ values was estimated on the basis of the assumption that there is an error of ±10 °C in the determination of the coalescence temperature.

Crystallographic Structural Determination. Crystal, data collection, and refinement parameters are given in Table 3. Suitable crystals for single-crystal X-ray diffraction were selected and mounted either in a nitrogen-flushed, thin-walled capillary or on the tip of a fine glass fiber with epoxy cement. The data were collected on a Siemens P4 diffractometer equipped with a SMART/CCD detector.

The systematic absences in the diffraction data are uniquely consistent with the reported space group for 4, and no evidence of symmetry higher than triclinic was observed in the diffraction data of **3**. E-statistics suggested the centrosymmetric space group option, P1, which yielded chemically reasonable and computationally stable results of refinement. The structures were solved by direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix leastsquares procedures. An empirical absorption correction was applied to the data of 3, based on a Fourier series in the polar angles of the incident and diffracted beam paths, and was used to model an absorption surface for the difference between the observed and calculated structure factors.²⁸ No other absorption corrections were required because there was less than 10% variation in the integrated ψ -scan intensities. One-half of a molecule of dichloromethane, disordered over an inversion center, was located in the asymmetric unit of 3. All other nonhydrogen atoms were refined with anisotropic displacement parameters. All other hydrogen atoms were treated as idealized contributions.

All software and sources of the scattering factors are contained in the SHELXTL (5.03 and 5.10) program libraries (G. Sheldrick, Siemens XRD, Madison, WI).

Acknowledgment. We thank the NSF Career Program, the Petroleum Research Fund, administered by the American Chemical Society, the Exxon Education Foundation, DuPont, and Union Carbide (Innovation Recognition Program) for partial support. We are grateful to Profs. R. P. Hughes, M. Brookhart, and M. Gagne for helpful discussions. The University of Delaware thanks the NSF (CHE-9628768) for their support of the purchase of the CCD-based diffractometer.

Supporting Information Available: Details of the crystal structure determinations. This material is available free of charge via the Internet at http://pubs.acs.org.

OM9903691

(28) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158-166.