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Introduction

Driven by economic and environmental considerations, the use
of iron in catalysis has witnessed tremendous activity in recent years
[1,2]. Cyclopentadienyl iron complexes play a pivotal role in organic
[3] and organometallic chemistry [4] and materials science [5]. Due
to the potential of these organo-iron derivatives, several methods
have been reported for their preparation. One of the most used
procedures is a two step reaction involving addition of a bidentate
ligand onto iron(Il) chloride followed by halide-cyclopentadienyl
anion exchange, but suffers from formation of ferrocene as a by-
product. An alternative is a ligand exchange on [CpFe(CO),X] but
this generally requires long heating times or UV irradiation.

Microwave irradiation in polar solvents allows rapid heating to
high temperatures enabling short reaction times, and often
improved yields. Since its introduction, there has been tremendous
growth in applications to organic chemistry [6] but its use in
organometallic synthesis (namely for the preparation of organo-
metallic species) is still in its infancy [7]. Its use in the synthesis of
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piano-stool iron complexes is rare [8]. Flow chemistry provides
convenient access to high temperatures and pressures together
with very fast heat-up and cool-down, and hence precise control of
heating times [9,10]. The first examples of application of flow
chemistry to organometallic synthesis have recently appeared [11]
though it has not yet been used for the synthesis of iron complexes.
We report here a new and rapid methodology involving either
microwave irradiation or flow chemistry for the preparation of
piano-stool iron complexes bearing monodentate, bidentate
diphosphine or bidentate mixed P—N ligands.

Results and discussion
Organometallic synthesis using microwaves technology

The iron precursors [CpFeX(CO),] (X = I (2) and Br (3)) were
prepared using classical method from iron dimer, [CpFe(CO3)]> (1)
[12]. Initially the replacement of the halogen ligand in complex 2 by
triphenylphosphine was investigated using the procedure
described by Wilson and co-workers [8a]. After optimization of the
reaction conditions, the green iron complex 4 was obtained in 90%
isolated yield (Scheme 1) [13]. Even if an excess of triphenylphos-
phine was used only one equivalent coordinated to the metal center
to give 4 as the only product.
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Scheme 1. Synthesis of CpFePPh3(CO)(I) 4 and [CpFe(CO),PR>][1].

However, repeating the synthesis with PBus and P(NMe>); gave
the bis-carbonyl cationic species 5 and 6 (Scheme 1). The lower
yields were due to difficulty in isolating the pure products. The
formation of either neutral or cationic iron complexes by reaction of
various neutral ligands with CpFe(CO),X has been reported to give
either the neutral or cationic products, or both [8a,12a,13]. Catalysis
of conversion of cationic to neutral complexes by [CpFe(CO);], has
been demonstrated [13a,f]. In our case the retention of liberated CO
in the microwave pressure tube seems to favor the cationic com-
plexes when electron rich monodentate ligands are used.

We next investigated the coordination of bidentate ligands.
Using the same reaction conditions, diphenylphosphinoethane
(dppe) gave the cationic iron complex, [CpFe(dppe)(CO)][I] (7) in
54% isolated yield (Scheme 2, Table 1). To attempt improving the
yield several solvents were tried. All gave diphosphine/CO ligand
exchange as monitored by 3'P NMR spectroscopy but in DMSO and
DMF, purification was problematic and pure complex 7 could not be
isolated. In polar and protic solvents, such as methanol, ethanol,
iso-propanol and butanol, the control of the reaction temperature
turned out to be difficult. Nevertheless, in iso-propanol, we were
able to isolate 21% of complex 7. In non-polar solvents such as
toluene, the reaction time had to be increased to 15 min to obtain
7 in 30% isolated yield. Based on these experiments we identified
THF as the best solvent. To demonstrate the benefit of microwave
irradiation, the same ligand exchange was also carried out under
thermal conditions. Complex 7 was isolated in 67% yield but
required a two-day reaction time (Scheme 2).

With optimized conditions in hand, the scope of the reaction
was investigated using a variety of diphosphine ligands. Results are
presented in Table 1.

In all cases the cationic complexes were formed. The length of
the tether had an important effect on the isolated yield. Dppe, dppp,
dppf, and to a lesser extent dppb, led to the corresponding iron
complexes in better yields (54—66%, Table 1 entries 1, 4, 6, 7) than
dppm, (10% yield, entry 3, Table 1). The nature of the halide in the
iron precursor has also an impact on the reactivity, iodide 2 leading
to 33—40% higher yields than the corresponding bromide 3 (Table 1,
entries 1 vs. 2 and 4 vs. 5).

To unambiguously establish the atom connectivity in the com-
plexes, single crystals for X-ray diffraction (XRD) were grown by
slow evaporation of a solution of [CpFe(dppp)(CO)][Br] 11 in
dichloromethane. An ellipsoid representation of complex 11 is
presented in Fig. 1. The X-ray diffraction analysis confirmed the
presence of one CO ligand in complex 11, and its cationic nature as
the bromine atom is an outer sphere counter-anion.

i~
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Scheme 2. Synthesis of [CpFe(dppe)(CO)][1] 7.

Table 1
Synthesis of cationic iron complexes under microwave irradiation starting from
precursors 2 or 3.°

Entry X Ligand Complex Yield”
1 I dppe [CpFe(dppe)(CO)][1] (7) 54
2 Br dppe [CpFe(dppe)(CO)][Br] (8) 21
3 I dppm [CpFe(dppm)(CO)][I] (9) 10
4 I dppp [CpFe(dppp)(CO)](1] (10) 60
5 Br dppp [CpFe(dppp)(CO)][Br] (11) 20
6 I dppb [CpFe(dppb)(CO)][1] (12) 47
7 ! dppf [CpFe(dppf)(CO)][1] (13) 66

¢ Reaction conditions: [CpFe(CO),X] (0.16 mmol), ligand (0.16 mmol), degassed
THF (1 mL) under an argon atmosphere, microwave irradiation (150 W) at 130 °C for
6 min.

b Isolated yield.

As the CO ligand is not labile and can be problematic for cat-
alytic activity, we investigated the possibility to replace it with
acetonitrile. To avoid the coordination of iodide to the metal
centre during this ligand exchange, we replaced it with PFg. For
example reaction of 7 with KPFg gave 14 in 95% isolated yield. The
oxidative carbonyl ligand removal from 14 was conducted in the
presence of Me3NO in acetonitrile within 3 h at room temperature
[14]. With these reaction conditions, complex 15 was obtained in
90% yield (Scheme 3).

Although we have defined a straightforward procedure for the
synthesis of several cyclopentadienyl iron complexes, we thought
to extend this methodology to a more direct synthesis of cationic
acetonitrile ligated complexes such as 15. The cyclopentadienyl
arene iron complex [CpFe(napth)][PFs] 16, described by Kiindig
et al. [15], is a pertinent piano-stool iron precursor, as the arene
ligand is known to be labile at high temperature. Treatment of
ferrocene with aluminum chloride, aluminum powder and TiCly
in heptane at 90 °C for 3 h and subsequent addition of KPFg
afforded the expected sandwich complex 16 in 91% isolated yield
(Scheme 4).

We next examined the reaction between complex 16 and dppe.
The expected complex 15 was obtained in 92% isolated yield after
microwave irradiation (40 W) for 3.5 min in a 2:1 mixture of THF/
CH3CN (Scheme 5). This two-step procedure from ferrocene is a
much more convenient and efficient methodology for the synthesis
of substituted piano-stool iron complex 15 (84% overall yield) than
the four-step route from dimer [CpFe(CO);], (47% overall yield).

The scope and limitation of the arene displacement were
studied with various diphosphine ligands, triphenylphosphine and
the mixed P—N ligand, dimethylaminophosphine 19 (Fig. 2) [16]
and the results are presented in Table 2.

Under the reaction conditions above, complexes 15, 17 and 18
were obtained in high yields and purity (87—92%, entries 2—4,
Table 2). For complexation of 19, dppm or ddpf replacement of THF
by toluene was needed to obtain pure products. Thus in a 2/1
mixture of toluene/acetonitrile, complexes 20, 21 and 22, bearing
ligand 19, dppm and dppf, respectively, were prepared in 70, 89 and
55% yield (Table 2, entries 5—7). Unfortunately, either in the pres-
ence of one or two equivalents of triphenylphosphine, no complex
[CpFe(PPhs3)(CH3CN),][PFs] nor [CpFe(PPhs),(CH3CN)][PFs] were
obtained (Table 1, entry 1).

In order to unambiguously confirm the structure of these
complexes, a single crystal of complex [CpFe(dppb)(CH3CN)][PFs]
18 was grown for XRD analysis. The crystal was obtained by slow
evaporation of a solution of 18 in dichloromethane. An ellipsoid
representation of complex 18 is presented in Fig. 3. The presence of
only one molecule of acetonitrile coordinated to the metal center
was confirmed, as well as the presence of the outer sphere counter-
anion PFg.
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R1, wR2 (all)
GOF

Formula C;5H;33BrClgFeOP, [CpFe(dppp)CO]Br
M/g.mol™ 880.01
Crystal system Monoclinic
Space group Ce
a/A 15.354(5)
b/A 14.056(9)
c/A 18.441(7)
a/° 90.00
pre 108.977(17)
v/° 90.00
V/A3 3763(3)
@
z 4
T/K 150(2)
Peatca/ gcm™ 1553
1 (Mo K,)/mm™ 2.00
N° of meas. rfls 31816
Rint 0.022
iy
R1, wR2 0.0245, 0.0656

0.0254, 0.0661

1.06

Fig. 1. Ellipsoid representation of complex [CpFe(dppp)(CO)][Br] 11. Selected bonds (A) and angles (°): Fe1—C33 1.757(2), Fe1-P2 2.2050(10), Fe1-P1 2.2143(8), P2—Fe1—P1

91.99(4).
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Scheme 3. Synthesis of cationic iron complex 15.
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Scheme 4. Synthesis of complex [CpFe(napth)][PFs] 16.

dppe
—_—

THF/CHsCN (2:1)  PhP"
L

40W, 130 °C
3.5 min

15, 92%

Scheme 5. Synthesis of complex [CpFe(dppe)(CH3CN)][PFg] 15 from precursor 16.

Organometallic synthesis using flow chemistry technology

Because microwave-assisted chemistry is mainly driven by
temperature phenomenon [7f—h], we hypothesized that flow
chemistry would be an interesting alternative. Indeed, such
technology provides much faster heat-up and cool-down times
than microwave heating, with precisely defined residence times
at high temperature, and consequently may diminish thermal
decomposition [9—11]. We could only find two examples of the
use of flow chemistry for organotransition metal complex syn-
thesis, and neither deals with iron chemistry [11]. Our initial
explorations in this field concentrated on the reaction of
[CpFe(CO),I] and phosphines (Schemes 1 and 2 above), but they
were hampered by the rapid release of gas and extrusion of

PPh; s
|
NMe, @\ / =CH;

19 20

Fig. 2. Hemilabile bidentate monophosphine 19 and the corresponding iron complex
20.
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Table 2
Synthesis of cationic iron complexes under microwave irradiation.”
Entry Ligand Complex Yield (%)°
1 PPh; - -
2 dppe [CpFe(dppe)(CH3CN)][PF¢] (15) 92
3 dppp [CpFe(dppp)(CH3CN)][PFe] (17) 87
4 dppb [CpFe(dppb)(CH3CN)][PF] (18) 90
5¢ 19 [CpFe(17)(CH5CN)][PFg] (20) 70
6¢ dppm [CpFe(dppm)(CH35CN)][PFg] (21) 89
7¢ dppf [CpFe(dppf)(CH3CN)][PFg] (22) 55

2 Reaction conditions: [CpFe(napth)][PFs] (0.16 mmol), ligand (0.16 mmol),
degassed solution of THF/CH3CN (2/1) under an argon atmosphere, microwave
irradiation (40 W) at 130 °C for 3.5 min.

b Isolated yield.

¢ Reaction performed in a 2/1 mixture of toluene/CH3;CN.

reaction mixture during the thermal process, which occurred
beyond 90 °C. With these experimental limitations, we decided
to focus on the displacement of the labile aromatic ligand from
16 (Scheme 5).

The second route proved to be more robust and reliable. The
microwave procedure (Scheme 5) was transferred into a flow
process with minor adjustments. Introduction of in-line filtration
through alumina was needed to avoid blocking of the backpressure
regulator (Fig. 4).

When scaling the synthesis from 50 mg (2 mL) to 150 mg (6 mL),
higher yields were obtained especially when a more concentrated
solution was used (150 mg in 2 mL), although precipitation in the
reactor became a problem. Under the lower concentration condi-
tions this corresponds to conversion of 2.5 mmol/h and of
12.5 mmol/h under the higher temperature conditions (160 °C,
4 min). The reaction with dppf ligand required dichloromethane in
the solvent to prevent precipitation in the flow apparatus, and a
slightly higher temperature. The results are summarized in Table 3.

The flow chemistry method starting from cationic naphthalene
cyclopentadienyl iron complex allowed the synthesis of several
piano stool iron complexes with various bidentate phosphine
ligands and provides a useful alternative to the microwave proce-
dure with the potential for continuous production.

Formula C;6H;33CLFsFeNP; [CpFe(dppb)(CH;CN)][PF]
M/g.mol 818.33
Crystal system Monoclinic
Space group P2,/c
a/A 13.6299(4)
b/A 14.1423(4)
c/A 19.6407(7)
a/° 90.00
pre 96.463(2)
y/° 90.00
V/A? 3761.8(2)
Z 4
T/K 296(2)
Peatca/ g-cM™ 1.445
n (Mo K,)/mm™ 0.73
N° of meas. rfls 66803
Rine 0.034
N° of unique reflections 10991
R1, wR2 0.0452, 0.1244
R1, wR2 (all) 0.0690, 0.1417
GOF 1.03

Fig. 3. Ellipsoid representation of complex [CpFe(dppb)(CH3CN)][PFs] 18. Selected bonds (A) and angles (°): Fe1—N11.9167(18), Fe1—P2 2.2284(5), Fe1—P3 2.2353(6), P2—Fe1—P3

98.11(2).
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Fig. 4. Modified flow setup with in-series filtration.

Table 3
Synthesis of piano-stool iron complexes from 16 using flow-chemistry.

Ligand Product Scale/isolated yield

50 mg, 160 °C, 2 mL, 4 min 150 mg, 140 °C, in 6 mL, 20 min

dppe 15 80% 72% (83%)°
dppp 18 57% 77% (89%)°
dppm 19 63% 55%
dppf 22 17%° 53%°

2 Values in brackets in 2 mL solvent.
b CH,Cl,:THF:CH5CN = 8:1:1, 140 °C.
€ THF:CH5CN:CHCl, = 2:1:0.1, 160 °C.

Conclusions

We reported a straightforward synthesis of various cyclo-
pentadienyl iron complexes using either microwave or flow tech-
nologies. Since their introduction, there has been a tremendous
growth in applications to organic chemistry but their use in
organometallic synthesis (namely for the preparation of organo-
metallic species) are still rare, and flow technology had no prece-
dence in the literature for the synthesis of iron complexes.

Experimental
General considerations

Reactions were carried out in Schlenk tube freshly with distilled
solvents under an atmosphere of dry Argon. All solvents were
degassed prior to use by freeze—pump—thaw procedure (4 times).
Microwave synthesis was carried out using microwave reactor
(10 mL) with teflon lid under an atmosphere of dry Argon. The
reactions were realized using single-mode automatic microwave
synthesizers Synthesis System Explorer from CEM Corporation.
Organometallic commercial compounds and phosphine ligands
were used without purification. The starting materials [CpFe(CO),I]
and [CpFe(CO),Br] were prepared according to published methods
[12]. All other reagents were commercially available and were used
without further purification. NMR spectra were recorded on an ARX
Bruker 400 MHz spectrometer using solvent residual peak as
reference. HRMS analyses were performed on Q-TOF Micro
WATERS by electrospray ionization (ESI) by LCMT analytical ser-
vices. Infrared (IR) spectra were recorded with a Perkin Elmer 16 PC
FT-IR spectrometer. Crystallographic data sets were collected from
single crystal samples using a Bruker Kappa APEXII CCD

diffractometer. Mo Ko radiation at A = 0.71073 A with a graphite
monochromator was used. Cell refinement and data reduction were
performed with SAINT (Bruker AXS). The structure was solved by
direct methods and refined using SHELXL-97 (Sheldrick). All non-H
atoms were refined by full-matrix least-squares with anisotropic
displacement parameters while hydrogen atoms were placed in
idealized positions.

Synthesis of iron complexes 4—13

In a 10 mL dry microwave reactor were introduced [CpFe(CO),lI]
(49 mg, 0.16 mmol) and the ligand (0.16 mmol, 1 eq.) in degassed
THF (1 mL) under argon atmosphere. The homogeneous solution
was placed in a microwave reactor with a power fixed at 150 W, for
6 min at 130 °C. The dark green solution was filtered through a pad
of deactivated alumina (3% H,0). Then, the cake was washed with
EtOH. The complex was recovered in the EtOH and transferred in a
Schlenk tube under argon atmosphere. The solvent was removed
under vacuum and the crude product was washed with dry and
degassed Et,0 (3 x 10 mL). The supernatant liquid was removed
with Pasteur pipette and the resulting solid was dried under
vacuum.

CpFe(PPh3)(CO)(I) 4

Following the general procedure above using PPhs (42 mg,
0.16 mmol), complex 4 was obtained as green crystals (78 mg,
90%). '"H NMR (400 MHz, CDCl3): 6 7.65—7.49 (m, 6H, HA"),
7.47—7.32 (m, 9H, HA"), 4.48 (s, 5H, H®®) ppm. 3'P{1H} NMR
(162 MHz, CDCl3): 6 67.4 (s) ppm. *C{1H} NMR (101 MHz, CDCls):
6 220.8 (s, C, €©9),135.9 (d, 3C, Cq™, J'(c_p) = 43.4 Hz), 133.8 (d,
6H, CH™, JXc_p) = 9.5 Hz), 130.3 (d, 3C, CH™, J*_p) = 2.4 Hz),
128.4 (d, 6H, CH?, J’(c_p) = 9.8 Hz), 83.0 (s, 5H, CHP) ppm. IR
(neat): » 1940 (large CO stretch) cm~1. HRMS (m/z) ESI+ [M — I7]*
calculated for Cy4HzoFeOP 411.0601; found: [M]" 411.0410 (7%).
HRMS (m/z) ESI+ [M — CO — I7]" calculated for Cy3HpgFeP:
383.0652; found: [M]" 383.0460 (100%). Data consistent with
that previously reported [13e].

[CpFe(P(NMez)3) (CO)2J[1] 5

Following the general procedure for the synthesis of cationic
iron complex using P(NMe3)3 (26 mg, 0.16 mmol), complex 5 was
obtained as gray powder (78 mg, 43%). 'H NMR (400 MHz, CDCls):
6 5.61 (s, 5H, HP), 2.75 (s, 9H, HV®), 2.72 ppm (s, 9H, HM€) ppm. 3'P
{1H} NMR (162 MHz, CDCl3): ¢ 140.6 (s) ppm. >C{1H} NMR
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(126 MHz, CDCl3) (decoupled from phosphorus): § 211.0 (2C, C©),
87.4 (5C, CH'), 38.8 (6C, CHs) ppm. IR (neat): » 2032, 1983 (CO
stretch) cm~!. HRMS (m/z) ESI+ [M — I7]* calculated for
C13H23FeN30,P 340.0877; found 340.0863.

[CpFe(P(n-Bu)3)(CO)2][1] 6

Following the general procedure for the synthesis of cationic
iron complex using P(n-Bu)s (32 mg, 0.16 mmol), complex 6 was
obtained as green powder (11 mg, 13%). 'H NMR (400 MHz, MeOD):
4 5.52 (d, 5H, HP, ] = 1.4 Hz), 2.04 (dd, 6H, CHa, Z(_py = 16.2 Hz,
Pun) = 9.9 Hz), 1.64-143 (m, 12H, CHp), 1.01 (t, 9H, CHs,
P—m) = 7.0 Hz) ppm. *'P{1H} NMR (162 MHz, MeOD): ¢ 53.9 (s)
ppm. 2C{1H} NMR (126 MHz, CDCl3) (decoupled from phos-
phorus): 6 210.4 (2C, C©), 87.6 (5C, CHP), 29.2 (3C, CH,), 26.2 (3C,
CH,), 24.0 (3C, CHy), 13.9 (3C, CH3) ppm. IR (neat): » 2041, 1996 (CO
stretch) cm~'. HRMS (m/z) ESI+ [M — I7|* calculated for
Cq9H3,FeO,P: 379.1489; found: 379.1506.

[CpFe(dppe)(CO)][1] 7

Following the general procedure for the synthesis of cationic
iron complex using dppe (64 mg, 0.16 mmol), complex 7 was ob-
tained as yellow powder (58 mg, 54%). 'H NMR (400 MHz, DMSO-
de): 6 7.85—7.77 (m, 4H, HA"), 7.64—7.49 (m, 12H, HA"), 7.36—7.27 (m,
4H, HA"), 5.06 (s, 5H, HP), 2.99—2.86 (m, 2H, CHy), 2.82—2.67 (m,
2H, CH3) ppm. >'P{1H} NMR (162 MHz, DMSO-dg): 6 92.9 (s) ppm.
13C{1H} NMR (126 MHz, DMSO-dg) (5 Cq are not observed): 132.6
(t, 4C, CH™, J2(c_p) = 4.8 Hz), 131.5 (s, 2C, CH™), 131.1 (t, 4C, CH™Y,
Py = 48 Hz), 1310 (s, 2C, CH), 1293 (t, 4C, CHay
Pic—p) = 4.8 Hz), 1291 (t, 4C, CH", ’(c_p) = 5.1 Hz), 85.0 (s, 5C,
CHcp), 285 (t, 2C, CHy, J'c—p) = 21.7 Hz) ppm. C{1H} NMR
(126 MHz, DMSO-dg) (decoupled from phosphorus): ¢ 214.2 (1C,
) 135.3 (2C, Cq), 132.8 (2C, Cq), 132.6 (4C, CHAY), 131.5 (2C, CHAY),
131.1 (4C, CHA), 131.0 (2C, CHAY), 129.3 (4C, CHAY), 129.1 (4C, CHAY),
85.0 (5C, CHP), 28.5 (2C, CH;) ppm. IR (neat): » 1984 (CO stretch)
cm~ . Data consistent with those previously reported [13g].

[CpFe(dppm)(CO)][1] 8

Following the general procedure for the synthesis of cationic
iron complex using dppm (61 mg, 0.16 mmol), complex 8 was ob-
tained as yellow powder (10 mg, 10%). '"H NMR (400 MHz, DMSO-
dg): 6 7.80—7.69 (m, 4H, H"), 7.61-7.41 (m, 16H, H"), 5.41-5.28 (m,
1H, CHy), 5.21 (s, 5H, H®P), 4.56—4.45 (m, 1H, CHy). 3'P{1H} NMR
(162 MHz, DMSO-dg): 6 27.2 (s). '*C{1H} NMR (126 MHz, DMSO-dg)
(decoupled from phosphorus): 6 216.7 (1C, C©), 133.2 (2C, Cq),
132.6 (2C, Cq), 131.6 (4C, CHa;), 131.6 (2C, CHay), 131.3 (2C, CHay),
131.2 (4C, CHar), 129.3 (4C, CHay), 129.0 (4C, CHar), 83.1 (5C, Ccp),
41.89 (1C, CH,) ppm. IR (neat): » 1967 (CO stretch) cm~'. HRMS
(m/z) ESI+ [M]" calculated for Cs3iHo7FeOP,: 533.0887; found:
533.0869. Data consistent with those previously reported [13g].

[CpFe(dppe)(CO)][Br] 9

Following the general procedure for the synthesis of cationic
iron complex using [CpFe(CO),Br] (41 mg, 0.16 mmol) and dppe
(64 mg, 0.16 mmol), complex 9 was obtained as a brown powder
(21 mg, 21%). "H NMR (400 MHz, CDCls): 6 7.72—7.66 (m, 4H, H"),
7.59—7.54 (m, 4H, HA"), 7.54—7.50 (m, 4H, HA"), 7.36—7.29 (m, 8H,
HAT), 4.86 (s, 5H, HP), 3.15—3.08 (m, 2H, CH,), 2.84—2.78 (m, 2H,
CH3) ppm. 3'P{1H} NMR (162 MHz, DMSO-dg): 6 92.3 (s). Data
consistent with those previously reported [13g].

[CpFe(dppp)(CO)][1] 10

Following the general procedure for the synthesis of cationic
iron complex using dppp (66 mg, 0.16 mmol), complex 10 was
obtained as a green powder (67 mg, 60%). 'TH NMR (400 MHz,
DMSO-dg): 6 7.61—746 (m, 12H, HM), 738 (t, 4H, HM,

P—m) = 7.0 Hz), 7.35—7.26 (m, 4H, H"), 4.97 (s, 5H, HP), 2.43-2.29
(m, 1H, CHp), 3.02—2.85 (m, 2H, CH), 211 (t, 2H, CHy,
Paom = 13.8 Hz), 1.57-1.41 (m, 1H, CH,) ppm. >'P{1H} NMR
(162 MHz, CDCl3): 6 52.0 (s) ppm. >C{1H} NMR (126 MHz, DMSO-
ds): 6215.8 (s,1C, C©),137.1 (t, 2C, Cq, J (c—p) = 26.1 Hz),133.2 (t, 2C,
Cq,J"(c—p) = 21.0 Hz), 132.7 (t, 4C,CHpy, J*(c—p) = 4.7 Hz), 131.4-131.1
(m, 4C, C*"),131.2 (s, 2C, CH"), 130.8 (s, 2C, CH"), 129.1 (t, 4C, CH™,
Pic—p) = 4.9 Hz), 128.8 (t, 4C, CHa,, J’(c—p) = 4.7 Hz), 86.0 (s, 5C,
CH®P), 28.5 (t, 2C, CHa, J'(c—p) = 17.1 Hz), 19.9 (s, 1C, CH,) ppm. 13C
{1H} NMR (126 MHz, DMSO-dg) (decoupled from phosphorus):
6215.8 (1C, C©),137.1 (2C, Cq), 133.2 (2C, Cq), 132.7 (4C, CH*"), 131.2
(4C, €A1, 131.2 (2C, CHAY), 130.8 (2C, CHA™), 129.1 (4C, CHAY), 128.8
(4C, CHAY), 86.0 (5C, CHP), 28.5 (2C, CHy), 19.9 (1C, CH) ppm. IR
(neat): v 1959 (CO stretch) cm~'. Data consistent with those pre-
viously reported [13g].

[CpFe(dppp)(CO)][Br] 11

Following the general procedure for the synthesis of cationic
iron complex using [CpFe(CO),Br] (41 mg, 0.16 mmol) and dppp
(66 mg, 0.16 mmol), complex 9 was obtained as a brown powder
(21 mg, 20%). '"H NMR (400 MHz, CDCl3): 6 7.55 (t, 2H, H™,
Puom) = 7.5 Hz), 7.51-7.47 (m, 6H, HA"), 7.47-7.34 (m, 8H, HAY),
7.31-7.24 (m, 4H, HA"), 4.81 (t, 5H, P(n_n) = 1.3 Hz), 3.01-2.80 (m,
2H, CHy), 2.69—2.53 (m, 1H, CH,) 2.25—2.08 (m, 2H, CH,), 1.81—1.64
(m, 1H). 3'P{1H} NMR (162 MHz, CDCl3): ¢ 52.0 (s) ppm. Data
consistent with those previously reported [13g].

[CpFe(dppb)(CO)][1] 12

Following the general procedure for the synthesis of cationic
iron complex using dppb (68 mg, 0.16 mmol), complex 12 was
obtained as yellow powder (53 mg, 47%). 'H NMR (400 MHz,
DMSO-dg): 6 7.80—7.32 (m, 20H, HA"), 4.62 (s, 5H, HCP), 3.04—2.84
(m, 2H, CH,), 2.51—2.31 (m, 2H, CH,), 1.75—1.44 (m, 4H, CH,). 3'P
{1H} NMR (162 MHz, DMSO-dg): 6 59.6 (s) ppm. *C{1H} NMR
(126 MHz, CDCl5) (decoupled from phosphorus): é 217.9 (1C, C©),
136.1 (2C, Cq), 133.5 (2C, Cq), 132.3 (2C, CHAY), 132.2 (4C, CHA"), 131.6
(4C, CHAM), 131.4 (2C, CHA), 130.0 (4C, CHM"), 129.7 (4C, CHAY), 86.9
(5C, CHP), 32.3 (2C, CHy), 23.9 (2C, CH,) ppm. IR (neat): » 1954 (CO
stretch) cm™~ . Data consistent with those previously reported [13g].

[CpFe(dppf)(CO)][1] 13

Following the general procedure for the synthesis of cationic
iron complex using dppf (89 mg, 0.16 mmol), complex 13 was ob-
tained as yellow powder (87 mg, 66%). '"H NMR (400 MHz, CD3CN):
6771 (t, 2H, HY, Poy_u) = 7.4 Hz), 7.58—7.45 (m, 18H, HA"), 4.90 (s,
2H, H®P), 4.58 (s, 2H, HP), 4.56—50 (m, 7H, HP), 4.31 (s, 2H, HP)
ppm. 3'P{1H} NMR (162 MHz, CD3CN): 6 68.9 (s) ppm. >C{1H} NMR
(126 MHz, DMSO-dg) (decoupled from phosphorus): ¢ 218.8 (1C,
€%9),138.4 (2C, Cq), 133.9 (4C, CH"),132.7 (2C, Cq), 131.7 (4C, CHAY),
131.6 (2C, CH"), 130.5 (2C, CHA"), 128.7 (4C, CHAY), 128.6 (4C, CHA"),
89.0(2C, Cq*P), 86.6 (5C, CHP), 84.5 (4C, CHP), 74.4 (1C, CHP), 73.4
(1C, CH®P), 73.3 (1C, CHP), 70.4 (1C, CH®P) ppm. IR (neat): » 1956
(CO stretch) cm™L. HRMS (m/z) ESI+ calculated for C4oH33Fe;0P;:
703.0705; found 703.0738.

Synthesis of cationic iron complexes 15, 17—18 and 20—22

(Method A) In a 10 mL dry microwave reactor, [CpFe(naph-
thalene)][PFg] (63 mg, 0.16 mmol) and the ligand (0.16 mmol) were
introduced in a 2:1 mixture of degassed THF/CH3CN (1.5 mL) under
an argon atmosphere. The homogeneous solution was placed in a
microwave reactor (40 W) at 130 °C for 3.5 min. The crude red
solution was filtered through a pad of deactivated alumina (3% H,0)
with dry and degassed CH3CN. This solution was transferred in a
Schlenk tube under argon atmosphere. The solvent was removed
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under vacuum and the crude product was dissolved in 1 mL of dry
and degassed CH3CN. The naphthalene was eliminated by hot
extraction with pentane (60 °C). The complex was precipitated with
Et;0 (3 x 10 mL) and dried under vacuum.

(Method B) a 2:1 toluene/CH3CN (1.5 mL) was used.

[CpFe(dppe)(CH3CN)][PFs] 15

Following the general procedure (method A) using dppe (64 mg,
0.16 mmol), complex 15 was obtained as a red powder (103 mg, 92%).
TH NMR (CD5CN, 400 MHz): 6 7.87—7.79 (m, 4H, HA"), 7.58—7.52 (m,
6H, H"), 7.52—7.44 (m, 6H, H"), 7.41—7.31 (m, 4H, H™), 4.35 (t, 5H,
HP, J = 1.4 Hz), 2.59—2.49 (m, 2H, CH,), 2.43—2.34 (m, 2H, CH,), 1.96
(s, 3H, CH3) ppm. 3'P{1H} NMR (CD3CN, 162 MHz): 6 97.2 (s), —144.6
(sept, J'(p_py= 706.2 Hz) ppm. *C{1H} NMR (CD5CN, 100 MHz) (2C of
CH3CN were not observed): 6 137.9 (t, 2C, Cq,]l(c,p) =20.5Hz),133.7
(t, 4C, CHM, JX(c_p) = 4.7 Hz),133.1 (t, 2C, Cq, J!(c_p) = 20.3),132.5 (¢,
4C, CH™, J2c_p) = 4.8 Hz), 131.5 (s, 2C, CHa,) 131.3 (s, 2C,CHA") 129.9
(t, 4C, CHY, 2 c_p) = 4.8 Hz), 129.8 (t, 4C, CHa, J(c—p) = 4.8 Hz), 79.7
(s,5C, CHcp) 28.4 (t, 2C, CHZ,]l(C_p) = 21.3 Hz) ppm. IR (neat): » 3059
(C—H Ar), 2268 (CN) cm~ . HRMS (m/z) ESI+ [M— PFg]* calculated
for C33H3FeNP,: 560.1359; found: 560.1346. HRMS (m/z) ES— [M] "
calculated for PFg, 144.9642; found 145.0724.

[CpFe(dppp)(CH3CN)][PFg] 17

Following the general procedure (method A) using dppp (66 mg,
0.16 mmol), complex 17 was obtained as a red powder (100 mg,
87%). 'H NMR (CDsCN, 400 MHz): ¢ 7.68—7.61 (m, 4H, H™),
7.55—7.47 (m, 8H, HY), 7.34—7.28 (m, 4H, HA"), 7.28—7.22 (m, 4H,
HAY), 4.21 (s, 5H, HP), 2.63—2.51 (m, 3H, CHy), 2.09 (s, 3H, CH3),
1.85—1.72 (m, 3H, CH,) ppm. 3'P{1H} NMR (CDsCN, 162 MHz):
6 55.9 (s), —144.6 (sept, J'(p_r) = 706.2 Hz) ppm. *C{1H} NMR
(CD3CN, 100 MHz) (2C of CH3CN were not observed): ¢ 139.6 (t, 2C,
Cq,J'(c—p) = 20.6 Hz), 136.8 (t, 2C, Cq, J'(c_p) = 21.3 Hz), 133.9 (t, 4C,
CHA, 2 (c_py = 4.8 Hz), 132.6 (t, 4C, CH™", J%c_p) = 4.6 Hz), 131.4 (s,
2C, CHA"), 131.0 (s, 2C, CHM), 129.7 (t, 4C, CHY, P(c_p) = 4.6 Hz),
129.4 (t, 4C, CH™, J(c_p) = 4.7 Hz), 80.7 (s, 5C, CHP), 27.2 (t, 2C, CHa,
jl(c,p) =13.3 Hz), 20.9 (s, 1C, CH,) ppm. IR (neat): » 3058 (C—H Ar),
2258 (CN) cm™ . HRMS (m/z) ESI+ [M] calculated for C34H34FeNP,:
574.1516; found: 574.1513.

[CpFe(dppb)(CH3CN)][PFe] 18

Following the general procedure (method A) using [CpFe(-
napht.)][PFs] (63 mg, 0.16 mmol) and dppb (68 mg, 0.16 mmol),
complex 18 was obtained as a red powder (106 mg, 90%). 'H NMR
(CD3CN, 400 MHz): 7.63—7.50 (m, 16H, H"), 7.44—7.32 (m, 4H, HA"),
3.93 (t, 5H, Hep, ] = 1.4 Hz), 2.68—2.60 (m, 2H, CHy), 2.25-2.20 (m,
2H, CH,), 1.96 (s, 3H, CH3), 1.59—1.50 (m, 2H, CH3), 1.41—1.31 (m, 2H,
CH;) ppm. >'P{1H} NMR (CD3CN, 162 MHz): 6 62.0 (s), —144.7 (sept,
Jip—r) = 706.2 Hz) ppm. >C{1H} NMR (CD3CN, 100 MHz) (2C of
CH3CN are not observed): 6 138.7 (t, 2C, Cq,]‘(c,p) =20.2 Hz),136.7
(t,2C, Cq,J (c—p) = 19.9 Hz), 133.3 (t, 4C, CH™, % c_p) = 4.5 Hz), 132.8
(t, 4C, CHM, JXc_py = 4.3 Hz), 131.5 (s, 2C, CH"), 130.8 (s, 2C, CHA),
1298 (t, 4C, CHY, Pp = 45 Hz), 1296 (t 4C, CHa,
Pic—p)=4.5Hz), 80.6 (s, 5C, CHcp), 30.1 (t, 2C, CHa, J'(c—py = 11.0 Hz),
24.5 (s, 2C, CHy) ppm. IR (neat): » 3058 (C—H Ar), 2265 (CN) cm .
HRMS (m/z) ESI+ [M — CH3CN]|' calculated for C33HssFeP;:
547.1407; found: 547.1385.

[CpFe(19)(CH3CN)][PFs] 20

Following the general procedure (Method B) using [CpFe(-
napht.)][PFs] (79 mg, 0.20 mmol) and ligand 19 (61 mg, 0.20 mmol),
complex 20 was obtained as a violet powder (85 mg, 70%). '"H NMR
(400 MHz, CD3CN): 6 7.82—7.71 (m, 2H, H*"), 7.69—7.63 (m, 2H, H""),
7.61-7.50 (m, 7H, HA"), 7.46—7.40 (m, 2H, HA"), 7.30—7.21 (m, 1H,
HA), 4.27 (s, 5H, HP), 3.57 (s, 3H, CH3), 2.90 (s, 3H, CH3), 1.96 (s, 3H,

CHA™) ppm. 3'P{1H} NMR (162 MHz, CD3CN): 6 73.5 (s), —144.6
(sept. J'(p_p) = 706.2) ppm. *C{1H} NMR (126 MHz, CD3CN): (2C of
CH3CN, 4C of Cq and 4C of C*" are not observed): 6 135.0 (d, 2C, CH™,
Pc—p) = 9.9 Hz), 133.4 (d, 2C, CH?, J2c_p) = 9.7 Hz), 132.0 (s, 1C,
CHA™), 131.5 (s, 1C, CHAY), 130.2 (d, 2C, CH™, P(c_p) = 8.6 Hz), 129.9
(d, 2C, CH™, Pc_p) = 10.3 Hz), 75.2 (s, 5C, CHP), 63.0 (s, 1C, CH3),
55.8 (s, 1C, CH3) ppm. The complex is air sensitive and need to be
handled and stored under argon atmosphere.

[CpFe(dppm)(CH5CN)][PFg] 21

Following the general procedure (method B) using dppm
(61 mg, 0.16 mmol), complex 21 was obtained as a pink powder
(61 mg, 55%). TH NMR (400 MHz, CDsCN): 6 7.73—7.66 (m, 4H, HAY),
7.54—7.39 (m, 16H, HA"), 4.97—4.87 (m, 1H, CHy), 4.49 (s, 5H, HP),
3.93—3.83 (m, 1H, CH,) ppm. >'P{1H} NMR (162 MHz, CD3CN):
0 36.0 (s), —144.6 (sept, J'(p_p) = 706.2 Hz) ppm. >C{1H} NMR
(101 MHz, CD3CN) (2C of CH3CN, 4Cq and 1C CH; are not observed):
6 1331 (t, 4C, CHM, JXc_py = 5.7 Hz), 1324 (t, 4C, CH™,
FPc—py = 5.0 Hz), 131.7 (s, 2C, CHA"), 131.6 (s, 2C, CHA),130.0 (t, 4C,
CHA", (c—p) = 5.0 Hz), 129.8 (t, 4C, CH™, P c_p) = 5.0 Hz), 77.9 (s, 5C,
CH®P) ppm. IR (neat): » 3054 (C—H Ar), 2270 (CN) cm~ . HRMS (m/z)
ESI+ [M]* calculated for C3;H3gFeNP;: 546.1203; found: 546.1167
(32%). HRMS (m/z) ESI+ [M — CH3CN] ™" calculated for C3;H3gFeNP;:
505.0937; found: 505.0846 (100%).

[CpFe(dppf)(CH5CN)][PFs] 22

Following the general procedure (Method B) using [CpFe(napht.)]
[PFg] (63 mg, 0.16 mmol) and dppf (89 mg, 0.16 mmol), complex 22
was obtained as a red powder (123 mg, 89%). 'H NMR (400 MHz,
CD3CN): 6 7.70—7.64 (m, 4H, HA"), 7.64—7.58 (m, 2H, H"), 7.58—7.46
(m, 14H, HA"), 4.44 (s, 2H, HP), 4.34 (s, 2H, HP), 4.24—4.23 (m, 4H,
H®P), 3.93 (t, 5H, HP, ] = 1.6 Hz), 1.96 (s, 3H, CH3) ppm. >'P{1H} NMR
(CD5CN, 162 MHz): 6 63.0 (s), —144.6 (sept, J'(p_p) = 706.2 Hz) ppm.
13C{1H} NMR (CDsCN, 126 MHz) (2C of CH3CN are not observed):
139.7 (t, 2C, Cq, J'(c—p) = 19.7 Hz), 136.9 (t, 2C, Cq, J'(c_p) = 21.7 Hz),
135.1 (t, 4C, CH, JXc_p) = 5.1 Hz), 133.9 (t, 4C, CH™, J*(c_p) = 4.8 Hz),
1315 (s, 2C, CH), 130.8 (s, 2C, CH™), 1292 (t, 4C, CH™,
Picep) = 4.5 Hz), 12911 (t, 4C, CH, P(_p) = 4.7 Hz), 86.1 (t, 2, Cq,
Jc—p) = 20.5 Hz), 80.7 (s, 5C, CH®P), 74.9 (s, 2C, CHP), 74.8 (s, 2C,
CH®P), 73.3 (s, 2C, CHAY), 70.7 (s, 2C, CH*) ppm. IR (neat): » 3059
(C—H Ar), 2260 (CN) cm™ L. HRMS (m/z) ESI+ [M — CH3CN]* calcu-
lated for C3gH33FesPs: 675.0756; found: 675.2050.

Representative procedure for flow chemistry

A solution of [CpFe(naphthalene)][PFs] (0.148 g, 0.375 mmol) and
1,2-bis(diphenylphosphino)ethane (0.164 g, 0.413 mmol) was pre-
pared in THF/CH3CN 2:1 (6 mL) and transferred to Vapourtec R2/R4
platform, which was set up for sample loop reactions (10 mL sample
loop). The sample loop was directly connected to a heated stainless
steel reactor (1 mm i.d., 10 mL capacity), followed by alumina column
(omnifit, x = 6 mm, 5 cm, grade II, neutral alumina) and backpressure
regulator. The reactor was set to the indicated temperature and flow
rate. The collected sample was concentrated under reduced pressure,
re-dissolved in CH3CN (10 mL) and naphthalene was removed by hot
hexane extraction (5 x 10 mL, 60 °C). The CH3CN layer was then
concentrated in vacuo, dry loaded on a column (neutral alumina,
grade II, 80 g) and the column flushed with ether (3 column vol-
umes). The title complex was then flushed off the column with
CH3CN and solvent removed in vacuo. The resulting red gum crys-
tallized after prolonged exposure to high vacuum. Characterisations
were carried out as described above.

Remark: The flow chemistry was carried out with a backpressure
regulator (250 psi) to ensure that boiling did not occur. The system is
capable of up to 500psi pressure - limited by the pumps.
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