A Novel Route to 6-Substituted Piperidin-3-ols via Domino Cyclization of 2-Hydroxy-6-phosphinyl-5-hexenyl Tosylates with Primary Amines: Synthesis of (±)-Pseudoconhydrine and (±)-*epi*-Pseudoconhydrine

Cathrin Scherner,^a Jens-Kerim Ergüden,^a Gunadi Adiwidjaja,^b Ernst Schaumann*^a

^a Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany Fax +49(5323)722858; E-mail: ernst.schaumann@tu-clausthal.de

^b University of Hamburg, Mineralogisch-Petrographisches Institut, Grindelallee 46, 20146 Hamburg, Germany *Received: 02.03.2014; Accepted after revision: 04.04.2014*

Abstract: 2-Hydroxy-6-phosphinyl-5-hexenyl tosylates, oxirane ring-opening products derived from glycidyl tosylates and phosphinyl-substituted allyl anions, undergo domino $S_N 2$ -Michael reactions with primary amines to give 6-phosphinylmethylpiperidin-3-ols. The phosphinyl unit can be used in Horner olefination reactions. This approach is applied to the synthesis of racemic pseudo-conhydrine and its epimer.

Key words: phosphine oxides, domino reactions, cyclization, piperidines, Horner olefination

The piperidine ring represents an important structural motif in natural products making the synthesis of this heterocycle the subject of continuing research.^{1–3} In particular, substituted 3(5)-hydroxypiperidine units are present in many alkaloids showing a broad spectrum of biological and pharmacological properties.^{4,5} Typical examples include cassine (1),⁶ prosophylline (2),⁷ 1-deoxyaltronojiri-(-)-5-hydroxysedamine $(3)^{8}$ mycin $(4),^{9}$ and pseudoconhydrine $(5)^{10}$ (Figure 1). The 3-hydroxypiperidine 5 is a well-known alkaloid first isolated in 1891 from poison hemlock (Conium maculatum), along with four other alkaloids.¹⁰ Various syntheses of racemic¹¹ and of enantiomerically pure¹² pseudoconhydrine have been reported. In the early syntheses, the substituted piperidine was obtained by hydrogenation of the corresponding pyridine, ^{11a-c,12e} but methods in which the piperidine ring is elaborated indirectly into the target molecule also rely on the parent pyridine.^{11e-g,i,k} In asymmetric syntheses, the piperidine ring is often formed by an S_N reaction^{11j,12a,b,d,f,g,l} or by a cyclocondensation between an amine unit and a carbonyl group.^{11d,12c,h,k,n,q} Important methods include ring enlargement of pyrrolidines,^{11h,12i} (cyclo)addition methods,^{12j,m,r} a metathesis reaction,¹²⁰ and hydroformylation.^{12p} If the source of the ring nitrogen in the target molecule is not a pyridine nitrogen, then the synthetic methodology often requires that the ring nitrogen be introduced in a higher oxidation state (nitro, ^{11d} hydroxylamine,^{11h,12h} nitroso,^{12c} or azide^{12d,f,j}), or indirectly as a nitrile group.^{11j} We herein report a synthesis of 3-hydroxypiperidines in which the ring closure occurs in a domino fashion and where the ring nitrogen is supplied

SYNTHESIS 2014, 46, 2506–2514 Advanced online publication: 23.06.2014 DOI: 10.1055/s-0033-1338629; Art ID: ss-2014-t0154-op © Georg Thieme Verlag Stuttgart · New York

m of biological ₃ 4 al examples in-

ŌН

chemistry (Scheme 1).

(CH₂)₁₂COMe

OH

HO.

conveniently by a primary amine. In addition, a phos-

phinyl moiety offers a handle for subsequent olefination

HC

Figure 1 Important types of naturally occurring 3(5)-hydroxypiperidines

Scheme 1 Domino process of nucleophilic attack (a) and Michaeltype addition (b) of a primary amine on 2-hydroxy-6-diphenylphosphinyl-5-hexenyl tosylate (6)

The key intermediate is 2-hydroxy-6-diphenylphosphinyl-5-hexenyl tosylate (6). We had reported earlier that this compound could be prepared conveniently by addition of tosylated glycidol to the anion of phosphine oxide 7 (Scheme 2).¹³ If toluene is employed as the solvent, the reaction proceeds with high γ -selectivity, that is, at the unsubstituted terminus of the allyl system to create the electron-poor alkene double bond in **6**.¹³ Thus, together with

Scheme 2 Formation of phosphine intermediate 6 and subsequent domino reactions with primary amines 8

the tosyloxy-substituted carbon, intermediate 6 represents a dication equivalent. The reaction with primary amines, which can act as bidentate nucleophiles, should allow the domino process outlined in Scheme 1.

The reaction of 6 with model amine 8h turned out to be rather slow. The optimum conditions involved heating the reaction mixture at 60 °C in methanol or ethanol in the presence of triethylamine for two days to give a 65-68% yield of the cyclization product 10h (Scheme 2). In tertbutyl alcohol as the solvent and using potassium *tert*-butoxide, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or triethylamine as the catalyst, the yields of piperidinol **10h** were only 25%, 29% and 40%, respectively. The use of pyridine in ethanol as the solvent resulted in a 51% yield of 10h. The reaction proceeded successfully with unbranched primary amines 8a-c, as well as with amines 8f.g containing unsaturation and functionalized amines 8h,i (Table 1). However, under the standard reaction conditions, the sterically hindered amine 8d and less nucleophilic aniline (8e) reacted via the $S_N 2$ process to yield substitution products 9d, e (Table 1); more vigorous conditions resulted in decomposition. It was not possible to employ N-unsubstituted amides such as benzamide in the tandem cyclization as only complex mixtures were obtained. The formation of amines 9d,e indicates that the successful domino cyclizations of the other amines 8 are initiated by the substitution step, and that this is followed by a Michael-type addition to the vinyl phosphine unit in intermediates 9a-c,f-i, and not via the reverse sequence. This reaction course is in line with the mechanism proposed by Bunce et al. for the cyclization of ω -iodo-alkenoates with benzylamine.¹⁴ The same should hold for a mesylate substitution and Michael sequence of mesyloxyalkenoates.15

The Michael-type addition of the secondary amine unit in 9 may occur at the *Re* or *Si* face of the vinyl phosphine moiety. In fact, piperidinols 10 were formed as mixtures of diastereomers. The diastereoselectivity was moderate (Table 1), but the two diastereomers could be separated easily by column chromatography, with the minor diastereomer being eluted first. We found it difficult to assign

Table 1 Cyclization of Alkene 6 with Different Primary Am	nines 8
---	---------

Amine	Product (total yield)	Yield of cis-10	Yield of trans-10
EtNH ₂ (8a)	10a (62%)	30%	29%
<i>n</i> -PrNH ₂ (8b)	10b (87%)	31%	36%
$\operatorname{BuNH}_2(\mathbf{8c})$	10c (86%)	42%	28%
t-BuNH ₂ (8d)	9d (73%)	_	_
$PhNH_2$ (8e)	9e (54%)	_	_
$BnNH_2$ (8f)	10f (85%)	36%	48%
allylNH ₂ (8g)	10g (73%)	37%	35%
$H_2NCH_2CH(OMe)_2$ (8h)	10h (68%)	34%	34%
H ₂ NCH ₂ CH ₂ OTBDMS (8i)	10i (78%)	22%	56%

the *cis*- or *trans*-configuration to these diastereomers based on the NMR coupling constants. After some experimentation, we observed that a crystalline phenyl urethane **11** was formed from the predominating diastereomer of piperidinol **10f** and phenyl isocyanate (Scheme 3). An Xray structural investigation of a suitable crystal revealed the *trans*-arrangement of the 5-carbamate and the 2-phosphinylmethyl substituents (Figure 2).¹⁶ Hence the starting material was *trans*-**10f**, which is consequently the major diastereomer and that which eluted second. Based on this information, comparison of the NMR data of **10f** with the other piperidinols **10** allowed assignment of the configurations of all products **10** (Table 1).

Scheme 3 Addition of phenyl isocyanate to piperidinol *trans*-10f to give carbamate 11

Figure 2 X-ray crystal structure of *trans-N*-phenyl urethane derivative 11

In addition to the convenient one-step formation of piperidinols from a readily accessible precursor and different amines as the nitrogen source, the presence of the phosphine oxide unit in **10** is an especially attractive feature for subsequent Horner olefination chemistry. In this context, an obvious target among naturally occurring piperidinols was pseudoconhydrine (**5**; Figure 1). This synthesis would require removal of the exocyclic substituent on nitrogen in precursor **10**, which should be possible, most conveniently, with the benzyl residue in **10f**. As this compound is available in both its *cis* and *trans* forms, a synthesis of the unnatural diastereomer, *epi*-pseudoconhydrine (*epi*-**5**), can be envisaged using the same synthetic manipulations starting from *cis*-**10f** (Scheme 4).

Scheme 4 Synthesis of pseudoconhydrine (5) and the unnatural diastereomer, *epi-5. Reagents and conditions*: (a) (1) NaH, THF, 0 °C to r.t.; (2) BnBr, Bu₄NI (0.2 equiv), 50 °C, 12 h; (b) (1) *n*-BuLi, THF, -78 °C; (2) MeCHO, -78 °C \rightarrow 0 °C; (3) NaH, DMF, 60 °C; (c) H₂, Pd/C, HCl, MeOH; (d) H₂, Pd(OH)₂/C, HCl, EtOH.

To allow the use of a strong base in the olefination chemistry, the secondary alcohol functionality of diastereomer trans-10f [isolated by column chromatography from the reaction of 6 and benzylamine (see Scheme 3)] was protected by benzylation to give trans-12 (Scheme 4). Chain elongation of the C-2 substituent was achieved by a twostep Horner reaction using acetaldehyde as the carbonyl component. The reaction first provided the α -hydroxy addition product, which was transformed into the alkene, trans-13, using sodium hydride and N,N-dimethylformamide at 60 °C. The product was formed with moderate *trans*-selectivity (E/Z = 67:33), which may reflect the similar steric requirements of the diphenylphosphinyl group and the piperidine heterocycle in the Horner intermediate. Reductive removal of the O- and N-benzyl protecting groups and simultaneous reduction of the double bond was achieved by hydrogenation using palladium on carbon as the catalyst to provide the target molecule, pseudoconhydrine (5). The structure of 5 was confirmed by comparison of its NMR data,^{11h,12h} and those of its hydrochloride salt (5·HCl)^{12r} with literature values, which proved to be identical.

The synthesis of *epi*-**5** was achieved along similar lines (Scheme 4). In a modification, the reduction of alkene **13** into *epi*-**5** was carried out in two steps, as the direct conversion of *trans*-**13** into **5** gave a rather modest yield. Initial exposure of *cis*-**13** to an atmosphere of hydrogen in the presence of Pearlman's catalyst $[Pd(OH)_2/C]$ in ethanol–hydrochloric acid gave the partly cleaved and reduced product **14**. As expected, in the presence of the amine function, ¹⁷ the O–Bn bond survived the reduction reaction. In a second hydrogenation step using palladium on charcoal (Pd/C) as the catalyst, *epi*-pseudoconhydrine (*epi*-**5**) was formed. The structural assignment of *epi*-**5** was based on the spectroscopic data, which were quite similar to those of pseudoconhydrine (**5**).

In summary, we have presented a straightforward, amineinduced domino cyclization of the phosphinyl-substituted alcohol **6** to give 2-substituted piperidin-5-ols. Both diastereomers could be isolated by chromatography. The method was also applied to the synthesis of pseudoconhydrine (**5**) and *epi*-pseudoconhydrine (*epi*-**5**) in only three or four additional steps following the cyclization. It should be noted that the procedure may easily be utilized for the synthesis of optically active **5** and *epi*-**5** if the allyl derivative **7** is reacted with an enantiomerically enriched glycidol tosylate. This chiral substrate is readily available by Sharpless epoxidation of allyl alcohol¹⁸ and subsequent tosylation.¹⁹

Reactions requiring anhydrous conditions were performed under nitrogen. The amines used in this research were purchased from commercial sources, except for amine **8h**.²⁰ Column or flash column chromatography was performed on Macherey–Nagel silica gel (60, 230–400 mesh). Petroleum ether (PE) refers to the fraction boiling in the 60–70 °C range. Melting points were recorded using a Büchi instrument according to Dr. Tottoli apparatus and are uncorrected. FTIR spectra were measured on a Bruker Vektor 22 FT spectrophotometer. NMR spectra were measured at 400 MHz or 200 MHz (¹H), 100 or 50 MHz (¹³C) and 162 MHz (³¹P) on Bruker ARX-400 and DPX-200 instruments. Deuterated chloroform was used as the solvent unless otherwise stated. Chemical shifts (δ) are reported relative to tetramethylsilane ($\delta = 0$ ppm) as an internal standard for ¹H and ¹³C spectra in CDCl₃, Me₃SiCD₂CD₂COONa ($\delta_{Me} = 0$ ppm) for spectra in D₂O, and external trimethyl phosphite (shifts corrected for 80% aq H₃PO₄ with $\delta = 0$ ppm) for ³¹P NMR spectra. MS spectra were recorded using a Hewlett Packard HP 5989 B spectrometer. High-resolution mass spectra (HRMS) were obtained using a VG Autospec instrument at the Institut für Organische Chemie, Leibniz-Universität Hannover. Elemental analyses were performed using a Carlo Erba 1106 analyzer at the Institut für Pharmazeutische Chemie, TU Braunschweig.

cis- and *trans*-1-Ethyl-6-(diphenylphosphinylmethyl)piperidin-3-ol (10a); General Procedure

A solution of alkene 6^{13} (361 mg, 0.768 mmol), ethylamine (0.38 mL, 2 M in MeOH, 0.768 mmol) and anhydrous Et₃N (0.118 mL, 0.845 mmol) in anhydrous EtOH (4.2 mL) was heated at 60 °C for 2.5 d. The mixture was allowed to cool and then concentrated in vacuo. The residue was dissolved in a mixture of Et₂O–CH₂Cl₂ (10 mL, 2:1). The organic layer was washed with 1 M NaOH (3 × 5 mL) and brine (10 mL), dried (MgSO₄) and concentrated in vacuo. The crude mixture of isomeric products was purified by flash column chromatography (EtOAc–EtOH–Et₃N, 40:1:0.5) to give *cis*-10a (79 mg, 30%), a mixture of *cis*- and *trans*-10a (8 mg, 3%) and *trans*-10a (77 mg, 29%); total yield: 164 mg (62%).

cis-10a

Yellow solid; mp 43 °C.

IR (KBr): 3412, 3055, 2929, 1655, 1591, 1438, 1162, 1119, 696 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.92$ (t, ³*J* = 7.2 Hz, 3 H), 1.38–1.82 (m, 4 H), 2.39–2.73 (m, 6 H), 2.97–3.36 (m, 2 H, CH, OH), 3.70–3.87 (m, 1 H), 7.39–7.58 (m, 6 H), 7.67–7.85 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 10.3, 26.5, 29.0, 29.3 (d, $J_{PC} = 69.2$ Hz), 47.5, 54.2, 54.9, 64.6, 128.8, 128.9, 130.6, 130.6 (d, $J_{PC} = 9.2$ Hz, 2 C), 132.0 (d, $J_{PC} = 3.1$ Hz, 2 C), 132.6 (d, $J_{PC} = 100.7$ Hz), 132.9 (d, $J_{PC} = 99.7$ Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.0.

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₂₆NO₂P: 343.1701; found: 343.1701.

trans-10a

Yellow solid; mp 45 °C.

IR (KBr): 3383, 3058, 2964, 2932, 2857, 1652, 1591, 1439, 1178, 1119, 697 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.90$ (t, ³*J* = 7.2 Hz, 3 H), 1.34– 1.83 (m, 4 H), 2.30–2.58 (m, 5 H), 2.74 (dd, ²*J* = 11.9 Hz, ³*J* = 2.4 Hz, 1 H), 3.04–3.22 (m, 1 H), 3.69 (br s, 1 H, OH), 3.72–3.84 (m, 1 H), 7.39–7.58 (m, 6 H), 7.69–7.83 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 11.3, 26.1 (d, J_{PC} = 69.2 Hz), 26.5, 28.5, 47.6, 52.9, 54.2, 64.9, 128.7, 128.8, 130.5, 130.7 (each d, J_{PC} = 9.2 Hz, 2 C), 131.9 (d, J_{PC} = 2.0 Hz, 2 C), 132.6, 133.4 (each d, J_{PC} = 99.7 Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.3.

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₂₆NO₂P: 343.1701; found: 343.1701.

cis- and *trans*-1-Propyl-6-(diphenylphosphinylmethyl)piperidin-3-ol (10b)

Reaction of alkene **6** (470 mg, 1 mmol) and *n*-propylamine (0.083 mL, 1 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 40:1:0.5) gave *cis*-**10b** (109 mg, 31%), a mixture of *cis*- and *trans*-**10b** (70 mg, 20%) and *trans*-**10b** (129 mg, 36%); total yield: 308 mg (87%).

cis-10b

Pale yellow solid; mp 38 °C.

IR (KBr): 3347, 3056, 2932, 1662, 1591, 1438, 1169, 1119, 719, 698 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): $\delta = 0.75$ (t, ³J = 7.4 Hz, 3 H), 1.17–1.82 (m, 6 H), 2.19–2.67 (m, 6 H), 2.59 (dd, ²J = 11.3 Hz, ³J = 3.8 Hz, 1 H), 3.09 (dddt, ³J = 8.7 Hz, ³J = 8.5 Hz, ³J = 4.0 Hz, ³ $J_{PH} \approx 2.0$ Hz, 1 H), 3.72 (dddd, ³J = 8.0 Hz, ³J = 8.0 Hz, ³J = 4.0 Hz, ⁴J = 4.0 Hz, ³J = 4.0 Hz, ³J = 4.0 Hz, ⁴J = 4.0 Hz,

¹³C NMR (50 MHz, CDCl₃): δ = 11.7, 19.8, 26.6 (d, *J*_{PC} = 69.5 Hz), 27.8, 29.1, 52.4, 55.1, 55.8, 66.3, 128.5, 128.8, 130.5, 130.7 (each d, *J*_{PC} = 9.2 Hz, 2 C), 131.69, 131.70 (each d, *J*_{PC} = 2.4 Hz), 133.1 (d, *J*_{PC} = 98.7 Hz), 133.8 (d, *J*_{PC} = 99.1 Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.3.

trans-10b

Pale yellow solid; mp 36 °C.

IR (KBr): 3375, 3057, 2963, 2930, 2872, 1656, 1591, 1438, 1160, 1120, 699 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): δ = 0.77 (t, ³*J* = 7.3 Hz, 3 H), 1.07– 1.78 (m, 6 H), 2.14–2.54 (m, 5 H), 2.75 (dd, ²*J* = 11.9 Hz, ³*J* = 2.1 Hz, 1 H), 3.10–3.26 (m, 1 H), 3.73–3.84 (m, 1 H), 4.70 (br s, 1 H, OH), 7.39–7.58 (m, 6 H), 7.61–7.85 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 11.6, 19.6, 25.2 (d, J_{PC} = 69.2 Hz), 25.9, 27.8, 53.0, 54.2, 55.7, 64.9, 128.6, 128.8, 130.5 (d, J_{PC} = 10.2 Hz, 2 C), 130.7 (d, J_{PC} = 9.2 Hz, 2 C), 131.8 (d, J_{PC} = 3.1 Hz, 2 C), 132.6 (d, J_{PC} = 98.7 Hz), 133.5 (d, J_{PC} = 99.7 Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.5.

HRMS (EI): m/z [M]⁺ calcd for C₂₁H₂₈NO₂P: 357.1858; found: 357.1858.

cis- and *trans*-1-Butyl-6-(diphenylphosphinylmethyl)piperidin-3-ol (10c)

Reaction of alkene **6** (354 mg, 0.75 mmol) and *n*-butylamine (0.07 mL, 0.75 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 40:1:0.5) gave *cis*-**10c** (117 mg, 42%), a mixture of *cis*- and *trans*-**10c** (43 mg, 15.5%) and *trans*-**10c** (79 mg, 28.4%); total yield: 239 mg (85.9%).

cis-10c

Pale yellow solid; mp 42 °C.

IR (KBr): 3385, 3057, 2930, 2869, 1657, 1591, 1438, 1163, 1119, 695 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): $\delta = 0.80$ (t, ³*J* = 7.3 Hz, 3 H), 1.06– 1.82 (m, 8 H), 2.16–2.52 (m, 6 H), 2.59 (dd, ²*J* = 11.3 Hz, ³*J* = 3.5 Hz, 1 H), 3.08 (dddt, ³*J* = 8.7 Hz, ³*J* = 8.5 Hz, ³*J* = 4.3 Hz, ³*J*_{PH} \approx 2.5 Hz, 1 H), 3.72 (dddd, ³*J* = 8.0 Hz, ³*J* = 8.0 Hz, ³*J* = 4.0 Hz, ³*J* = 4.0 Hz, ³*J* = 4.0 Hz, ¹ H), 7.38–7.58 (m, 6 H), 7.67–7.84 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 13.9, 20.4, 27.2 (d, J_{PC} = 70.0 Hz), 28.3 (d, J_{PC} = 1.5 Hz), 28.8, 29.3, 52.5, 53.6, 55.3, 66.4, 128.5, 128.8 (each d, J_{PC} = 1.5 Hz, 2 C), 130.5, 130.7 (each d, J_{PC} = 9.2 Hz, 2 C), 131.70, 131.71 (each d, J_{PC} = 2.4 Hz, 2 C), 133.2, 133.9 (d, J_{PC} = 98.7 Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.2.

HRMS (EI): m/z [M]⁺ calcd for C₂₂H₃₀NO₂P: 371.2014; found: 371.2014.

trans-10c

Pale yellow solid; mp 33 °C.

IR (KBr): 3355, 3057, 2933, 2870, 1660, 1591, 1438, 1181, 1120, 698 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 0.80$ (t, ³*J* = 7.2 Hz, 3 H), 1.07–1.73 (m, 8 H), 2.18–2.51 (m, 5 H), 2.67 (dd, ²*J* = 11.8 Hz, ³*J* = 2.0

Hz, 1 H), 3.04 (br s, 1 H, OH), 3.10–3.30 (m, 1 H), 3.70–3.81 (m, 1 H), 7.39–7.59 (m, 6 H), 7.68–7.84 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 13.8, 20.3, 24.4 (d, J_{PC} = 69.5 Hz), 25.7, 27.5, 28.9, 52.6, 53.7, 54.0, 65.1, 128.6, 128.8 (each 2 C), 130.5, 130.8 (each d, J_{PC} = 9.2 Hz, 2 C), 131.8 (d, J_{PC} = 2.4 Hz, 2 C), 132.8, 133.8 (each d, J_{PC} = 99.1 Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.5.

Anal. Calcd for C₂₂H₃₀NO₂P: C, 71.14; H, 8.14; N, 3.77. Found: C, 71.45; H, 8.35; N, 3.63.

(E)-[5-Hydroxy-6-(*tert*-butylamino)-1-hexenyl]diphenylphosphine Oxide (9d)

Reaction of alkene 6 (470 mg, 1.0 mmol) and *tert*-butylamine (0.11 mL, 1.0 mmol) using the general procedure gave the crude product 9d (272 mg, 73%) as an orange viscous oil, which was characterized without further purification.

¹H NMR (200 MHz, CDCl₃): $\delta = 1.11$ (s, 9 H), 1.52–1.66 (m, 2 H), 2.36 (dd, ²*J* = 11.8 Hz, ³*J* = 9.0 Hz, 1 H), 2.42–2.64 (m, 2 H), 2.73 (dd, ²*J* = 11.8 Hz, ³*J* = 3.0 Hz, 1 H), 2.83 (br s, 2 H), 3.46–3.61 (m, 1 H), 6.27 (ddt, ³*J* = 17.0 Hz, ⁴*J* = 1.5 Hz, ²*J*_{PH} = 24.4 Hz, 1 H), 6.74 (ddt, ³*J* = 17.0 Hz, ³*J* = 6.4 Hz, ³*J*_{PH} = 19.5 Hz, 1 H), 7.37–7.57 (m, 6 H), 7.60–7.75 (m, 4 H).

(*E*)-[5-Hydroxy-6-(phenylamino)-1-hexenyl]diphenylphosphine Oxide (9e)

Reaction of alkene **6** (595 mg, 1.27 mmol) and aniline (0.12 mL, 1.27 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 50:1:0.5) gave **9e** (269 mg, 54%).

Pale orange solid; mp 38 °C.

IR (KBr): 3352, 3054, 3023, 2927, 1635, 1603, 1437, 1173, 1121, 1102, 997, 809, 753, 722, 694 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 1.60-1.78$ (m, 2 H), 2.28–2.63 (m, 2 H), 3.00 (dd, ²*J* = 12.7 Hz, ³*J* = 8.2 Hz, 1 H), 3.20 (dd, ²*J* = 12.7 Hz, ³*J* = 3.4 Hz, 1 H), 3.74–3.92 (m, 1 H), 6.26 (ddt, ³*J* = 17.1 Hz, ⁴*J* = 1.5 Hz, ²*J*_{PH} = 24.4 Hz, 1 H), 6.25–6.76 (m, 3 H), 6.74 (ddt, ³*J* = 17.1 Hz, ³*J* = 6.4 Hz, ³*J*_{PH} = 19.8 Hz, 1 H), 7.07–7.20 (m, 2 H), 7.35–7.57 (m, 6 H), 7.58–7.75 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 30.7 (d, J_{PC} = 17.0 Hz, 1 C), 33.1, 50.2, 69.2, 113.1 (2 C), 117.6, 121.9 (d, J_{PC} = 103.0 Hz, 1 C), 128.6 (d, J_{PC} = 12.2 Hz, 4 C), 129.2 (2 C), 131.2 (d, J_{PC} = 10.2 Hz, 4 C), 131.8 (d, J_{PC} = 2.9 Hz, 2 C), 132.8 (d, J_{PC} = 105.5 Hz, 2 C), 148.3, 152.2 (d, J_{PC} = 2.4 Hz, 1 C).

³¹P NMR (162 MHz, CDCl₃): δ = 23.5.

HRMS (EI): m/z [M]⁺ calcd for C₂₄H₂₆NO₂P: 391.1701; found: 391.1701.

cis- and *trans*-1-Benzyl-6-(diphenylphosphinylmethyl)piperidin-3-ol (10f)

Reaction of alkene **6** (5.283 g, 11.238 mmol) and benzylamine (1.226 mL, 11.238 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 30:1:0.5) gave *cis*-**10f** (1.279 g, 28.1%), a mixture of *cis*- and *trans*-**10f** (ratio 1:5, 2.234 g, 49.1%) and *trans*-**10f** (0.33 g, 7.3%); total yield: 3.846 g (85%).

cis-10f

Pale yellow solid; mp 58 °C.

IR (KBr): 3333, 3059, 3027, 2936, 2867, 2802, 1665, 1591, 1438, 1177, 1120, 695 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 1.40-1.88$ (m, 4 H), 2.04 (br s, 1 H, OH), 2.40 (dd, ²*J* = 11.6 Hz, ³*J* = 8.0 Hz, 1 H), 2.46–2.61 (m, 3 H), 3.17 (dddt, ³*J* = 8.8 Hz, ³*J* = 8.8 Hz, ³*J* = 4.4 Hz, *J*_{PH} = 2.5 Hz, 1 H), 3.36, 3.64 (each d, ²*J* = 13.6 Hz, 1 H), 3.69 (dddd, ³*J* = 8.0 Hz, ³*J* = 8.0 Hz, ³*J* = 8.0 Hz, ³*J* = 4.0 Hz, ³*J* = 4.0 Hz, 1 H), 7.15–7.29 (m, 5 H), 7.37–7.57 (m, 6 H), 7.62–7.81 (m, 4 H).

Synthesis 2014, 46, 2506-2514

¹³C NMR (50 MHz, CDCl₃): δ = 27.1 (d, J_{PC} = 69.3 Hz), 28.1, 29.1, 53.4, 54.5, 58.4, 66.5, 127.0, 128.4, 128.2 (each 2 C), 128.7 (d, J_{PC} = 11.5 Hz, 4 C), 130.5 (d, J_{PC} = 9.2 Hz), 130.7 (d, J_{PC} = 9.0 Hz), 131.7 (d, J_{PC} = 3.0 Hz), 132.9 (d, J_{PC} = 98.4 Hz), 133.9 (d, J_{PC} = 98.4 Hz), 138.8.

³¹P NMR (162 MHz, CDCl₃): δ = 30.3.

Anal. Calcd for $C_{25}H_{28}NO_2P$: C, 74.05; H, 6.96; N, 3.45. Found: C, 73.61; H, 6.94; N, 3.17.

trans-10f

Pale yellow solid; mp 56 °C.

IR (KBr): 3354, 3056, 3026, 2932, 2859, 2798, 1661, 1591, 1437, 1181, 1119, 742, 696 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.48–1.86 (m, 3 H), 1.95–2.17 (m, 1 H), 2.37 (dd, ²*J* = 12.0 Hz, ³*J* = 4.4 Hz, 1 H), 2.51 (dd, ²*J* = 12.6 Hz, ³*J* = 6.6 Hz, 2 H), 2.69 (dd, ²*J* = 12.0 Hz, ³*J* = 2.0 Hz, 1 H), 3.15–3.32 (m, 1 H), 3.38 (d, ²*J* = 13.6 Hz, 1 H), 3.54 (d, ²*J* = 13.2 Hz, 1 H), 3.72 (m_c, 1 H), 7.14–7.34 (m, 5 H), 7.38–7.58 (m, 6 H), 7.67–7.79 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 25.1 (d, J_{PC} = 68.8 Hz), 25.8, 27.4, 53.4, 54.5, 58.6, 65.2, 127.2, 128.4, 128.6 (2 C), 128.70, 128.73 (d, J_{PC} = 11.6 Hz, 2 C), 130.5, 130.8 (d, J_{PC} = 9.2 Hz, 2 C), 131.7 (d, J_{PC} = 2.0 Hz), 131.8 (d, J_{PC} = 3.0 Hz), 132.6 (d, J_{PC} = 99.6 Hz), 133.9 (d, J_{PC} = 99.6 Hz), 138.3.

³¹P NMR (162 MHz, CDCl₃): δ = 30.3.

Anal. Calcd for $C_{25}H_{28}NO_2P$: C, 74.05; H, 6.96; N, 3.45. Found: C, 73.45; H, 7.07; N, 3.43.

cis- and trans-1-Allyl-6-(diphenylphosphinylmethyl)piperidin-3-ol (10g)

Reaction of alkene **6** (715 mg, 1.52 mmol) and allylamine (0.114 mL, 1.52 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 40:1:0.5) gave *cis*-**10g** (199 mg, 37%), a mixture of *cis*- and *trans*-**10g** (4 mg, 1%), and *trans*-**10g** (188 mg, 35%); total yield: 391 mg (73%).

cis-10g

Pale yellow solid; mp 41 °C.

IR (KBr): 3348, 3077, 3058, 2935, 2869, 2805, 1643, 1591, 1438, 1178, 1120, 751, 699 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 1.40-1.83$ (m, 4 H), 2.37–2.67 (m, 4 H), 2.94, 3.10 (each ddt, ²*J* = 14.0 Hz, ³*J* = 6.4 Hz, ⁴*J* = 1.4 Hz, 1 H), 2.95–3.13 (m, 1 H), 3.73 (dddd, ³*J* = 7.6 Hz, ³*J* = 7.6 Hz, ³*J* = 3.8 Hz, ³*J* = 3.8 Hz, 1 H), 4.99–5.13 (m, 2 H), 5.66 (ddt, ³*J* = 17.0 Hz, ³*J* = 10.2 Hz, ³*J* = 6.4 Hz, 1 H), 7.39–7.57 (m, 6 H), 7.67–7.83 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 27.8 (d, $J_{PC} = 69.4$ Hz), 27.8 (d, $J_{PC} = 2.0$ Hz), 29.4, 53.3, 55.1, 57.2, 66.2, 117.5, 128.5, 128.8 (each 2 C), 130.5 (d, $J_{PC} = 9.7$ Hz, 2 C), 130.7 (d, $J_{PC} = 9.2$ Hz, 2 C), 131.7 (d, $J_{PC} = 2.4$ Hz, 2 C), 133.2 (d, $J_{PC} = 98.2$ Hz), 133.9 (d, $J_{PC} = 99.1$ Hz), 135.1.

³¹P NMR (162 MHz, CDCl₃): δ = 30.1.

HRMS (EI): m/z [M]⁺ calcd for C₂₁H₂₆NO₂P: 355.1701; found: 355.1701.

trans-10g

Pale yellow solid; mp 48 °C.

IR (KBr): 3339, 3077, 3058, 2935, 2862, 2806, 1641, 1591, 1438, 1183, 1120, 751, 698 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): $\delta = 1.37-1.77$ (m, 3 H), 1.95–2.10 (m, 1 H), 2.33–2.49 (m, 2 H), 2.42 (dd, ²*J* = 12.6 Hz, ³*J* = 8.8 Hz, 1 H), 2.70 (dd, ²*J* = 12.0 Hz, ³*J* = 2.4 Hz, 1 H), 2.89, 3.04 (each ddt, ²*J* = 14.0 Hz, ³*J* = 6.4 Hz, ⁴*J* = 1.4 Hz, 1 H), 3.08–3.30 (m, 1 H), 3.73 (dddd, ³*J* = 5.2 Hz, ³*J* = 5.2 Hz, ³*J* = 2.6 Hz, ³*J* = 2.6 Hz, 1 H), 4.98–5.11 (m, 2 H), 5.67 (ddt, ${}^{3}J$ = 17.6 Hz, ${}^{3}J$ = 9.6 Hz, ${}^{3}J$ = 6.4 Hz, 1 H), 7.39–7.57 (m, 6 H), 7.68–7.82 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 25.7 (d, *J*_{PC} = 69.7 Hz), 26.4, 28.2, 53.3, 54.2, 57.3, 65.4, 117.7, 128.6, 128.8 (each 2 C), 130.5 (d, *J*_{PC} = 9.2 Hz, 2 C), 130.8 (d, *J*_{PC} = 9.2 Hz, 2 C), 131.8 (d, *J*_{PC} = 2.4 Hz, 2 C), 132.8 (d, *J*_{PC} = 98.2 Hz), 133.8 (d, *J*_{PC} = 99.6 Hz), 135.1. ³¹P NMR (162 MHz, CDCl₃): δ = 30.4.

HRMS (EI): m/z [M]⁺ calcd for C₂₁H₂₆NO₂P: 355.1701; found: 355.1701.

cis- and *trans*-1-(2,2-Dimethoxyethyl)-6-(diphenylphosphinyl-methyl)piperidin-3-ol (10h)

Reaction of alkene 6 (1.88 g, 4 mmol) and 2,2-dimethoxyethanamine (0.436 mL, 4 mmol) using the general procedure, and purification by flash column chromatography (EtOAc–EtOH–Et₃N, 30:1:0.5) gave the diastereomers of **10h** in equal amounts; total yield: 1.097 g (68%).

cis-10h

Orange oil.

IR (film): 3347, 3056, 2937, 1438, 1175, 750, 720, 698 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 1.47$ (m_c, 1 H), 1.66 (m_c, 1 H), 1.76 (m_c, 2 H), 2.44–2.62 (m, 6 H), 2.73 (dd, ²*J* = 11.6 Hz, ³*J* = 4.0 Hz, 1 H), 3.13 (m_c, 1 H), 3.25, 3.29 (each s, 3 H), 3.71 (ddd, ³*J* = 12.4 Hz, ³*J* = 8.0 Hz, ³*J* = 4.0 Hz, 1 H), 4.27 (t, ³*J* = 5.2 Hz, 1 H), 7.47 (m_c, 6 H), 7.75 (m_c, 4 H).

¹³C NMR (101 MHz, CDCl₃): δ = 27.0 (d, $J_{PC} = 69.5$ Hz), 27.4 (d, $J_{PC} = 2.0$ Hz), 28.8, 53.1, 53.7, 53.8, 55.7, 55.9, 66.1, 128.6 (d, $J_{PC} = 11.7$ Hz, 4 C), 103.3, 130.4, 130.7 (each d, $J_{PC} = 9.2$ Hz, 2 C), 131.7 (d, $J_{PC} = 2.4$ Hz, 2 C), 132.8 (d, $J_{PC} = 99.1$ Hz), 133.7 (d, $J_{PC} = 98.7$ Hz).

Anal. Calcd for $C_{22}H_{30}NO_4P$: C, 65.49; H, 7.49; N, 3.47. Found: C, 65.11; H, 7.35; N, 3.38.

trans-10h

Orange oil.

IR (film): 3355, 3056, 2934, 2831, 1591, 1438, 1184, 750, 664 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 1.46-1.68$ (m, 3 H), 2.04 (m_c, 1 H), 2.36–2.51 (m, 4 H), 2.53 (dd, ²*J* = 12.3 Hz, ³*J* = 4.0 Hz, 1 H), 2.82 (br s, 1 H, OH), 2.81 (dd, ²*J* = 12.3 Hz, ³*J* = 2.0 Hz, 1 H), 3.19 (m_c, 1 H), 3.24, 3.30 (each s, 3 H), 3.74 (m_c, 1 H), 4.26 (t, ³*J* = 5.4 Hz, 1 H), 7.44–7.56 (m, 6 H), 7.76 (m_c, 4 H).

¹³C NMR (101 MHz, CDCl₃): $\delta = 25.5$ (d, $J_{PC} = 70.5$ Hz), 25.6, 27.2, 53.7, 53.8, 54.7, 55.6, 55.7, 65.1, 103.2, 128.69, 128.72 (each d, $J_{PC} = 11.6$ Hz, 2 C), 130.5, 130.8 (each d, $J_{PC} = 9.5$ Hz, 2 C), 131.8 (d, $J_{PC} = 2.8$ Hz, 2 C), 132.8 (d, $J_{PC} = 98.5$ Hz), 133.8 (d, $J_{PC} = 100.1$ Hz).

Anal. Calcd for $C_{22}H_{30}NO_4P$: C, 65.49; H, 7.49; N, 3.47. Found: C, 65.30; H, 7.79; N, 3.60.

cis- and *trans*-1-[2-(*tert*-Butyldimethylsilyloxy)ethyl]-6-(diphenylphosphinylmethyl)piperidin-3-ol (10i)

Reaction of alkene **6** (230 mg, 0.49 mmol) and 2-(*tert*-butyldimethylsiloxy)ethylamine (86 mg, 0.49 mmol) using the general procedure, and purification by flash column chromatography (EtOAc– EtOH–Et₃N, 30:1:0.5) gave *cis*-**10i** (50 mg, 22%), and *trans*-**10i** (131 mg, 56%); total yield: 181 mg (78%).

cis-10i

Orange viscous oil.

IR (film): 3347, 3057, 2930, 2856, 1591, 1438, 1254, 1180, 1118, 836 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = -0.01$ (s, 6 H), 0.84 (s, 9 H), 1.45, 1.62 (each m_c, 1 H), 1.71 (m_c, 2 H), 2.35–2.60 (m, 6 H), 2.65 (dd, ²*J* = 12.0 Hz, ³*J* = 3.6 Hz, 1 H), 3.04 (dddt, ³*J* = 8.4 Hz, ³*J* = 8.0 Hz, ³*J* = 4.0 Hz, *J*_{PC} = 2.5 Hz, 1 H), 3.50 (t, ³*J* = 6.6 Hz, 2 H), 3.69

© Georg Thieme Verlag Stuttgart · New York

(dddd, ${}^{3}J = 8.0 \text{ Hz}$, ${}^{3}J = 8.0 \text{ Hz}$, ${}^{3}J = 4.0 \text{ Hz}$, ${}^{3}J = 4.0 \text{ Hz}$, 1 H), 7.46 (m_c, 6 H), 7.74 (m_c, 4 H).

¹³C NMR (101 MHz, CDCl₃): δ = -5.38, -5.36, 18.2, 25.9, 27.8 (d, $J_{PC} = 2.0$ Hz), 27.9 (d, $J_{PC} = 69.9$ Hz), 29.1, 53.5, 56.1 (2 C), 61.4, 66.1, 128.6 (d, $J_{PC} = 11.9$ Hz, 4 C), 130.5, 130.7 (each d, $J_{PC} = 9.3$ Hz, 2 C), 131.7 (d, $J_{PC} = 2.8$ Hz, 2 C), 133.0 (d, $J_{PC} = 98.9$ Hz), 133.8 (d, $J_{PC} = 99.3$ Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 30.7.

Anal. Calcd for $C_{26}H_{40}NO_3PSi;$ C, 65.93; H, 8.51; N, 2.96. Found: C, 65.13; H, 8.63; N, 2.84.

trans-10i

Orange viscous oil.

IR (film): 3356, 3057, 2929, 2856, 1591, 1438, 1254, 1183, 836 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.00$ (s, 6 H), 0.85 (s, 9 H), 1.46– 1.68 (m, 3 H), 2.02 (m, 1 H), 2.34–2.55 (m, 6 H), 2.77 (dd, ²*J* = 11.9 Hz, ³*J* = 2.1 Hz, 1 H), 3.16 (m_c, 1 H), 3.51 (t, ³*J* = 6.2 Hz, 2 H), 3.73 (m_c, 1 H), 7.48 (m, 6 H), 7.76 (m, 4 H).

¹³C NMR (101 MHz, CDCl₃): $\delta = -5.4$, 18.2, 25.5 (d, $J_{PC} = 69.0$ Hz), 25.6, 25.9, 27.4, 53.5, 54.4, 56.2, 61.2, 65.1, 128.68, 128.70 (each d, $J_{PC} = 11.9$ Hz, 2 C), 130.5, 130.8 (each d, $J_{PC} = 9.2$ Hz, 2 C), 131.76, 131.78 (each d, $J_{PC} = 2.8$ Hz, 2 C), 132.8 (d, $J_{PC} = 99.1$ Hz), 133.8 (d, $J_{PC} = 99.9$ Hz).

³¹P NMR (162 MHz, CDCl₃): δ = 31.0.

Anal. Calcd for $C_{26}H_{40}NO_3PSi:$ C, 65.93; H, 8.51; N, 2.96. Found: C, 65.47; H, 8.56; N, 2.74.

trans-1-Benzyl-6-(diphenylphosphinylmethyl)piperidin-3-yl *N*-Phenylcarbamate (11)

To a vigorously stirred suspension of *trans*-10f (202.5 mg, 0.5 mmol) in Et₂O (1 mL) was added phenyl isocyanate (0.054 mL, 0.5 mmol) and Et₃N (1 drop). After 24 h without significant reaction, DMAP (6.1 mg, 0.05 mmol) was added. Stirring was continued for another 12 h. The mixture was triturated with PE (4 mL), and the remaining solid removed by filtration and then washed with PE (3×1 mL). Crystallization from benzene–PE gave the desired product (206 mg, 79%).

Pale yellow solid; mp 152-154 °C.

IR (KBr): 3326, 3287, 3238, 3192, 3128, 3058, 3035, 2951, 2867, 2802, 1720, 1548, 1597, 1444, 1230, 1176, 1157, 1120, 694 cm⁻¹.

¹H NMR (200 MHz, CD₃OD): δ = 1.48–1.68, 1.84–2.26 (each m, 2 H), 2.50 (dd, ²*J* = 13.0 Hz, ³*J* = 5.3 Hz, 1 H), 2.58–2.92 (m, 2 H), 2.83 (dd, ²*J* = 12.8 Hz, ³*J* = 2.5 Hz, 1 H), 3.06–3.26 (m, 1 H), 3.44, 3.73 (each d, ²*J* = 13.8 Hz, 1 H), 4.68–4.80 (m, 1 H), 6.94–7.06 (m, 2 H), 7.11–7.65 (m, 14 H), 7.73–7.90 (m, 4 H).

¹³C NMR (50 MHz, CD₃OD): δ = 26.7, 26.9 (d, *J*_{PC} = 69.0 Hz), 27.5, 52.0, 55.0, 59.4, 70.3, 120.4, 123.9 (d, *J*_{PC} = 6.3 Hz), 128.0, 129.3 (2 C), 129.6, 129.7 (each 2 C), 129.9, 130.0 (d, *J*_{PC} = 11.7 Hz, 4 C), 131.7 (d, *J*_{PC} = 9.7 Hz, 2 C), 131.8 (d, *J*_{PC} = 9.7 Hz, 2 C), 133.3 (d, *J*_{PC} = 2.9 Hz, 2 C), 133.4 (d, *J*_{PC} = 99.6 Hz), 134.5 (d, *J*_{PC} = 100.1 Hz), 140.0, 140.2, 155.5.

³¹P NMR (162 MHz, CD₃OD): δ = 37.1.

Anal. Calcd for $C_{32}H_{33}N_2O_3P$: C, 73.27; H, 6.34; N, 5.34. Found: C, 72.49; H, 6.21; N, 5.64.

cis-1-Benzyl-2-(diphenylphosphinylmethyl)-5-(benzyloxy)piperidine (*cis*-12)

A solution of *cis*-**10f** (2.385 g, 5.89 mmol) in anhydrous THF (74 mL) was cooled to 0 °C and NaH (339.2 mg, 7.07 mmol) was added in small portions. The mixture was allowed to warm to r.t. and stirred for 30 min. Bu₄NI (435 mg, 1.178 mmol) and BnBr (0.77 mL, 6.479 mmol) were added and the resulting mixture was heated at 50 °C for 2 h. The mixture was hydrolyzed with H₂O (4.5 mL), extracted with a mixture of Et₂O–CH₂Cl₂ (2:1, 3×5 mL), dried (MgSO₄) and concentrated in vacuo. Purification by flash column

chromatography (EtOAc–PE–Et₃N, 2:1:2 v/v) afforded the title product (1.784 g, 61%).

Colorless needles; mp 107 °C.

IR (KBr): 3050, 3025, 2945, 2868, 1591, 1495, 1439, 1355, 1180, 1121, 1107, 906, 739, 695 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 1.40–2.04 (m, 4 H), 2.33 (dd, ²*J* = 11.4 Hz, ³*J* = 9.8 Hz, 1 H), 2.45 (ddd, ²*J* = 12.2 Hz, ³*J* = 2.4 Hz, *J*_{PH} = 14.8 Hz, 1 H), 2.62 (ddd, ²*J* = 12.8 Hz, ³*J* = 10.0 Hz, *J*_{PH} = 14.8 Hz, 1 H), 2.74 (dd, ²*J* = 11.6 Hz, ³*J* = 4.4 Hz, 1 H), 3.27– 3.54 (m, 2 H), 3.49 (s, 2 H), 4.41, 4.49 (each d, ²*J* = 11.8 Hz, 1 H), 7.12–7.33 (m, 10 H), 7.35–7.55 (m, 6 H), 7.64–7.82 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 24.8 (d, J_{PC} = 68.9 Hz), 25.7, 27.7 (d, J_{PC} = 1.6 Hz), 50.3, 52.3, 58.6, 70.2, 73.9, 126.9, 127.4 (2 C), 127.5 (2 C), 128.2 (2 C), 128.3 (4 C), 128.6 (d, J_{PC} = 11.9 Hz, 2 C), 130.5, 130.7 (d, J_{PC} = 9.2 Hz, 2 C), 131.6 (d, J_{PC} = 2.4 Hz, 2 C), 132.9 (d, J_{PC} = 98.0 Hz), 134.2 (d, J_{PC} = 100.8 Hz), 138.6, 138.9.

³¹P NMR (162 MHz, CDCl₃): δ = 30.5.

Anal. Calcd for C₃₂H₃₄NO₂P: C, 77.55; H, 6.91; N, 2.83. Found: C, 77.47; H, 6.99; N, 2.73.

trans-1-Benzyl-2-(diphenylphosphinylmethyl)-5-(benzyloxy)pi-peridine (*trans*-12)

In an analogous manner to that described for the synthesis of *cis*-12, *trans*-12 was prepared from *trans*-10f (1.450 g, 3.58 mmol) using NaH (206 mg, 4.296 mmol), Bu₄NI (264.5 mg, 0.716 mmol) and BnBr (0.468 mL, 3.938 mmol) in THF (45 mL). Purification by flash column chromatography (EtOAc–PE–Et₃N, 2:1:2 v/v) gave the title product (0.991 g, 56%).

Yellow solid; mp 121 °C.

IR (KBr): 3080, 3058, 3030, 2941, 1591, 1437, 1183, 1121, 1105, 741, 696 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): $\delta = 1.24-1.58$ (m, 2 H), 1.84–1.98 (m, 1 H), 2.19 (dd and m, ²*J* = 11.8 Hz, ³*J* = 8.0 Hz, 2 H), 2.34 (ddd, ²*J* = 12.6 Hz, ³*J* = 9.8 Hz, *J*_{PH} = 15.0 Hz, 1 H), 2.71 (ddd, ²*J* = 12.4 Hz, ³*J* = 2.6 Hz, *J*_{PH} = 15.0 Hz, 1 H), 2.82–2.96 (m, 2 H), 3.29 (d, ²*J* = 14.0 Hz, 1 H), 3.35–3.50 (m, 1 H), 3.84 (d, ²*J* = 13.8 Hz, 1 H), 4.37, 4.43 (each d, ²*J* = 12.0 Hz, 1 H), 7.17–7.34 (m, 10 H), 7.38– 7.52 (m, 6 H), 7.65–7.80 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 28.4, 29.1, 31.4 (d, J_{PC} = 70.4 Hz, 1 C), 54.5, 55.4, 58.2, 70.0, 73.1, 126.9, 127.3, 127.4, 128.2 (4 C), 128.5, 128.6 (d, J_{PC} = 11.8 Hz), 128.7 (d, J_{PC} = 11.8 Hz), 130.5, 130.7 (each d, J_{PC} = 9.2 Hz), 131.6, 131.7 (each d, J_{PC} = 2.4 Hz), 133.0 (d, J_{PC} = 98.7 Hz), 134.0 (d, J_{PC} = 99.8 Hz), 138.7, 139.2.

³¹P NMR (162 MHz, CDCl₃): δ = 30.0.

 $\begin{array}{l} MS \; (EI,\; 70 \; eV): \; m/z \; (\%) = 496 \; (2) \; [M + H]^+,\; 405 \; (5) \; [M + H - C_7 H_7]^+,\; 404 \; (16) \; [M - C_7 H_7]^+,\; 294 \; (14) \; [M - Ph_2 PO]^+,\; 202 \; (10) \\ [Ph_2 POH]^+,\; 201 \; (28) \; [Ph_2 PO]^+,\; 91 \; (100) \; [C_7 H_7]^+. \end{array}$

Anal. Calcd for $C_{32}H_{34}NO_2P$: C, 77.55; H, 6.91; N, 2.83. Found: C, 77.31; H, 6.99; N, 2.78.

cis-1-Benzyl-2-(1-propenyl)-5-(benzyloxy)piperidine (cis-13)

A solution of *cis*-12 (1.10 g, 2.22 mmol) in anhydrous THF (23 mL) was cooled to -78 °C. *n*-BuLi (1.53 mL, 1.6 M solution in hexane, 2.442 mmol) was added and the mixture stirred at -78 °C for 15 min. Acetaldehyde (0.138 mL, 2.442 mmol) in anhydrous THF (2 mL) was added slowly. The solution was stirred for 30 min, allowed to warm to 0 °C and then quenched with brine (50 mL). The aq layer was extracted with CH₂Cl₂ (5 × 44 mL) and the combined organic layer dried (MgSO₄) and concentrated in vacuo. The crude product was dissolved in anhydrous DMF (89 mL) and NaH (128 mg, 2.664 mmol) was added in small portions. The mixture was heated at 60 °C for 2.5 h. After dissolving the dark brown solution in Et₂O (264 mL), it was washed with 1 M NaOH (3 × 44 mL). The organic layer was extracted with 4% HCl (5 × 88 mL) and the combined aq layer was made alkaline with 2 M NaOH. The aq layer was extract-

ed with Et₂O (5 × 176 mL). The combined organic layer was dried (MgSO₄) and evaporated. The residue was purified by flash column chromatography (PE–EtOAc–Et₃N, 25:1:10 v/v) to give *cis*-**13** (401 mg, 56%) as a 55:45 mixture of Z^*/E -isomers.

Pale yellow oil.

IR (film): 3062, 3027, 2937, 2854, 1604, 1494, 1452, 1102, 1067, 735, 697 $\rm cm^{-1}.$

¹H NMR (200 MHz, CDCl₃): δ (55:45 mixture of *Z**/*E*isomers) = 1.51–1.86 (m, each 4 H), 1.61 (dd, ³*J* = 6.6 Hz, ⁴*J* = 1.6 Hz, 3 H), 1.71* (dd, ³*J* = 6.2 Hz, ⁴*J* = 1.4 Hz, 3 H), 2.25, 2.28* (each dd, ²*J* = 12.0 Hz, ³*J* = 3.6 Hz, 1 H), 2.78 (dd, ²*J* = 12.0 Hz, ³*J* = 6.0 Hz, 1 H), 2.82*–2.90 (m, 2 H), 3.20 (ddd, ³*J* = 10.8 Hz, ³*J* = 8.0 Hz, ³*J* = 3.2 Hz, 1 H), 3.275*, 3.279 (each d, ²*J* = 13.6 Hz, 1 H), 3.47– 3.55 (m, each 1 H), 3.97, 3.89* (each d, ²*J* = 13.6 Hz, 1 H), 4.417, 4.419*, 4.473, 4.477* (each d, ²*J* = 12.4 Hz, 1 H), 5.52–5.73 (m, each 2 H), 7.19–7.35 (m, each 10 H).

¹³C NMR (50 MHz, CDCl₃): δ (55:45 mixture of *Z**/*E*-isomers) = 13.3*, 18.0, 27.6, 27.6*, 28.1*, 29.0, 53.1, 53.4*, 56.7*, 59.1*, 59.2, 62.8, 69.8*, 69.8, 72.6*, 72.9, 125.4*, 126.6, 126.7, 127.3, 127.5, 127.5, 128.0, 128.0, 128.2, 128.9, 129.0, 131.5*, 131.7, 139.0, 139.4*.

MS (*Z*-isomer) (EI, 70 eV): m/z (%) = 280 (2) $[M - C_3H_3]^+$, 230 (3) $[M - C_7H_7]^+$, 215 (7), 186 (7), 160 (7), 124 (9), 91 (100) $[C_7H_7]^+$.

MS (*E*-isomer) (EI, 70 eV): m/z (%) = 322 (1) [M + H]⁺, 321 (1) [M]⁺, 280 (5) [M - C₃H₅]⁺, 230 (7) [M - C₇H₇]⁺, 215 (18), 200 (8), 186 (13), 160 (15), 124 (13), 91 (100) [C₇H₇]⁺.

trans-1-Benzyl-2-(1-propenyl)-5-(benzyloxy)piperidine (*trans*-13)

In an analogous manner to that described for the synthesis of *cis*-13, *trans*-13 was prepared from *trans*-12 (495 mg, 1 mmol) using *n*-BuLi (0.689 mL, 1.6 M solution in *n*-hexane, 1.1 mmol), acetalde-hyde (0.062 mL, 1.1 mmol) in THF (10 mL), and NaH (57.6 mg, 1.2 mmol) in DMF (40 mL). Purification by flash column chromatography (PE–EtOAc–Et₃N, 25:1:10 v/v) gave the title product (182 mg, 57%) as a 55:45 mixture of E/Z^* -isomers.

Colorless oil.

IR (film): 3063, 3028, 2936, 2856, 2795, 1604, 1495, 1453, 1098, 736, 697 $\rm cm^{-1}.$

¹H NMR (400 MHz, C₆D₆): δ (55:45 mixture of *E*/*Z**isomers) = 1.17–1.68 (m, each 3 H), 1.51*, 1.52 (each d, ³*J* = 5.1 Hz, 3 H), 1.92 (m_c, 2 × each 1 H), 2.00 (m_c, 2 × each 1 H), 2.51 (ddd, ³*J* = 10.4 Hz, ³*J* = 7.6 Hz, ³*J* = 2.8 Hz, 1 H), 2.91* (ddd, ³*J* = 10.6 Hz, ³*J* = 7.8 Hz, ³*J* = 2.8 Hz, 1 H), 2.94* (each d, ²*J* = 13.6 Hz, 1 H), 3.28–3.36 (m, each 1 H), 3.37–3.47 (m, each 1 H), 4.17*, 4.22 (each d, ²*J* = 13.6 Hz, 1 H), 4.21 (each d, ²*J* = 11.9 Hz, 1 H), 4.25, 4.26* (each d, ²*J* = 11.9 Hz, 1 H), 5.40–5.54 (m, each 2 H), 7.03–7.24 (m, each 8 H), 7.33–7.40 (m, each 2 H).

¹³C NMR (50 MHz, CDCl₃): δ (55:45 mixture of *E/Z**isomers) = 13.5*, 17.9, 30.6*, 30.7*, 30.7, 31.9, 56.7, 56.8*, 58.7*, 59.2*, 59.3, 65.2, 70.3, 70.3*, 74.7, 74.8*, 125.6*, 126.7, 126.7*, 127.3, 127.4, 127.6, 128.1, 128.3, 129.0, 129.2, 133.9*, 134.7, 138.7, 139.2*.

HRMS (EI): m/z [M]⁺ calcd for C₂₂H₂₇NO: 321.2093; found: 321.2092.

cis-2-Propyl-5-(benzyloxy)piperidine (14)

Under a \hat{H}_2 atm, a solution of *cis*-13 (161 mg, 0.5 mmol) in EtOH (1 mL) was added to a suspension of Pd(OH)₂/C (20 wt%) in EtOH (4 mL). 2 M HCl (5.8 equiv, 1.4 mL) was added slowly and the mixture was stirred for 5 d. After filtration, the catalyst was washed with EtOH. The filtrate was neutralized with 2 M NaOH and evaporated. The residue was taken up in brine (8.5 mL) and the aq layer extracted with CHCl₃ (4 × 5 mL). The combined organic layer was dried (MgSO₄) and the solvents evaporated. Purification by flash column

chromatography (PE–EtOAc– Et_3N , 25:1:10) gave the title product (65 mg, 56%) as a yellow oil.

IR (NaCl): 3301, 3064, 3031, 2955, 2930, 2869, 1561, 1544, 1497, 1454, 1093, 1070, 736, 699 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (t, ³*J* = 7.2 Hz, 3 H), 1.24– 1.60 (m, 7 H), 2.06 (ddddd, ²*J* = 13.8 Hz, ³*J* = 6.0 Hz, ³*J* = 3.0 Hz, ³*J* = 3.0 Hz, ⁴*J* = 0.6 Hz, 1 H), 2.28 (br s, 1 H), 2.52 (dddd, ³*J* = 9.6 Hz, ³*J* = 9.6 Hz, ³*J* = 3.2 Hz, ³*J* = 3.2 Hz, 1 H), 2.73 (dd, ²*J* = 13.6 Hz, ³*J* = 1.6 Hz, 1 H), 3.20 (dt, ²*J* = 13.6 Hz, ³*J* = 2.4 Hz, 1 H), 3.42–3.47 (m, 1 H), 4.52, 4.56 (each d, ²*J* = 12.0 Hz, 1 H), 7.25– 7.38 (m, 5 H).

¹³C NMR (100 MHz, CDCl₃): δ = 14.2, 19.1, 27.4, 28.0, 38.9, 49.3, 55.7, 69.9, 71.1, 127.4, 127.5, 128.3, 138.9

HRMS (EI): m/z [M]⁺ calcd for C₁₅H₂₃NO: 233.1780; found: 233.1780.

trans-5-Hydroxy-2-propylpiperidine (Pseudoconhydrine, 5)

10% Pd/C (15 mg, 17 wt%) was dissolved in anhydrous MeOH (5 mL) and prehydrogenated for 30 min. A solution of *trans*-13 (86 mg, 0.267 mmol) in anhydrous MeOH (3 mL) and 2 M HCl (1.5 equiv) were added slowly. The mixture was stirred for 4 d at r.t. under H₂. After filtration, the filtrate was neutralized with 2 M NaOH and concentrated in vacuo. Brine (3 mL) was added and the aq layer extracted with CHCl₃ (4 × 5 mL). The combined organic layer was dried (MgSO₄) and evaporated carefully. Sublimation^{11a,j} gave pseudoconhydrine (29 mg, 26%).

Colorless solid; mp 87-89 °C (Lit.^{11a} 91.5-92 °C).

IR (KBr): 3292, 3126, 2955, 2921, 2854, 2828, 1449, 1050 cm⁻¹.

¹H NMR (400 MHz, D₂O): $\delta = 0.85$ (br t, ³*J* = 7.2 Hz, 3 H), 1.10 (ddd, ²*J* = 13.4 Hz, ³*J* = 11.2 Hz, ³*J* = 11.2 Hz, ³*J* = 3.6 Hz, 1 H), 1.23–1.35 (m, 5 H), 1.78 (dq, ²*J* = 13.4 Hz, ³*J* = 3.4 Hz, 1 H), 1.99 (br d, *J* = 12.0 Hz, 1 H), 2.34 (dd, ²*J* = 11.6 Hz, ³*J* = 10.6 Hz, 1 H), 2.40–2.49 (m, 1 H), 3.06 (ddd, ²*J* = 11.2 Hz, ³*J* = 4.2 Hz, ⁴*J* = 2.2 Hz, 1 H), 3.60 (ddd, ³*J* = 11.2 Hz, ³*J* = 11.2 Hz, ³*J* = 4.2 Hz, ³*J* = 4.2 Hz, ³*J* = 4.2 Hz, 1 H).

¹³C NMR (100 MHz, D₂O): δ = 13.8, 19.1, 30.3, 32.9, 37.7, 52.0, 55.0, 67.8.

trans-5-Hydroxy-2-propylpiperidine Hydrochloride (5·HCl)

Anhydrous HCl gas was bubbled through a solution of 5 (10 mg, 0.07 mmol) in CHCl₃ (3 mL) for 10 min. The solvent was evaporated and the residue, a pale yellow solid, was crystallized from anhydrous acetone to give 5 HCl (5 mg, 40%).

Colorless solid; mp 182 °C (Lit.12p 185-185.5 °C).

IR (KBr): 3374, 2960, 2939, 2873, 2807, 2508, 1104.

¹H NMR (400 MHz, D₂O): $\delta = 0.84$ (t, ³*J* = 7.4 Hz, 3 H), 1.27–1.56 (m, 6 H), 1.97–2.10 (m, 2 H), 2.68 (dd, ²*J* = 12.0 Hz, ³*J* = 10.8 Hz, 1 H), 2.98–3.10 (m, 1 H), 3.33 (ddd, ²*J* = 12.0 Hz, ³*J* = 4.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 3.78–3.88 (m, 1 H).

¹³C NMR (101 MHz, D₂O, with DMSO as an internal standard at δ = 39.51): δ = 13.3, 18.4, 26.4, 30.6, 34.6, 48.6, 56.0, 64.3.

cis-5-Hydroxy-2-propylpiperidine (epi-5)

In an analogous manner to that described for the synthesis of pseudoconhydrine (5), compound 14 (42 mg, 0.18 mmol) was deprotected under a H₂ atm using 10% Pd/C (6.3 mg) as the catalyst, MeOH (3 mL) and 2 M HCl (0.13 mL, 0.27 mmol). The reaction time was 4 d. The crude product (22 mg, 86%) was characterized spectroscopically without further purification.

IR (film): 3288, 2930, 1440, 1106, 980 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, ³*J* = 7.2 Hz, 3 H), 1.28– 1.59 (m, 7 H), 1.79–1.91 (m, 1 H), 2.35 (br s, 2 H), 2.44–2.63 (m, 1 H), 2.77 (dd, ²*J* = 12.0 Hz, ³*J* = 1.6 Hz, 1 H), 3.01 (dt, ²*J* = 12.0 Hz, ³*J* = 2.8 Hz, 1 H), 3.81–3.90 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 14.2, 18.9, 27.0, 31.1, 39.1, 52.6, 56.5, 64.4.

References

- (1) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. *Tetrahedron* **2003**, *59*, 2953.
- (2) Buffat, M. G. P. *Tetrahedron* **2004**, *60*, 1701.
- (3) (a) De Risi, C.; Fanton, G.; Pollini, G. P.; Trapella, C.; Valente, F.; Zanirato, V. *Tetrahedron: Asymmetry* 2008, 19, 131. (b) Bailey, P. D.; Millwood, P. A.; Smith, P. D. *Chem. Commun.* 1998, 633. (c) Laschat, S.; Dickner, T. *Synthesis* 2000, 1781. (d) Cossy, J. *Chem. Rec.* 2005, 5, 70.
- (4) Wijdeven, M. A.; Willemsen, J.; Rutjes, F. P. J. T. Eur. J. Org. Chem. 2010, 2831.
- (5) Wijdeven, M. A.; van Delft, F. L.; Rutjes, F. P. J. T. *Tetrahedron* **2010**, *66*, 5623.
- (6) (a) Christofidis, I.; Welter, A.; Jadot, J. *Tetrahedron* 1977, 33, 977. (b) Hasseberg, H.-A.; Gerlach, H. *Liebigs Ann. Chem.* 1989, 255. (c) Makabe, H.; Kong, L. K.; Mitsuru, H. *Org. Lett.* 2003, 5, 27.
- (7) (a) Toyooka, N.; Yoshida, Y.; Yotsui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914. (b) Kim, I. S.; Ryu, C. B.; Li, Q. R.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2007, 48, 6258.
- (8) Kazmaier, U.; Grandel, R. Eur. J. Org. Chem. 1998, 1833.
- (9) Ibekeke-Bomangwa, W.; Hootelé, C. *Tetrahedron* 1987, 43, 935.
 (10) Ladarburg A.; Adam C. Bry Diack Cham. Co. 1801, 24
- (10) Ladenburg, A.; Adam, G. Ber. Dtsch. Chem. Ges. 1891, 24, 1671.
- (11) (a) Marion, L.; Cockburn, W. F. J. Am. Chem. Soc. 1949, 71, 3402. (b) Gruber, W.; Schlögl, K. Monatsh. Chem. 1949, 80, 499. (c) Šorm, F.; Sicher, J. Collect. Czech. Chem. Commun. 1949, 14, 331. (d) Brown, E.; Lavoue, J.; Dhal, R. Tetrahedron 1973, 29, 455. (e) Enders, D.; Hassel, T.; Pieter, R.; Renger, B.; Seebach, D. Synthesis 1976, 548. (f) Renger, B.; Kalinowski, H.-O.; Seebach, D. Chem. Ber. 1977, 110, 1866. (g) Shono, T.; Matsumura, Y.; Onomura, O. Chem. Lett. 1984, 1101. (h) Harding, K. E.; Burks, S. R. J. Org. Chem. 1984, 49, 40. (i) Plehiers, M.; Hootelé, C. Tetrahedron Lett. 1993, 34, 7569. (j) Fry, D. F.; Brown, M.; McDonald, J. C. Tetrahedron Lett. 1996, 37, 6227. (k) Plehiers, M.; Hootelé, C. Can. J. Chem. 1996, 74, 2444.
- (12) (a) Tadano, K.; Iimura, Y.; Suami, T. J. Carbohydr. Chem. 1985, 4, 129. (b) Takahata, H.; Inose, K.; Momose, T. Heterocycles 1994, 38, 269. (c) Oppolzer, W.; Bochet, C. G. Tetrahedron Lett. 1995, 36, 2959. (d) Herdeis, C.; Held, W. A.; Kirfel, A.; Schwabenländer, F. Liebigs Ann. 1995, 1295. (e) Sakagami, H.; Kamikubo, T.; Ogasawara, K. Chem. Commun. 1996, 1433. (f) Hirai, Y.; Shibuya, K.; Fukuda, Y.; Yokoyama, H.; Yamaguchi, S. Chem. Lett. 1997, 221. (g) Dockner, M.; Sasaki, N. A.; Riche, C.; Potier, P. Liebigs Ann. Recl. 1997, 1267. (h) Moody, C. J.; Lightfoot, A. P.; Gallagher, P. T. J. Org. Chem. 1997, 62, 746. (i) Cossy, J.; Dumas, C.; Pardo, D. G. Synlett 1997, 905. (j) Herdeis, C.; Schiffer, T. Synthesis 1997, 1405. (k) Agami, C.; Couty, F.; Lam, H.; Mathieu, H. Tetrahedron 1998, 54, 8783. (1) Löfstedt, J.; Pettersson-Fasth, H.; Bäckvall, J.-E. Tetrahedron 2000, 56, 2225. (m) Hedley, S. J.; Moran, W. J.; Prenzel, A. H. G. P.; Price, D. A.; Harrity, J. P. A. Synlett 2001, 1596. (n) Liu, G.; Meng, J.; Feng, C.-G.; Huang, P.-Q. Tetrahedron: Asymmetry 2008, 19, 1297. (o) Satyalakshmi, G.; Suneel, K.; Shinde, D. B.; Das, B. Tetrahedron: Asymmetry 2011, 22, 1000. (p) Bates, R. W.; Sivarajan, K.; Straub, B. F. J. Org. Chem. 2011, 76, 6844. (q) Higashiyama, K.; Matsumura, M.; Kurita, E.; Yamauchi,

T. Heterocycles 2012, 86, 371. (r) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249.

- (13) Ergüden, J.-K.; Schaumann, E. Synthesis 1996, 707.
- (14) Bunce, R. A.; Peeples, C. J.; Jones, P. B. J. Org. Chem. 1992, 57, 1727.
- (15) Bryson, T. A.; Smith, D. C.; Krueger, S. A. Tetrahedron Lett. 1977, 525.
- (16) Unit cell parameters: a = 1145.5(1) pm, b = 851.1(1) pm, $c = 3014.2(1) \text{ pm}, \beta = 102.49(1)^{\circ}, V = 2869 \cdot 10^{6} \text{ pm}^{3}, Z = 4,$ monoclinic, space group $P2_1/c$, R = 0.059, $R_w = 0.147$. CCDC 799120 contains the supplementary crystallographic data for this compound. These data can be obtained free of

charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

- (17) (a) Czech, B.; Bartsch, R. A. J. Org. Chem. 1984, 49, 4076. (b) Sajiki, H.; Kuno, H.; Hirota, K. Tetrahedron Lett. 1998, 39, 7127.
- (18) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
- (19) Nakabayashi, N.; Masuhara, E.; Iwakura, Y. Bull. Chem. Soc. Jpn. 1966, 39, 413.
- (20) Inman, M.; Moody, C. J. J. Org. Chem. 2010, 75, 6023.