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ABSTRACT: The applications of a newly designed chiral naphthyl-C2-indole bifunctional phosphine organocatalyst in
stereoselective formal [4 + 2] cycloaddition reactions were reported. The chiral naphthyl-C2-indole skeleton was introduced to
bifunctional phosphine organocatalysis for the first time, and excellent stereocontrol was achieved in two types of formal [4 + 2]
cycloaddition reactions. With the optimal catalyst, a series of chiral spirooxindole and hydrodibenzofuran architectures were
produced in moderate to good yields with excellent stereoselectivities (up to >99% ee, >20:1 dr).

Chiral phosphine organocatalysis1 has evolved into a
powerful and reliable tool for the construction of diverse

chiral molecular frameworks. Numerous reactions such as
Morita−Baylis−Hillman (MBH) reactions, Rauhut−Currier
reactions, addition reactions, and multifarious annulations have
been innovatively developed to provide multiple paths toward
numerous chiral adducts.2 In particular, a chiral phosphine
catalyst bearing a phenolic hydroxyl group has gained much
attention due to its Lewis base and Brønsted acid (LBBA)
properties.3 As shown in Scheme 1a, several scaffolds have
been introduced as the core backbones of such catalyst. A C2-
symmetric bisphosphine catalyst with a cyclobutane back-
bone3a,d,e was investigated as the organocatalyst, but its
catalytic performance was unsatisfactory in an aza-MBH
reaction.3d Currently, C2-symmetric binaphthyl skeletons
have been identified as the most efficient chiral scaffolds for
phosphine catalysts bearing a phenolic hydroxy group, and
many protocols have been reported since the pioneering works
on MBH reactions reported by Shi in 2003.3b,c,d,f With the
efforts to seek satisfactory chiral scaffolds for asymmetric
phosphine organocatalysts, chiral [2.2]paracyclophane3h,i and
spiro-type backbones3g have been installed to a series of LBBA
phosphine organocatalysts and successfully applied to the aza-
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MBH reaction. To date, the backbones used in LBBA
phosphine organocatalysts have mostly been symmetric
scaffolds, whereas nonsymmetric scaffolds containing a
heterocyclic ring have rarely been investigated. As a kind of
prevalent heterocycle, indole has been used as the catalyst4

alone or as a key skeleton in some heterobiaryl systems5−7 and
has showed structural and synthetic advantages. Achiral indole-
aryl-derived phosphine has been utilized as a unique ligand for
Pd-catalyzed cross-coupling reactions5 or as organocatalyst in a
[4 + 1] cyclization reaction.6 Meanwhile, the axially chiral
indole-containing heterobiaryl backbones have been applied as
chiral ligands7 in asymmetric synthesis. However, the non-
symmetric chiral aryl-C2-indole skeleton has never been
installed into phosphine ligands or organocatalysts, probably
due to the lack of an atroposelective procedure for
constructing such architectures. Recently, several procedures
for the enantioselective preparation of chiral indole biaryl
systems have been established,8 and a series of axially chiral
indole derivatives have been prepared. In particular, some
practical procedures for producing chiral aryl-C2-indole
systems have been well established,8f,j,n so that the evaluation
of such scaffolds in LBBA phosphine organocatalysis can be
realized. Considering our continuing interests in organo-
catalysis,9 we intended to develop a novel LBBA phosphine
catalytic system based on axial chiral aryl-C2-indole skeletons
and then to investigate their applications in two types of formal
[4 + 2] cycloaddition reactions (Scheme 1b).
Spirooxindole architecture was first selected as the target

because such a scaffold widely exists in a number of natural
products and biologically active molecules.10 In 2014, Shi
reported a phosphine-catalyzed formal [4 + 2] tandem
cyclization of activated dienes with isatylidenemalononitriles.11

We were encouraged to perform the reaction under the
catalysis of our newly designed and synthesized chiral
phosphines containing an axially chiral naphthyl-C2-indole
scaffold. We began our study with isatylidenemalononitrile 1c
and activated diene 2a as the substrate in the presence of
phosphine catalyst A in toluene. The reaction achieved −79%
ee in <10% yield (Table 1, entry 1). This preliminary result
encouraged us to evaluate catalysts with different substituents
in indole part. Disappointingly, catalysts B, C, and D did not
significantly improve the yield and stereocontrol of the
reaction (Table 1, entries 2−4). Next, the catalyst with a
phosphine part in the indole moiety (catalyst E) was tested
under the same reaction conditions. Interestingly, when the
phosphine functionality shifted to the indole part, the
enantiomeric isomer of product 3c was revised to its
counterpart, and even the absolute configuration of the catalyst
was retained. Moreover, the reaction yield was significantly
increased, albeit the ee value of the product was decreased
(Table 1, entry 5). This result revealed that attaching a
phosphine part into the indole moiety could dramatically
increase the reaction output. The low enantioselectivity was
probably caused by the lack of a hydrogen-donor site between
the catalyst and the substrate. On the basis of this
phenomenon, catalysts F, G, and H were designed to bear a
free hydroxyl group in the naphthalene ring. To our delight,
the reaction proceeded smoothly in the presence of all three
catalysts, and the stereoselectivities were obviously increased.
Among them, catalyst F was found to give better stereo-
selectivity in terms of enantio- and diastereoselectivities (98%
ee, >20:1 dr). The further evaluation of the solvents (Table 1,
entries 9−13), temperature (Table 1, entries 14−18), and

catalyst loading amount (Table 1, entries 19 and 20) revealed
that the best reaction performance could be achieved under the
reaction conditions as follows: 1c (0.10 mmol), 2a (0.25
mmol), and 5 mol % catalyst F in toluene (2.0 mL) at 0 °C for
24 h under N2.
With the optimized reaction conditions in hand (Table 1,

entry 19), the substrate scope of the established enantiose-
lective formal [4 + 2] cascade cyclization reaction was
investigated (Scheme 2). First, different substituent groups
on the nitrogen atom of isatylidenemalononitriles were tested,
and methyl, methyloxymethyl (−MOM), allyl, benzyl, and
phenyl were demonstrated to be compatible with the reaction
conditions and gave products 3a−e in good yields with high
stereoselectivities (up to >99% ee, >20:1 dr). Next, different
electronic properties and positions of the substituent groups
attached to the phenyl ring of isatylidenemalononitriles did not
significantly affect the stereocontrol of the reactions, and

Table 1. Optimization of Reaction Conditionsa

entry cat. solvent T (°C) yield (%)b ee (%)c drd

1 A toluene 25 <10 −79
2 B toluene 25 <10 −85
3 C toluene 25
4 D toluene 25 <10 −49
5 E toluene 25 94 5 >20:1
6 F toluene 25 95 98 >20:1
7 G toluene 25 89 97 18:1
8 H toluene 25 90 98 18:1
9 F PhCF3 25 93 98 >20:1
10 F CH2Cl2 25 85 98 15:1
11 F CHCl3 25 88 98 18:1
12 F THF 25 88 97 15:1
13 F CH3CN 25 96 93 >20:1
14 F toluene 35 95 98 >20:1
15 F toluene 50 95 97 >20:1
16 F toluene 10 94 99 >20:1
17e F toluene 0 94 >99 >20:1
18e F toluene −10 85 >99 >20:1
19e,f F toluene 0 93 >99 >20:1
20e,g F toluene 0 65 >99 >20:1

aReaction conditions: 1c (0.10 mmol), 2a (0.25 mmol), and catalyst
(10 mol %) in the solvent (2.0 mL) for 12 h under N2, unless
otherwise specified. bIsolated yield. cDetermined by HPLC analysis
using a chiral stationary phase. ddr = diastereoselectivity ratio,
determined by 1H NMR. e24 h. f5 mol % catalyst. g2.5 mol % catalyst.
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cascade products 3f−m were obtained with excellent stereo-
selectivities (up to >99% ee, >20:1 dr), although the reaction
yield was slightly decreased when a methoxyl group was
installed to the C6 position of isatylidenemalononitrile (3i).
The absolute configuration of 3m was determined by X-ray
crystallography analysis of its dihydroxyl derivative (see the
SI), and others were assigned by analogy. Moreover, dienes 2
with both electron-donating and -withdrawing groups attached
to the different positions of phenyl rings were found to be
suitable substrates for the reactions and gave the desired
products 3n−s in high yields (up to 96% yield) with excellent
enantiopurities (up to 99% ee, >20:1 dr). Interestingly, when
the benzene ring of activated diene was replaced by a
heterocycle such as a furan ring, the corresponding substrate
was also tolerant of the reaction conditions and afforded
product 3t in moderate yield with high optical purity (95% ee,
>20:1 dr).
After the phosphine-catalyzed formal [4 + 2] tandem

cyclization of activated dienes with isatylidenemalononitriles
was established, we intended to explore an asymmetric
dearomative formal [4 + 2] cycloaddition12 between 3-
benzofuranyl vinyl ketone and activated alkenes with the
same catalytic system. After a regular condition screening (see

SI), the optimal reaction conditions were identified as follows:
4e (0.075 mmol), 5 (0.05 mmol), and 5 mol % catalyst F in
toluene (1.0 mL) at 25 °C for 12 h under N2; 5 was added in
two portions at 1 h intervals. Under the optimal reaction
conditions, the substrate scope and limitations were inves-
tigated. Substrates 4 with different N-substitutions were tested
in the reaction with 5 (Scheme 3) and products 6a−h were
afforded in moderate to high yields with excellent strereocon-
trol (up to >99% ee, >20:1 dr). Next, a methyl group was
attached to substrates 4 at different positions of the benzene
ring of 3-olefinic oxindoles, and products 6i and 6j were
obtained in moderate yields with excellent optical purities
(>99% ee, >20:1 dr). Moreover, the dimethyl-substituted
substrate 4k also smoothly afforded the corresponding product
6k with excellent stereoselectivity (>99% ee, >20:1 dr). In
addition, a methoxyl group was also compatible with the
reaction conditions when it was installed at different positions
of the benzene ring of substrates 4; products 6l and 6m were
obtained in moderate yields with excellent optical purities (up
to >99% ee, >20:1 dr). Next, halides such as fluoro, chloro, and
bromo were attached to various positions of the benzene ring
of substrates 4, and adducts 6n−s were formed in moderate
yields with excellent stereoselectivities (up to 99% ee, >20:1

Scheme 2. Substrate Scopea

aReaction conditions: 1 (0.10 mmol), 2 (0.25 mmol), and catalyst F (5 mol %) in toluene (2.0 mL) at 0 °C for 24 h under N2.
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dr). Interestingly, after substituting the benzene ring of
substrates 4 with a heterocycle, the desired pyridine-containing
derivative 6t was successfully produced in 91% yield with
excellent enantio- and diastereoselectivity (99% ee, >20:1 dr).
In summary, we prepared a series of newly designed

phosphine organocatalysts containing a chiral naphthyl-C2-
indole scaffold and investigated their applications in two types
of stereoselective formal [4 + 2] cycloaddition reactions. Chiral
naphthyl-C2-indole was demonstrated to be an excellent
scaffold for LBBA phosphine organocatalysis. First, a series
of multistereogenic spirooxindole architectures were con-
structed through the asymmetric cyclization of activated dienes
with isatylidenemalononitriles in moderate to good yields with
excellent stereoselectivities (up to >99% ee, >20:1 dr). Second,
an asymmetric dearomative formal [4 + 2] cycloaddition
reaction of 3-benzofuranyl vinyl ketone and 3-olefinic
oxindoles was also achieved through a domino cross-
Rauhut−Currier/Michael addition. Furthermore, efforts to
elucidate the catalytic model of this kind of naphthyl-C2-
indole-containing LBBA phosphine and its applications in
other asymmetric transformations are currently underway in
our laboratory.
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