Accepted Manuscript

Palladium-Catalyzed Diastereoselective Synthesis of Homoaldol Equivalent Products

Yoshikazu Horino, Miki Sugata, Tetsu Sugita, Ataru Aimono, Hitoshi Abe

PII:	S0040-4039(17)30517-8
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.04.064
Reference:	TETL 48856
To appear in:	Tetrahedron Letters
Received Date:	4 February 2017
Revised Date:	13 April 2017
Accepted Date:	18 April 2017

Please cite this article as: Horino, Y., Sugata, M., Sugita, T., Aimono, A., Abe, H., Palladium-Catalyzed Diastereoselective Synthesis of Homoaldol Equivalent Products, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.04.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters journal homepage: www.elsevier.com

Palladium-Catalyzed Diastereoselective Synthesis of Homoaldol Equivalent Products

Yoshikazu Horino*, Miki Sugata, Tetsu Sugita, Ataru Aimono, and Hitoshi Abe

Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Allylation Homoaldol equivalent reaction Palladium catalysis Allylpalladium

A palladium-catalyzed reaction of easily accessible 3-(pinacolatoboryl)allyl acetates and aldehydes provides facile access to synthetically useful homoaldol equivalent products with high diastereoselectivity. The reaction presumably proceeds via allylation of aldehydes with α -acetoxy allylboronates that produced in situ by reductive elimination from allylic *gem*-palladium/boryl intermediates.

2016 Elsevier Ltd. All rights reserved.

```
* Corresponding author. Tel.: +81-76-492-5313; fax: +81-76-492-5131; e-mail: horino@eng.u-toyama.ac.jp
```

Tetrahedron

Introduction

2

Devising synthetic strategies for constructing molecular complexity and diversity from simple reagents is an important subject in organic synthesis. In particular, catalytic synthetic strategies can offer enormous advantages for such purposes because they can individually generate several intermediates that react in different manners from the same reagent. Allylpalladium species are one representative example. For example, π allylpalladium species are generally recognized to serve as synthetically useful electrophilic allylating agents toward many nucleophiles.¹ In contrast, σ -allylpalladium species possessing ligands that donate electrons acts as nucleophilic allylating agents toward electrophiles.² Moreover, umpolung reaction of π allylpalladium alters its reactivity pattern to nucleophilic.3,4 Fillion and our recent studies on allylic gem-heterobimetallic species revealed individually that the distinct reactivities of allylic gem-palladium/metalloid species cannot be reached by hitherto reported allylpalladium species.⁵⁻⁸ For example, the allylic gem-palladium/boryl species take part in the stereoselective cyclopropanation of strained alkenes,⁶ carbene dimerization reaction,⁷ and three-component coupling reaction with aldehydes and triorganoboranes (Scheme 1).⁸ During the course of our study of three-component coupling reactions, a palladium-catalyzed methodology for diastereoselective synthesis of homoaldol equivalent products was discovered during a control reaction attempt in the absence of a triorganoborane; the palladium-catalyzed reaction of 3-(pinacolatoboryl)allyl acetates 1 and aldehydes 2 gave anti-(Z)- δ -hydroxy vinyl acetates 3 with high levels of diastereoselectivity and alkene stereocontrol.^{8a}

Since the pioneer work of Nakamura and Kuwajima on the catalytic homoaldol reactions,^{9,10} generation of homoenolates and homoenolate equivalents using transition-metal catalysts and organocatalysts have emerged as strategically different approaches.¹¹⁻¹³ In addition, catalytic asymmetric versions have also been developed.¹⁴ Although significant progress has been made in this area, the diastereoselective synthesis of homoaldol equivalent products by catalytic processes still needs to be explored.¹⁵ Herein, we report a palladium-catalyzed methodology for the diastereoselective synthesis of homoaldol equivalent products.

Scheme 1. Distinct reactivities of allylic *gem*-palladium/boryl species.

Results and discussion

We initially optimized the reaction conditions for the palladium-catalyzed reaction of (1-phenyl-3-pinacolatoboryl)allyl acetate (**1a**) as a model substrate with benzaldehyde (**2a**) by evaluating various ligands (Table 1). The Pd(OAc)₂/PPh₃ catalytic system provided a *anti*-homoaldol equivalent product **3aa** in 60% yield, accompanied by **4a** (entry 1). The relative stereochemistry of **3aa** was determined to be *anti* by derivatization to give a literature known material (see the

Supplementary Material). It was found that both the electronic nature and the amount of the phosphine ligand play an important role in improving the yield of 3aa (entries 2-4). However, a nonnegligible amount of 4a was also obtained. The enhancement of the Brønsted base character of the carbon atom between the palladium and the pinacolatoboryl group in allylic gempalladium/pinacolatoboryl species presumably induces protodeboronation to form 4a.^{5,6} However, addition of MS 4A to prevent the formation of **4a** by residual H_2O failed (entry 6).⁷ Although the catalyst loading could be reduced to 5 mol% without significant loss of catalytic activity, we were pleased to find that use of an excess amount of 2a (3 equiv to 1a) improved the yield of 3aa (entry 7). Besides the monodentate phosphine ligand, use of bidentate phosphine ligands also efficiently promoted the present reaction (entries 8-12). Among them, Xantphos¹⁶ exhibited the comparable results with $(p-CF_3C_6H_4)_3P$ (entries 7 and 12). In all cases, the relative configuration of the two newly formed stereogenic centers is anti (anti/syn >20/1), and the Z-isomer was the primary product.

Table 1

Optimization of reaction conditions^a

OA Ph	Ac B(pin) + 1a	PhCHO — 2a	Pd(OAc) ₂ Ligand toluene, 70 º	Ph ² C Ph ²	Ph 0	Ac 3aa Ac 4a
Entry	Pd(OAc) ₂ (mol%)	Ligand (mol%)		3aa (%)	3aa (<i>Z</i> / <i>E</i>)	4a (%)
1	10	Ph ₃ P (20)		60	7/1	2
2	10	(p-MeOC ₆	H ₄) ₃ P (20)	53	8.2/1	19
3	10	(<i>p</i> -CF₃C ₆ H	H ₄) ₃ P (20)	71	9/1	0
4	10	(<i>p</i> -CF₃C ₆ H	H ₄) ₃ P (30)	77	9.4/1	7
5	5	<i>(p</i> -CF ₃ C ₆ H	H ₄) ₃ P (15)	64	10/1	19
6 ^{<i>b</i>}	5	(<i>p</i> -CF ₃ C ₆ H	H ₄) ₃ P (15)	38	8/1	38
7 ^c	5	(<i>p</i> -CF ₃ C ₆ H	H ₄) ₃ P (15)	84	9/1	12
8	10	DPEphos	(10)	33	10/1	4
9	10	DPPPent	DPPPent (10)		8.3/1	14
10	10	Xantphos	Xantphos (10)		10/1	13
11	5	Xantphos	(5)	61	9.6/1	13
12 ^c	5	Xantphos	(5)	83	10/1	11

^aReaction conditions: **1a** (0.5 mmol), **2a** (1.2 mmol), Pd(OAc)₂, and ligand [DPEphos = 2,2'-bis(diphenylphosphino)diphenyl ether, DPPPent = 1,5-bis(diphenylphosphino)pentane, Xantphos = 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene] in toluene (2 mL) at 70

°C for 1–6 h.

^bMS 4A (500 mg) was used. ^cPhCHO (3 equiv) was used.

FICTIO (5 equiv) was used.

Having determined the optimal conditions (Table 1, entry 12), the substrate scope with regard to aldehydes 2 was first explored by reactions with 1a (Table 2). It was found that a broad range of aromatic aldehydes was tolerated. Indeed, the reaction proceeded without being influenced by the electronic nature of the substituent to afford **3ab–3ag**. Unfortunately, 4bromobenzaldehyde and 4-hydroxybenzaldehyde did not take part in the reaction. Altough 2-thiophenecarboxaldehyde could be transformed effectively into its corresponding products **3ah** in

70% yield with excellent diastereoselective fashion, the use of 3and 4-pyridinecarboxyaldehyde resulted in no reaction. Additionally, α , β -unsaturated aldehydes also underwent the current homoaldol equivalent reaction to give 3ai and 3aj, respectively. Although substantially less reactive aliphatic aldehydes also took part in the palladium-catalyzed homoaldol equivalent reaction, the desired products were isolated in lower yield. For example, 3ak and 3am were obtained in 55% and 56% yields, respectively. However, this problem was overcome when $(p-CF_3C_6H_4)_3P$ was employed as a ligand, giving **3ak** and **3am** in 65% and 66% yields, respectively. On the other hand, a moderate yield of **3al** was still isolated observed with cyclohexanecarboxaldehyde. In all cases, the excellent diastereoselectivities were observed for all aldehydes examined.

Table 2

Screening of aldehydes^a

^c (p-CF₃C₆H₄)₃P (15 mol%) was used instead of Xantphos.

Next, we examined the substrate generality of the reaction. A variety of aryl-substituted substrates were subjected to the reaction conditions (Table 3). In general, both substrates with electron-withdrawing and electron-donating substituents on aromatic ring took part in the reaction to produce the corresponding products **3ba–3ia** in good to high yield. Although use of Xantphos as a ligand gave **3ca** and **3da** in 32% and 42 % yields, respectively, changing Xantphos to $(p-CF_3C_6H_4)_3P$ improved the chemical yield. The substrate bearing a methoxy-substituent at the *ortho* position on the aromatic ring gave **3ca** with moderate diastereoselectivity (dr = 81/19). Notably, *o*-bromo-, *m*-bromo-, and *p*-bromo-substituted-phenyl substrates were also compatible with the present reaction conditions, providing **3ga–3ia** in 65%, 60%, and 51% yields, respectively,

and the C–Br bond remained intact. This protocol tolerated a heterocycle-substituted substrate such as 2-thienyl, and provided a corresponding homoaldol equivalent product **3ja** in 75% yield. Unfortunately, only trace amounts of desired product were obtained when alkyl-substituted substrates such as methyl- and cyclohexyl-substituted substrates were applied. Moreover, use of ketones such as acetophenone and 1,2-cyclohexanedione instead of aldehydes did not produce the desired homoaldol equivalent products.

^{*a*}Conditions: **1a** (0.5 mmol), **2a** (1.5 mmol), $Pd(OAc)_2$ (5 mol%), and Xantphos (5 mol%) in toulene (2 mL) at 70 °C for 1-3 h. ^{*b*}The relative stereoconfiguration was determined by analogy.

 $^{c}(p-CF_{3}C_{6}H_{4})_{3}P$ (15 mol%) was used instead of Xantphos.

To gain insights into the reaction mechanism, a chirality transfer experiment using (*R*)-1a was first performed under optimum reaction conditions (Scheme 2a). Unlike in the case of our previous work, **3aa** was produced as a racemic form.^{8a} In addition, the use of **1m** possessing stereogenic centers onto the boronic ester moiety resulted in no conversion, and **1m** was recovered (Scheme 2b).¹⁷

Scheme 2. Chirality transfer reactions.

A preliminary reaction mechanism is depicted in Scheme 3. First, oxidative addition of 1 to a palladium complex forms an η^3 allylpalladium intermediate **A**. Then, reductive elimination from allylic *gem*-palladium/boryl intermediate **A'** (for simplicity,

Tetrahedron

4

another η^1 -allyl form is not depicted) would produce α -acetoxy allylboronate **B**. This step presumably involves isomerization through η^3 -allylpalladium complex, which may account for the observed no chirality transfer as shown in Scheme 2a. Finally, allylboration of aldehyde via two competing chair-type transition states **C** and **D** takes place. Since the acetoxy substituent is a polar group, allylboration proceeds predominately via transition state **D** to give (*Z*)-anti-**3**.^{15c, 18, 19}

Scheme 3. A plausible reaction path.

To evaluate the utility of the homoaldol equivalent products obtained in this study, **3ga** was hydrolyzed under mildly basic conditions to provide the corresponding formal homoaldol product, which was subsequently converted into synthetically useful *trans*- β , γ -diaryl-substituted- γ -butyrolactone **5** in 60% yield followed by PCC oxidation (Scheme 4).²⁰

Scheme 4. Hydrolysis and oxidation of a homoaldol equivalent product.

In summary, we have developed a palladium-catalyzed methodology for the diastereoselective synthesis of *anti*-homoaldol equivalent products, which provides access to a variety of synthetically useful compounds. Furthermore, the present methodology enhances the utility of allylic *gem*-palladium/boryl species, making it attractive alternative to various synthetic strategies.

Acknowledgments

We thank Prof. Ryuta Miyatake (University of Toyama) for his assistance with HRMS measurements. This work was financially supported by the JSPS KAKENHI Grant Number JP15K05496.

References and notes

 (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (b) Trost, B. M. Tetrahedron 1977, 33, 2615–2649. (c) Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649–1651. (d) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395–422. (e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2944. (f) Weaver, J. D.; Recio III, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846–1913. (g) J. Tsuji, Palladium Reagents and Catalysis, 2nd ed.; Wiley: Chichester, 2004.

- 2. For selected reviews of carbonyl allylation via umpolung of π -allylpalladium, see: (a) Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. *Eur. J. Org. Chem.* **2007**, 3599–3611; (b) Marshall, J. A. *Chem. Rev.* **2000**, *100*, 3163–3186; (c) Tamaru, Y. *Eur. J. Org. Chem.* **2005**, 2647–2656; (d) Yus, M.; González-Gómez, J. C.; Foubelo, F. *Chem. Rev.* **2011**, *111*, 7774–7854.
- σ-Allylpalladium-mediated nucleophilic allylation reactions, see:

 (a) Kurosawa, H.; Urabe, A. Chem. Lett. 1985, 1839–1840; (b) Kurosawa, H.; Ogoshi, S. Bull. Chem. Soc. Jpn. 1998, 71, 973–981; (c) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641–6647; (d) Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 4242-4243; (e) Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133–14139; (f) Soiln, N.; Kjellgre, J.; Szabó, K. J. Angew. Chem. Int. Ed. 2003, 42, 3656–3658; (g) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. 2004, 126, 7026–7033; (h) Barczak, N. T.; Grote, R. E.; Jarvo, E. R. Organometallics 2007, 26, 4863–4865; (i) Shaghafi, M. B.; Kohn, B. L.; Jarvo, E. R. Org. Lett. 2008, 10, 4743–4746; (j) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391–16394.
- σ-Allylpalladium-mediated enantioselective carbonyl allylation reactions, see: (a) Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem. Int. Ed. 2004, 43, 846–849; (b) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333–2335; (c) Howell, G. P.; Minnaard, A. J.; Ferigna, B. L. Org. Biomol. Chem. 2006, 4, 1278–1283; (d) Onomura, O.; Fujimura, N.; Oda, T.; Matsumura, Y.; Demizu, Y. Heterocycles 2008, 76, 177–182; (e) Wang, W.; Zhang, T.; Shi, M. Organometallics 2009, 28, 2640–2642; (f) Qiao, X.-C.; Zhu, S.-F.; Zhou, Q.-L. Tetrahedron Asymmetry 2009, 20, 1254–1261; (g) Jiang, J.-J.; Shi, M. Tetrahedron Asymmetry 2010, 21, 2050– 2054; (h) Qiao, X.-C.; Zhu, S.-F.; Chen, W.-Q.; Zhou, Q.-L. Tetrahedron Asymmetry 2010, 21, 1216–1220; (i) Zhu, S.-F.; Qiao, X.-Q.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135–1140; (j) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774–7854; (k) Tsukamoto, H.; Kawase, A.; Doi, T. Chem.Commun. 2015, 51, 8027–8030.
- Pioneering works for the cyclopropanation of strained alkenes and carbene dimerization by allylic gem-palladium/stannyl intermediates, see: (a) Trépanier, V. É.; Fillion, E. Organometallics 2007, 26, 30–32. (b) Fillion, E.; Trépanier, V. É.; Heikkinen, J. J.; Remorova, A. A.; Carson, R. J.; Goll, J. M.; Seed, A. Organometallics 2009, 28, 3518–3531.
- (a) Horino, Y.; Homura, N.; Inoue, K.; Yoshikawa, S. Adv. Synth. Catal. 2012, 354, 828. (b) Horino, Y.; Takahashi, Y.; Kobayashi, R.; Abe, H. Eur. J. Org. Chem. 2014, 7818–7822.
- Horino, Y.; Takahashi, Y.; Koketsu, K.; Abe, H.; Tsuge, K. Org. Lett. 2014, 16, 3184–3187.
- (a) Horino, Y.; Aimono, A.; Abe, H. Org. Lett. 2015, 17, 2824– 2827; (b) Horino, Y.; Aimono, A.; Minoshima, N.; Abe, H. Tetrahedron Lett. 2016, 57, 3561–3564; (c) Horino, Y.; Sugata, M.; Abe, H. Adv. Synth. Catal. 2016, 358, 1023–1028.
- Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056–8066.
- First observation of a homoenolate anion, see: Nickon, A.; Lambert, J. L. J. Am. Chem. Soc. 1962, 84, 4604–4605.
- 11. Martins, E. O.; Gleason, J. L. Org. Lett. 1999, 1, 1643-1645.
- (a) Lombardo, M.; Licciulli, S.; Pasi, F.; Angelici, G.; Trombini, C. Adv. Synth. Catal. 2005, 347, 2015–2018; (b) Kang, J. Y.; Connel, B. T. J. Am. Chem. Soc. 2010, 132, 7826–7827.
- 13. Burstein, C.; Glorius, F. Angew. Chem. Int. Ed. 2004, 43, 6205-6208.
- (a) Liang, T.; Zhang, W.; Krische, M. J. Am. Chem. Soc. 2015, 137, 16024–16027; (b) Čorić, I.; Müller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370–17373.
- Non-catalytic condition, see; (a) Sakami, S.; Houkawa, T.; Asaoka, M.; Takei, H. J. Chem. Soc. Perkin Trans. 1, 1995, 285– 286; (b) McWilliams, J. C.; Armstrong, J. D.; Zheng, N.; Bhupathy, M.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1996, 118, 11970–11971; (c) Berrée, F.; Gernigon, N.; Hercouet, A.; Lin, C. H.; Carboni, B. Eur. J. Org. Chem. 2009, 329–333.
- (a) M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, J. Fraanje, *Organometallics*, **1995**, *14*, 3081–3089; (b) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, *Chem. Rev.* **2000**, *100*, 2741– 2769.

- (a) Cmrecki, V.; Eichenauer, N. C.; Frey, W.; Pietruszka, J. *Tetrahedron* 2010, 66, 6550–6564; (b) Vahabi, R.; Frey, W.; Pietruszka, J. J. Org. Chem. 2013, 78, 11549–11559.
- 18. For carbonyl addition with α -hetero atom substituted allylboronates: (a) Hoffmann, R. W.; Landmann, B. Tetrahedron Lett. 1983, 24, 3209; (b) Hoffmann, R. W.; Landmann, B. Angew. Chem., Int. Ed. 1984, 23, 437; (c) Hoffmann, R. W.; Dresely, S. Angew. Chem., Int. Ed. 1986, 25, 189; (d) Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 1039; (e) Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 2013; (f) Hoffmann, R. W.; Dresely, S. Tetrahedron Lett. 1987, 28, 5303; (g) Hoffmann, R. W.; Dresely, S.; Lanz, J. W. Chem. Ber. 1988, 121, 1501; (h) Hoffmann, R. W.; Dresely, S.; Hildebrandt, B. Chem. Ber. 1988, 121, 2225; (i) Hoffmann, R. W.; Dresely, S. Synthesis 1988, 103; (j) Hoffmann, R. W.; Dresely, S. Chem. Ber. 1989, 122, 903; (k) Stürmer, R.; Hoffmann, R. W. Synlett 1990, 759; (1) Hoffmann, R. W.; Wolff, J. J. Chem. Ber. 1991, 124, 563; (m) Beckmann, E.; Hoppe, D. Synthesis 2005, 217; (n) Chen, W.; Roush, W. 2010, 12, 2706-2709; (o) Gennari, C.; Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron 1994, 50, 8815-8826.
- 19. To figure out the process of isomerization of 1 to the corresponding allylboronate by palladium catalysis, (1-phenyl-3-pinacolatoboryl)allyl benzoate (6) was treated with a catalytic amount of Pd(OAc)₂ (5 mol%) and Xantphos (5 mol%) in toluene at 70 °C for 3 h. However, (3-phenyl-1-pinacolatoboryl)allyl benzoate (7) was not observed by NMR analysis of the crude

mixtures. When the reaction was conducted for prolonged reaction time, it led to competitive protodeboronation to produce cinnamyl benzoate. Although Pd-catalyzed isomerization of **7** to **6** was also examined, decomposition of **7** was observed. Allylboronates are known to participate in allyl–allyl cross-coupling with allyl electrophiles, see: (a) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. **2011**, *133*, 16778–16781; (b) Amanda, H. L.; Morken, J. Org. Lett. **2014**, *16*, 2096–2099.

 (a) Brown, H. C.; Kulkarni, S. V.; Racherla, U. S. J. Org. Chem. 1994, 59, 365–369; (b) Ward, R. S. Nat. Prod. Rep. 1997, 14, 43– 74; (c) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426–9451.

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.

Tetrahedron

Homoaldol equivalent products can be synthesized with high diastereoselectivity.

Pd complex promotes isomerization of 1-alkenylboronates to generate allylboronates.

Acction Reaction involves allylboration of aldehydes with

6

