Inorganica Chimica Acta 422 (2014) 36-39

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Synthesis and molecular structure of tetranuclear Cu₄P₄ complexes with R₂P-O-PR₂ ligands

Yalei Zhao^a, Yongbo Zhou^{a,*}, Tieqiao Chen^a, Shuang-Feng Yin^a, Li-Biao Han^{b,*}

ARTICLE INFO

Article history: Received 15 May 2014 Received in revised form 30 July 2014 Accepted 31 July 2014 Available online 7 August 2014

Dedicated to Professor Don Tilley on the occasion of his 60th birthday

Keywords: Secondary phosphine oxides Ligand exchange P-O-P ligand Tetranuclear copper(I) complex

1. Introduction

Secondary phosphine oxides R₂P(O)H **1** have increasingly attracted attentions as robust preligands for transition metal catalysis [1]. These compounds show unique tautomerism between the pentavalent $R_2P(O)H$ and the trivalent $R_2P(OH)$ tautomers which, likes other trivalent organophosphorus compounds, can ligate to transition metals. During a study on the possible coordination of $R_2P(O)H$ with copper salts, we found that a reaction of $Cu(OAc)_2$ with $R_2P(O)H$ **1b** (R = Ph(CH₂)₄) could produce a unique tetranuclear $[(R_2P)_2O(CuOAc)_2]_2$ complex **2b** [2] in which R_2P -O-PR₂ formally derived in situ from the dehydration of two secondary phosphine oxides. However, this complex is difficult to handle because it is extremely air sensitive and decomposes readily in air.

Herein, we report the synthesis and structural characterization of similar tetranuclear copper complexes $[(R_2P)_2O(CuCl)_2]_2$ 3, by simply mixing $R_2P(O)H$ with $Cu(OAc)_2$ and treating the resulted mixture with an aqueous NH_4Cl solution (Eq. (1)). Contrary to $[(R_{2-}$ $P_{2}O(CuOAc)_{2}_{2}$, these $[(R_{2}P)_{2}O(CuCl)_{2}]_{2}$ complexes can be handled under air. It was noted that such R₂P–O–PR₂ ligated-complexes are rarely reported in coordination chemistry [3], although similar complexes with R_2P -(CH₂)_n-PR₂ [4-7] and R_2P -NR'-PR₂ [8] are well known.

$$Cu(OA)_{2} \xrightarrow{R_{2}P(O)H} [(R_{2}P)_{2}O(CuOAc)_{2}]_{2} \xrightarrow{NH_{4}Cl} [(R_{2}P)_{2}O(CuCl)_{2}]_{2}$$
(1)

2. Experimental

¹H, ¹³C and ³¹P NMR spectra were recorded on a JEOL LA-400 instrument (400 MHz for ¹H, 100 MHz for ¹³C, and 162 MHz for ³¹P NMR spectroscopy). CDCl₃ was used as the solvent. Chemical shift values for ¹H and ¹³C were referred to internal Me₄Si (0 ppm), and that for 31 P was referred to H₃PO₄ (85% solution in D₂O, 0 ppm). Melting point was recorded on an OptiMelt instrument (90-264 VAC). Saturated NH₄Cl aqueous solution was not degassed.

2.1. Synthesis of [(n-Bu₂P)₂O(CuCl)₂]₂ 3a

To a flask were added dibutyl secondary phosphine oxide (n-Bu₂P(O)H, 3 mmol), anhydrous Cu(OAc)₂ (2 mmol) and THF (5 mL) under nitrogen atmosphere. The mixture was stirred at room temperature for 2 h, and then 15 mL chilled saturated NH₄Cl aqueous solution was added. The crude product was extracted with CHCl₃ and dried over MgSO₄. The volatiles were removed under vacuum and the product **3a** was isolated using a preparative GPC using CHCl₃ as eluent. Yield: 393 mg, 52%.

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China ^b National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

ABSTRACT

The reaction of secondary phosphine oxides $R_2P(O)H \mathbf{1}$ with $Cu(OAc)_2$ under nitrogen atmosphere produced complexes $[(R_2P)_2O(CuOAc)_2]_2$ **2**. A rapid ligand exchange took place when treating complexes **2** with NH₄Cl to generate $[(R_2P)_2O(CuCl)_2]_2$ **3** in good yields. The structures of **3** were determined by Xray crystallography, showing that the geometries of these tetranuclear copper complexes vary with the R group of the phosphorus units. Compared to complexes 2 which are air sensitive, complexes 3 are stable under air.

© 2014 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding authors.

E-mail addresses: zhouyb@hnu.edu.cn (Y. Zhou), libiao-han@aist.go.jp (L.-B. Han).

The complex **3a** was dissolved in a mixed solvent of THF (2 mL) and Et₂O (2 mL), and then hexane (10 mL) was added. The solution was slowly cooled down to -30 °C to give colorless crystals suitable for X-ray analysis.

¹H NMR (CDCl₃, 400 MHz): δ 1.87–1.76 (m, 16H, CH₂), 1.62– 1.52 (m, 16H, CH₂), 1.48–1.39 (m, 16H, CH₂), 0.93 (t, 24 H, *J* = 7.0, CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 31.5 (d, *J*_{CP} = 11.1 Hz, CH₂), 24.9 (s, br, CH₂), 24.1 (d, *J*_{CP} = 6.5 Hz, CH₂), 13.6(s, CH₂), ³¹P NMR (CDCl₃, 162 MHz): δ 123.1. M.P.: 76.1–77.3 °C; decomposed at 210.0 °C. *Anal.* Calc. for C₃₂H₇₂Cl₄Cu₄O₂P₄: C, 38.10; H, 7.19; Cl, 14.06. Found: C, 38.35; H, 7.16; Cl, 13.84% (see Scheme 1).

If the reaction mixture was exposed to air (<10 min) before the addition of NH₄Cl aqueous solution, $[(n-Bu_2P)_2O(CuCl)_2]_2$ **3a** could not be obtained at all but *n*-Bu₂P(O)OH was obtained in 92% yield as a white solid: ¹H NMR (CDCl3, 400 MHz): δ 9.00 (s, 1H, OH), 1.71–1.62 (m, 4H, CH₂), 1.61–1.53 (m, 4H, CH₂), 1.45–1.36 (m, 4H, CH₂), 0.92 (t, 6H, *J* = 6.86 Hz, CH₃). ¹³C NMR (CDCl3, 100 MHz): δ 28.7 (d, *J_{CP}* = 92.0 Hz, CH₂), 23.9 (d, *J_{CP}* = 15.5 Hz, CH₂), 23.6 (d, *J_{CP}* = 4.0 Hz, CH₂), 13.6. ³¹P NMR (CDCl3, 201.95 MHz): δ 59.6.

2.2. Synthesis of [((Ph(CH₂)₄)₂P)₂O(CuCl)₂]₂ 3b

[((Ph(CH₂)₄)₂P)₂O(CuOAc)₂]₂ **2b** [2] (343 mg, 0.2 mmol) in 5 mL CHCl₃ was added to 20 mL chilled saturated NH₄Cl aqueous solution and stirred vigorously for 10 min. The product was then extracted with CHCl₃ and dried over MgSO₄. The product was isolated using a preparative GPC using CHCl₃ as eluent. Yield: 278 mg, 86%. The product was dissolved in THF (2 mL) and Et₂O (2 mL). Hexane (8 mL) was then added. The solution was slowly cooled to -30 °C to give colorless crystals suitable for X-ray analysis. White solid: ¹H NMR (CDCl3, 400 MHz): δ 7.20–7.16 (m, 16H), 7.10–7.05 (m, 24H), 2.54 (t, *J* = 7.4 Hz, 16H, CH₂), 1.71–1.52 (m, 48H, CH₂). ¹³C NMR (CDCl3, 100 MHz): δ 142.0, 128.4, 128.3, 125.7, 35.4, 32.6 (t, *J_{CP}* = 6.6 Hz, CH₂), 31.7 (d, *J_{CP}* = 10.7 Hz, CH₂), 22.6. ³¹P NMR (CDCl3, 161.84 MHz): δ 123.0. *Anal.* Calc. for C₈₀H₁₀₄-Cl₄Cu₄O₂P₄: C, 59.40; H, 6.48. Found: C, 60.11; H, 6.41%. M.P.: 84.6–85.5 °C; decomposed at 270 °C (see Scheme 2).

3. Results and discussion

3.1. Synthesis of $[(R_2P)_2O(CuCl)_2]_2$ 3 complexes

As indicated by ${}^{31}P$ NMR spectroscopy, the reaction of *n*-Bu₂P(O)H with Cu(OAc)₂ in THF- d_8 at room temperature under

nitrogen gave two new signals at 55.7 ppm and 122.6 ppm [2], which were assigned to n-Bu₂P(O)OH and [(n-Bu₂P)₂O(CuOAc)₂]₂ **2a**, respectively. Complex **2a** was air sensitive that collapsed rapidly to n-Bu₂P(O)OH when exposed to air. Surprisingly, however, by pouring the above reaction mixture into a chilled saturated aqueous NH₄Cl solution, a complex [(n-Bu₂P)₂O(CuCl)₂]₂ **3a** was obtained via ligand exchange of the acetate group in **2a** with the chloro anion of NH₄Cl. Contrary to complex **2a**, complex **3a** could be handled in air without decomposition.

Fig. 1. Molecular structure of **3a**. Hydrogen atoms are omitted for clarity. Bottom: Core structure of **3a** (only Cu, P, O and Cl are shown).

Scheme 1. Synthesis of [(n-Bu₂P)₂O(CuCl)₂]₂ 3a.

Scheme 2. Synthesis of [((Ph(CH₂)₄)₂P)₂O(CuCl)₂]₂ 3b.

ladie I		
Selected bond leng	ths and bond angles for complex 3a .	

Bond lengths (Å)	Bond angels (°)	
Cu1-P1 Cu1-Cl1 Cu1-Cl7 O1-P1 Cu1-Cu1 Cu1-Cu1 Cu1-Cu1	2.1796(7) 2.2742(7) 2.2907(7) 1.6428(15) 2.9570(6) 3.2883(4)	P1-Cu1-Cl1 P1-Cu1-Cl1' Cl1-Cu1-Cl1' P1-Cu1-Cl1 Cl1-Cu1-Cu1 Cl1-Cu1-Cu1 Cl1'-Cu1-Cu1 P1-O1-P1	128.29(3) 124.47(3) 107.103(17) 83.46(2) 85.62(2) 106.58(2) 120.45(17)
		Cu1-Cl1-Cu1'	92.16(3)
		Cu1-Cu1-Cu1'	63.28(1)
		Cu1–Cu1′–Cu1	53.440(9)

Fig. 2. Molecular structure of **3b**. Hydrogen atoms are omitted for clarity. Bottom: Core structure of **3b** (only Cu, P, O and Cl are shown).

Similarly, complex $[((Ph(CH_2)_4)_2P)_2O(CuCl)_2]_2$ **3b** was obtained by treating complex $[((Ph(CH_2)_4)_2P)_2O(CuOAc)_2]_2$ **2b** with an aqueous NH₄Cl solution through ligand-exchange of the acetate group with the chloro atom.

3.2. Crystal structure of [(Bu₂P)₂O(CuCl)₂]₂ (**3a**)

X-ray analysis shows that complex **3a** consists of a Cu₄P₄Cl₄ unit (Fig. 1, Table 1), where each P–O–P group coordinates to two copper(I) metals and each copper atom is bridged by two μ^2 -Cl atoms. Consequently, four 8-membered rings (P–O–P–Cu–Cl–Cu–Cl–Cu) are formed, which form a Cu₄P₄Cl₄ cage structure (Fig. 1, bottom). It is noted that this kind of Cu₄Cl₄P₄O₂ framework in **3a** is rare [9]. The geometry around the Cu(I) atoms is a distorted tetrahedron (angles: Cu1–Cu1–Cu1′, 63.28(1)°; Cu1–Cu1′–Cu1, 53.440(9)°). The Cu–Cu distances (Cu1–Cu1: 2.9570(6) and Cu1–Cu1′: 3.2883(4) Å) are slightly longer than the sum of their van der Waals radii (2.80 Å) [10]. The chlorine atoms bridge two

Table 2								
Selected	bond	lengths	and	bond	angles	for	complex	3b

Bond lengths ((Å)	Bond angels (°)	
Cu1-P2 Cu1-Cl1 Cu1-Cl2 Cu1-Cu2 Cu1-Cu2' Cu2-P1 Cu2-Cl2 Cu2-Cl1 O1-P1	2.1727(6) 2.2863(6) 2.3047(6) 2.8409(5) 3.0697(5) 2.1716(6) 2.2684(6) 2.3244(6) 1.6389(13)	P1-01-P2 P1-Cu2-Cu1 P2-Cu1-Cu2 Cu2-Cl2-Cu1' Cu1-Cl2-Cu2' Cu1-Cu2-Cl2' Cu2-Cu1-Cl2 Cu1-Cu2-Cu1' Cu2-Cu1-Cl2 Cu1-Cu2-Cu1'	123.58(8) 91.59(2) 87.75(2) 84.321(19) 76.067(16) 130.418(17) 144.260(16) 82.51(1) 97.490(11)
O1-P2	1.6518(13)		

Cu(I) atoms with classic Cu–Cl–Cu angles $(92.16(3)^\circ)$ and Cu–Cl bond lengths (2.2742(8)-2.2907(7) Å) [11].

3.3. Crystal structure of [((Ph(CH₂)₄)₂P)₂O(CuCl)₂]₂ (**3b**)

The complex consists of a six-membered ring of four copper(I) atoms and two chloride atoms, with the four copper atoms in the plane (Fig. 2, Table 2). Pairs of copper atoms on each edge around the plane are both bridged further by a chloride and a $[[Ph(CH_2)_4]_2]_2$ Pl₂O ligand, which form two five-membered rings (P–O–P–Cu–Cu) and two three-membered rings (Cu-Cl-Cu), respectively. The Cu-Cu distances of Cu1-Cu2 and Cu1-Cu2' are of 2.8409(5) and 3.0697(5) Å, respectively, the former is close to the sum of their van der Waals radii (2.80 Å). The Cu-Cu distances of 3b are slight shorter than those of **3a**, whereas the Cu-Cu distance (2.8409(5) Å) of **3b** is longer than that of the air sensitive complex **2b** (2.6809(6) Å). The Cu–Cl distances vary from 2.27 to 2.32 Å. It is interesting to compare with the structure of complex 3a. Thus, a slight difference in the alkyl group R of R₂P(O)H can give a different geometry of the resulted complex 3, i.e. tetrahedron geometry for 3a, but parallelogram for 3b.

4. Conclusions

We have prepared unique tetranuclear copper complexes $[(R_2-P)_2O(CuCl)_2]_2$ through the reaction of secondary phosphine oxide $R_2P(O)H$ with copper acetate followed by ligand exchange with NH₄Cl. The core structures of $[(R_2P)_2O(CuCl)_2]_2$ vary with the R group.

Acknowledgments

Partial supports from NSFC (21172062, 21273066), the Doctoral Fund of Chinese Ministry of Education (No. 20110161120008), and the Fundamental Research Funds for the Central Universities (Hunan University) are acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ica.2014.07.060.

References

- [1] (a) A. Christiansen, C. Li, M. Garland, D. Selent, R. Ludwig, A. Spannenberg, W. Baumann, R. Franke, A. Börner, Eur. J. Org. Chem. (2010) 2733; (h) NUL P. heurist A. Börner, Eur. J. Org. Chem. (2010) 2733;
 - (b) N.V. Dubrovina, A. Börner, Angew. Chem., Int. Ed. 43 (2004) 5883;
 - (c) P.A. Donets, N. Cramer, J. Am. Chem. Soc. 135 (2013) 11772.
- [2] Y.B. Zhou, S.F. Yin, Y.X. Gao, Y.F. Zhao, M. Goto, L.B. Han, Angew. Chem., Int. Ed. 49 (2010) 6852.
- [3] For R₂P–O–PR₂ ligands: (a) S. Daly, M.F. Haddow, A.G. Orpen, G.T.A. Rolls, D.F. Wass, R.L. Wingad, Organometallics 27 (2008) 3196;
 (b) N.H.T. Huy, C. Compain, L. Ricard, F. Mathey, Organometallics 21 (2002) 4897;

(c) C. Zeiher, J. Mohyla, I.P. Lorenz, W. Hiller, J. Organomet. Chem. 286 (1982) 159.

- [4] (a) L.D. Quin, A Guide to Organophosphorus Chemistry, seventh ed., Wiley, New York, 2000;
- (b) T.M. Shaikh, C.-M. Weng, F.-E. Hong, Coord. Chem. Rev. 256 (2012) 771. [5] (a) M. Peruzzini, L. Gonsalvi, Phosphorus Compounds – Advanced Tools in
- (a) M. PERUZZIII, E. GOISAIVI, Phosphorus Compounds Advanced Tools in Catalysis and Material Sciences, Springer, Netherlands, 2011; (b) L. Ackermann, Synthesis (2006) 1557;
- (c) P.C.J. Kamer, P.W.N.M. van Leeuwen, Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley-VCH, Chichester, UK, 2012;

(d) H. Fernández-Pérez, P. Etayo, A. Panossian, A. Vidal-Ferran, Chem. Rev. 111 (2011) 2119.

[6] Selected examples for R₂P-C-C-PR₂ ligands: (a) A. Kaeser, B. Delavaux-Nicot, C. Duhayon, Y. Coppel, J.F. Nierengarten, Inorg. Chem. 52 (2013) 14343;
(b) T. Morimoto, C. Nishiura, M. Tanaka, J. Rohacova, Y. Nakagawa, Y. Funada, K. Koike, Y. Yamamoto, S. Shishido, Am. Chem. Soc. 135 (2013) 13266;
(c) M. Tanabe, N. Ishikawa, M. Chiba, T. Ide, K. Osakada, T. Tanase, in: Am Chem Soc 133 (2011) 18598;
(d) A. Ilie, C.I. Rat, S. Scheutzow, C. Kiske, K. Lux, T.M. Klapotke, C. Silvestru, K.

(d) A. Ille, C.I. Rat, S. Scheutzow, C. Kiske, K. Lux, T.M. Klapotke, C. Silvestru, K. Karaghiosoff, Inorg. Chem. 50 (2011) 2675.

- [7] Selected examples for R₂P-C-PR₂ ligands: (a) S. Daly, M.F. Haddow, A.G. Orpen, G.T.A. Rolls, D.F. Duncan, F. Wass, R.L. Wingad, Organometallics 27 (2008) 3196;
 - (b) B. Xi, I.P.C. Liu, G.L. Xu, J Am. Chem. Soc. 133 (2011) 1509;
 - (c) B. Xi, I.P.C. Liu, G.L. Xu, J Am. Chem. Soc. 131 (2009) 7411;

(d) V.W.W. Yam, W.Y. Lo, C.H. Lam, W.K.M. Fung, K.M.C. Wong, V.C.Y. Lau, N. Zhu, Coord. Chem. Rev. 245 (2003) 39.

[8] (a) T. Agapie, S.J. Schofer, J.A. Labinger, J.E. Bercaw, J. Am. Chem. Soc. 126 (2004) 1304;

(b) V.W.-W. Yam, C.-L. Chan, C.-K. Li, K.M.-C. Wong, Coord. Chem. Rev. 216-217 (2001) 173;

(c) A. Ghisolfi, C. Fliedel, V. Rosa, K.Y. Monakhov, P. Braunstein, Organometallics 33 (2014) 2523;

- (d) L.-C. Song, J-P. Li, Z.-J. Xie, H.-B. Song, Inorg. Chem. 52 (2013) 11618. [9] (a) P.C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 99 (1999) 3625;
- (b) M.R. Churchill, G. Davies, M.A. El-Sayed, J.P. Hutchinson, M.W. Rupich, Inorg. Chem. 21 (1982) 995;
 (c) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Dalton Trans 11 (1994) 1685;
 (d) M.A. El-Sayed, A. Ali, G. Davies, S. Larsen, J. Zubieta, Inorg. Chim. Acta 194 (1992) 139;
 (e) B. Nohra, E. Rodriguez-Sanz, C. Lescop, R. Réau, Chem. Eur. J. 14 (2008)

3391.

- [10] (a) S. Sculfort, P. Croizat, A. Messaoudi, M. Benard, M.M. Rohmer, R. Welter, P. Braunstein, Angew. Chem., Int. Ed. 48 (2009) 9663;
 (b) A. Bondi, J. Phys. Chem. 68 (1964) 441.
- [11] (a) M. Dinca, W.S. Han, Y. Liu, A. Dailly, C.M. Brown, J.R. Long, Angew. Chem., Int. Ed. 46 (2007) 1419;
 (b) Q.F. Zhang, Z. Yu, A. Rothenberger, D. Fenske, W.-H. Leung, Inorg. Chim.
 - (c) D. Zhang, J. Dou, S. Gong, D. Li, D. Wang, Appl. Organomet. Chem. 20 (2006)

(c) D. Zhang, J. Dou, S. Gong, D. Li, D. Wang, Appl. Organomet. Chem. 20 (2006) 632.