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Fig. 1. Iminium ion and its derivatives.
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This article describes the action of iodine(III) reagents [diacetoxyiodobenzene, PhI(OAc)2, and iodosoben-
zene, (PhIO)n] in conjunction with TMSBr which act as functional bromine equivalents in unique oxida-
tions of saturated, carbamate protected N-heterocycles. Interestingly, during this work, treatment of the
same carbamates with molecular bromine alone afforded similar products, which were sequestered by
the solvent methanol.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

Iminiums such as 1 (Fig. 1) are one of the most important elec-
trophiles in synthetic organic transformations for the creation of
carbon–carbon and carbon–heteroatom bonds. Covalent attach-
ment of electron withdrawing groups at the nitrogen atom
enhances its cationic character making the species a more reactive
intermediate (Fig. 1) [1,2]. Amongst these modified cations, much
interest has centered around N-acyliminium ions 2 and 3, although
ureas 4, N-tosyl derivatives 5, and hydrazonium ions 6 have also
been studied [1]. The importance of N-acyliminium ions 2 and 3
has been demonstrated in a multitude of natural product syntheses
[3–5] and exploited in secondary reactions on multi-component
reaction products leading to the formation of unique small mole-
cules [6–8].

Typically, N-acyliminium ions or their precursors are generated
in situ, being commonly prepared via direct oxidative electrochem-
ical methods [9–12], reduction of lactams or imides through
hydride addition [1,2,13–17], ring closure of linear amides [18–
20], cuprous ion-promoted decomposition of o-diazobenzamides
[21], and chemical oxidation by means of iodine(III) and TMSX
(X = N3, Cl) reagent combinations [22,23].
Of particular interest is the use of hypervalent iodine reagents,
thus named due to their ability to possess more than eight elec-
trons in the valence shell as required by the octet rule [24]. Two
oxidation states dominate the field - iodine(III) and iodine (V)
[25–27]. The most widely-used iodine(V) compounds are Dess-
Martin periodinane [28] and o-iodoxybenzoic acid (IBX) [29]. Con-
versely, iodine(III) reagents are categorized into five classes: (1)
iodosylarenes (ArIO) and their acyclic derivatives (ArIX2) (2) five-
membered iodine heterocycles (benziodoxoles, and benzioda-
zoles), (3) iodonium salts (R2I+X-), (4) iodonium ylides (ArI = CR2),
and (5) iodonium imides (ArI = NR) [27] where each reagent has
different chemical properties and synthetic applications. Iodosy-
larenes have broad utility as oxidizing reagents [27].

Of particular note is a series of elegant applications of the
(PhIO)n/TMSN3 reagent combination for the b-azidonation of tri-
isopropylsilyl (TIPS) enol ethers [22,30–32]. Further studies
demonstrated that (PhIO)n and TMSN3 enabled the direct a-azido-
nation of amides, carbamates, and ureas (Scheme 1) [33], repre-
senting the first direct chemical oxidation of N-protected
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Scheme 1. a-Azidonation of amides, carbamates, and ureas. Reagents and condi-
tions: (i) (PhIO)n (2.4 eq.), TMSN3 (4.8 eq.), CH2Cl2, –40 to –25 �C (n = 1 25–82% yield,
n = 2 11–41% yield) or IBX (2.4 eq.), TMSN3 (4.8 eq.), CH2Cl2, reflux (n = 1, 32–64%
yield; n = 2, 15–85% yield).
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pyrrolidine and piperidines to products which were readily ionized
to N-acyliminium ions. Use of two different iodine(III) reagents
((PhIO)n and IBX) revealed a slower rate of a-azidonation and
lower yield of products from the piperidine series 7 (n = 2) than
with the pyrrolidine 7 (n = 1) series. Optimal conversions were
Scheme 2. a,b,b-Oxidations of carbamates. Reagents and conditions: (i) 10 (4–5 eq.),
MeCN, 45 �C (85% yield) (1 h) or MW 150 �C (5 min) (71% yield).

Scheme 3. In situ generation of PhIBr2.

Table 1
Reaction optimization using (PhIO)n and PIDA hypervalent iodine reagents.

Entry Solvent T t Ph(IO)n

1 CH2Cl2 0 �C to r.t. 19.5 h 2
2 MeCN 0 �C to r.t. 17.5 h 2
3 CH2Cl2 –60 �C 3 h 2
4a CH2Cl2 0 �C to r.t. 20 h 10
5b CH2Cl2 80 �C 5 min 2
6 CH2Cl2 0 �C to r.t. 5 d –
7 CH2Cl2 60 �C 20 min –
8 CH2Cl2 80 �C 5 min –
9 CH2Cl2 80 �C 10 min –
10 CH2Cl2 80 �C 20 min –
11 MeCN 80 �C 20 min –
12 CH2Cl2 120 �C 20 min –
13 CH2Cl2 120 �C 20 min –
14 CH2Cl2 120 �C 20 min –
15 CH2Cl2 120 �C 20 min –

a 56% starting material was recovered.
b 22% starting material was recovered.

2

observed with the urea derivative (n = 1, X = NPh2) which afforded
a-azido product 8 in high yield [33].

The downside of Magnus’ a-azidonation protocol is the instabil-
ity of the putative reactive intermediate PhI(N3)2 which decom-
poses to iodobenzene and 3 mol of N2(g) with sporadic violent
explosions [23]. Interestingly, oxidative applications of Will-
gerodt’s reagent (PhICl2) [23,34] on the same starting materials
were subsequently reported. Encouragingly, treatment of carba-
mate 9 with a modified version of Willgerodt’s reagent (dichloro
(4-nitrophenyl)iodane, 10) afforded the surprising a,b,b-oxidation
product 11 (R = OH) (Scheme 2). Addition of 5% MeOH to the sol-
vent produced 11 (R = OMe) (80% yield) via ionization of 11 to
the N-acyliminium ion and solvent trapping. A similar oxidation
to a methoxy dichloride with tert-Butyl hypochlorite in CH2Cl2:
MeOH has been reported in which an N-acyliminium intermediate
was proposed [35].

As such, this clearly suggested that the study of alternate
(PhIO)n/TMSX combinations was warranted, in particular the reac-
tivity of the short-lived species PhIBr2 14 [36] (Scheme 3). Espe-
cially when photochemical oxidations to ethoxy dibromo species
have been demonstrated with pyrrolidine-2-ones [37].
Results and discussion

Pilot studies utilized the acid-stable carbamate 15 to avoid
deprotection by HBr, a side product of the expected reaction. Thus,
(eq.) PhI(OAc)2 (eq.) TMSBr (eq.) Yield 16 (%)

– 4 9%
– 4 3%
– 4 5%
– 20 6%
– 4 22%
4 8 40%
4 8 48%
4 8 48%
4 8 62%
4 8 69%
4 8 39%
1 2 14%
2 4 35%
3 6 56%
4 8 65%

Fig. 2. X-ray crystal structure of 16.



Table 2
Scope of substrates.

Substrate n Product Yield (%)

18 2 21 76
19 3 22 62
20 4 23 56

Scheme 4. Decomposition of PIDA/TMSBr to PhI and Br2.

Scheme 5. Proposed radical mechanism for the a,b- and a,b,b-carbamate
oxidations.
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exposure of 15 to Ph(IO)n 12 (2 eq.) and TMSBr (4 eq.) afforded the
a,b,b-oxidized product 16 albeit in low yield (Table 1, entry 1) (0 �C
to rt, o/n). Nonetheless, unequivocal structural confirmation of 16
was provided by X-ray crystallography (Fig. 2) [38]. The yield
was not improved upon changing the solvent to MeCN (Table 1,
entry 2), lowering the temperature to –60 �C (Table 1, entry 3),
Table 3
Bromination of carbamate 15.

Entry Solvent T t

1 CH2Cl2 80 �C 1 h
2 CH2Cl2 120 �C 20 min
3 CH2Cl2 80 �C 20 min
4 MeOH 80 �C 1 h

Table 4
Scope of the bromination.

Entry Substrate n R

1 25 2 Ph
2 26 1 O-tBu
3 27 1 O-Bn
4 27 1 O-Bn

NR = no reaction.
a No recovered product or starting material.
b 52% recovered starting material.
c 5% recovered starting material.

3

or using an excess of reagents (Table 1, entry 4). However,
improvement was observed after microwave irradiation at 80 �C
for 5 min (Table 1, entry 5), (22% yield, 22% recovered starting
material). The use of phenyliodine(III) diacetate (PIDA) 17 with
TMSBr [39] afforded a significant improvement in the yield of 16
Br2 (eq.) Product Yield (%)

3 16 43
3 16 41
5 16 46
6 24 39

Br2 (eq.) Product Yield (%)

6 28 NR
3 29 0 a

3 30 11b

6 30 15c



Table 5
Radical bromination.

Entry Starting material R T t NBS (eq.) AIBN (eq.) Product Yield (%)

1 26 O-tBu 65 �C reflux, 4 h 1.05 0.05 29 0a

2 27 O-Bn 80 �C MW, 1 h 10 0.5 30 30b

3 15 O-iPr 80 �C MW, 1 h 10 0.5 24 41

a No recovered starting material or desired product.
b 32% recovered starting material.
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to 40% (5 d, rt) (Table 1, entry 6). Subsequent yields after micro-
wave irradiation continued to improve with prolonged reaction
time from 5 to 20 min at 80 �C, ranging from 48 to 69% (Table 1,
entry 8–10) with dichloromethane superior to acetonitrile (Table 1,
entry 11). Stoichiometry studies at elevated temperature (Table 1,
entries 12–15) demonstrated linear yield improvements. The scope
of the reaction was also demonstrated by the use of different sub-
strates (Table 2), proving compatible with 6-, 7- and 8-membered
rings.

During the reactions, we observed the rapid formation of a dark
orange color which was repeated upon mixing (PhIO)n or PIDA
with TMSBr in CH2Cl2 and deemed indicative of the generation of
molecular bromine. Indeed, prior reports describe the intermediate
derived from the PIDA/TMSBr reagent combination decomposing
to iodobenzene and bromine after only 5 min (Scheme 4) [40]. This
clearly suggested that study of molecular bromine as a potential
oxidant was warranted, assuming that (PhIO)n/TMSBr was a func-
tional equivalent. Indeed, when 15 was treated with bromine in
CH2Cl2 and irradiated at 80 �C for 1 h, product 16 was isolated
(43% yield) (Table 3, entry 1) suggesting the occurrence of photo-
bromination [41] in conjunction with or, more likely, in place of
the assumed action of PhIBr2 14. At an elevated temperature or
when excess bromine was employed (Table 3, entry 2 and 3), com-
parable yields of 16 were attained. However, when the reaction
was conducted in a nucleophilic solvent (MeOH), a new a,b-oxi-
dized product 24 was isolated (39% yield) (Table 3, entry 4). It is
important to note that when an amide was used as the starting
material (N-benzoyl-piperidine), no conversion was observed
(Table 4, entry 1). Similarly, no product was furnished when
employing Boc-protection (Table 4, entry 2), presumably due to
the production of HBr (Scheme 5) with subsequent starting mate-
rial and/or product decomposition. Cbz-protection proved amen-
able to a,b-oxidation albeit in low yield (Table 4, entry 3 and 4).
This was also not surprising as N-Cbz deprotection is known to
occur with HBr in glacial acetic acid [42,43].

With this data in-hand, it seemed likely the transformation
would also occur upon exposure to N-bromosuccinimide (NBS)
and the radical initiator azoisiisobutyronitrile (AIBN) (Table 5).
As such, Boc-protected pyrrolidines afforded no discernible prod-
ucts (Table 5, entry 1). Conversely, N-Cbz-pyrrolidines furnished
the a,b-product 30 in 30% yield (Table 5, entry 2), higher than
the corresponding yield with methanolic bromine (Table 4, entry
3 and 4). Finally, the reaction of N-isopropyloxy-pyrrolidine 15
with NBS/AIBN, produced 24, isolated in comparable yield (41%)
to treatment with Br2 in MeOH (Table 5, entry 3).

A mechanism was proposed to explain formation of the
observed products (Scheme 5). Exposure of carbamate 15 to either
(i) NBS and AIBN (ii) molecular bromine or (iii) in situ generated
4

bromine from Ph(IO)n and TMSBr, furnishes 31 [10,21]. Subsequent
formation of a-bromo-carbamate 32 follows which is readily ion-
ized to 33. b-proton removal furnishes enamide 34 and evolution
of hydrobromic acid. Enamide reaction with bromine readily
affords the b-Br N-acyliminium ion 35. The latter is trapped by
methanol to give the a,b-product 24. Conversely, in a non-nucle-
ophilic aprotic solvent (CH2Cl2), the reaction proceeds through
bromo-enamide 36 to the b,b-dibromo-N-acyliminium ion 37,
which upon basic work-up furnishes the final a,b,b-product 16.
Intrigued by the N-acyl-a-hydroxy-b,b-dibromo-functionality,
sub-structure searching on Scifinder revealed no precedents,
although Reaxys revealed apparent reports by Leuchs 100 years
ago detailing the action of molecular bromine on a strychnine ana-
log [44]. In this case, an acyl-pyrrolidine ring is formed upon rear-
rangement of a strychnine derivative, to afford two open a- and b-
methylene carbon atoms primed for further reaction with molecu-
lar bromine to afford the a-hydroxy-b,b-dibromo- congener. Irre-
spective of this report, we feel that publication of this non-
electrochemical transformation on simple ‘deconstructed’ satu-
rated nitrogen heterocycles warrants reporting.
Conclusion

Herein, we report new oxidation chemistry mediated by hyper-
valent iodine(III) reagents in conjunction with TMSBr to furnish a-
hydroxy-b,b-dibromine functionalized N-isopropyloxy protected
pyrrolidines and piperidines. Moreover, additional studies demon-
strate that molecular bromine promotes these transformations,
with yields improved through use of NBS and the radical initiator
AIBN. In addition, the a-methoxy-b-bromine derivative of N-iso-
propyloxy-pyrrolidine was produced when utilizing a methanolic
bromine solution.
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