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Transition metal-catalyzed regioselective cycloaddition reaction
of unsaturated compounds is a powerful tool for one-step construc-
tion of substituted benzene.1 Metalative versions of the reaction
would broaden its synthetic versatility as the resulting aromatic
organometallics should enjoy a variety of transformations. However,
such a reaction has been limited to titanative cyclotrimerization of
alkynes.2 Although the reaction provides variously substituted
phenyl- and benzyltitanium compounds with perfect chemo- and
regioselectivities, it involves multistep procedures and requires a
leaving group, such as sulfonyl or bromo, in an alkyne molecule.
Herein, we report the regioselective stannylative cycloaddition of
conjugated enynes catalyzed by a palladium complex havingN-(2-
diphenylphosphinobenzylidene)cyclohexylamine (1) as a ligand to
give variously substituted 3-alkenylphenylstannanes3 (eq 1). The
synthetic potential of the reaction is successfully demonstrated by
a concise synthesis of alcyopterosin N, which has been isolated
recently from sub-Antarctic soft coral,Alcyonium paessleri.3,4 The
nonstannylative version of the present reaction has been studied
extensively by Yamamoto and co-workers.5,6

During our investigation of the alkynylstannylation of 2-methyl-
1-buten-3-yne (2a) with tributyl(phenylethynyl)tin using a Pd-1
catalyst,7 we obtained unexpectedly 2-methyl-5-(propen-2-yl)-1-
(tributylstannyl)benzene (3a) in 57% yield, as estimated by119Sn
NMR analysis of the crude products (eq 2).8 None of the expected
alkynylstannylation products or the regioisomers of3a were
detected. GC analysis of the products showed the coproduction of
nonstannylated product4a in 11% yield.9 As the phenylethynyl
moiety in the stannane reagent was lost, we surveyed various
stannane donors10 to find that hexabutyldistannoxane was the
optimum to give3a in 74% yield by119Sn NMR. It is worthy to
note that both of the stannyl groups in the stannoxane participate
in the reaction. We further optimized reaction conditions and found
that a combination of (η5-cylcopentadienyl)(η3-allyl)palladium [Cp-
(allyl)Pd], 1, and maleic anhydride (1:1:1.5, 5 mol % Pd, with
respect to the Bu3Sn group) was the best to give3a in 81% isolated
yield. The use of the other derivatives of1 gave inferior results,

and typical ligands, such as PPh3 and dppp, or ligandless conditions
retarded the reaction.11,12

With the optimized conditions in hand, we studied the scope of
the reaction and found that a wide variety of functional groups
tolerated the reaction conditions (Table 1). Thus, 2-substituted

1-buten-3-ynes (2b-2f) having an alkenyl, alkynyl, or siloxy group
reacted to give arylstannanes3b-3f in good yields (entries 1-5).
Ethyl (Z)-2-penten-3-ynoate (2g) also gave the corresponding
arylstannane3g in 67% yield, together with only a trace amount
of nonstannylated product4g (entry 6). Enynes having an internal
triple bond and a methoxy or cyano group underwent the reaction
under conditions that employed more catalyst (20 mol %) at 80
°C, and various 2,6-disubstituted 3-stannylstyrenes were produced
in good yields (entries 7-10). However, 1,2- and 2,4-disubstituted
1-buten-3-ynes, such as 1-ethynylcyclohexene and 2-methyl-1-
decen-4-yne, failed to give the corresponding products.

The reaction was also applicable to cross-cycloaddition reactions
between different enynes or between enynes and diynes.13 For
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Table 1. Stannylative Cycloaddition of Enynes Catalyzed by
Pd-1a

entry enyne products yield of 3 (%)b yield of 4 (%)c

1 2b 3b, 4b 65 20
2 2c 3c, 4c 71 23 (26)d

3 2d 3d, 4d 64 22
4 2e 3e, 4e 52 12
5 2f 3f, 4f 65 27
6 2g 3g, 4g 67 <5e

7f 2h 3h, 4h 71 4d

8f 2i 3i, 4i 67 20
9f 2j 3j , 4j 66 10

10f 2k 3k, 4k 67 30

a The reaction was carried out using an enyne (0.90 mmol), (Bu3Sn)2O
(0.15 mmol), Cp(allyl)Pd (15µmol), 1 (15 µmol), and maleic anhydride
(23 µmol) in THF at 50°C for 24 h.b Isolated yields based on the Bu3Sn
group.c Isolated yields based on the enyne.d Determined by GC based on
the enyne.e Determined by1H NMR. f The reaction was carried out using
60 µmol of Pd-1 catalyst and 90µmol of maleic anhydride at 80°C.
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example, the reaction of2a with ethyl (Z)-2-undecen-4-ynoate or
1,4-diphenylbutadiyne under similar conditions14 afforded the
corresponding arylstannane5 or 6, respectively, in good yield
(Scheme 1).

The synthetic potential of the reaction is demonstrated by
synthesis of alcyopterosin N starting with 2,6-dimethyl-3-(tributyl-
stannyl)styrene (3h) (Scheme 2). Thus, Pd-catalyzed cross-coupling
reaction of3h with ethyl R-bromomethylacrylate gave7 in 87%
yield. Copper-catalyzed 1,4-reduction15 of 7 followed by R-meth-
ylation yielded8, which was subjected to hydroboration-oxidation
sequence to provide the alcohol9. Acetylation of the hydroxyl group
in 9 was followed by the intramolecular Friedel-Clafts acylation
and deacetylation to give alcyopterosin N.

In conclusion, we have demonstrated regioselective stannylative
cycloaddition of enynes catalyzed by Pd-1. Highly substituted
3-alkenylphenylstannanes obtained by this reaction are demonstrated
to be synthetically useful by the concise synthesis of alcyopterosin
N. Efforts directed toward expansion of the reaction scope and
elaboration of the detailed mechanism16 are currently underway in
our laboratories.
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Scheme 1. Stannylative Cross-Cycloaddition of Enynes

a Isolated yields based on the Bu3Sn group.b Determined by1H NMR
based on2a. c Determined by119Sn NMR based on the Bu3Sn group.
d Determined by GC based on2a.

Scheme 2. Synthesis of Alcyopterosin Na

a Reagents and Conditions: (a) BrCH2CH(CO2Me)dCH2 (1.1 equiv),
Pd2(dba)3 (5 mol %), PPh3 (20 mol %), NMP, 100°C, 3 h; (b) DIBAL-H
(3.0 equiv), CuMe (10 mol %), THF-HMPA, -50 °C, 1 h, then MeI (20
equiv), -10 °C, 25 h; (c) Me2CHCMe2BH2 (5.0 equiv), THF, 0°C, 3 h,
then H2O2, NaOH aq., rt, 3 h; (d) LiOH (10 equiv), H2O-MeOH (9:1), 50
°C, 12 h; (e) Ac2O (10 equiv), pyridine (5.0 equiv), CH2Cl2, rt, 9 h; (f)
SOCl2 (10 equiv), CH2Cl2, rt to 40°C, 4 h, then AlCl3 (1.2 equiv), CH2Cl2,
40 °C, 3 h; (g) K2CO3 (5.0 equiv), H2O-MeOH (1:1), rt, 1 h.
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