Synthesis of (*E*)-*N*-(3-Alkoxy-4-acyloxyphenylmethylene)-*N*-(*e*-cyclohexyl)amines

E. A. Dikusar, N. G. Kozlov, and V. I. Potkin

Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, Minsk, 220072 Belarus e-mail: evgen 58@mail.ru

Received December 18, 2007

Abstract—Previously unknown *E* isomers of azomethines (Schiff bases) were synthesized from vanillal and vanillin esters by their reaction with cyclohexylamine.

DOI: 10.1134/S1070363208060169

Azomethines derived from natural aldehydophenols, such as vanillin and vanillal, exhibit a high biologic activity and reveal film-forming properties and are thermo- and light-sensitive [1, 2].

The aim of this work was to obtain new azomethines on the basis of previously synthesized vanillin and vanillal esters [3–6]. Condensation of the vanillin and vanillal esters with cyclohexylamine in absolute methanol (method *a*) gave corresponding (*E*)-*N*-(3-alkoxy-4-acyloxyphenylmethylene)-*N*-(*e*-cyclohexyl)amines **I–XXIX** containing ester and ether groups (yield 83–93%). According to ¹H NMR data, the purity of the compounds was 97 ± 1%.

Liquid and low-melting vanillin and vanillal esters also readily react with cyclohexylamine without a solvent. By simply mixing stoichiometric amounts of corresponding aldehyde and cyclohexylamine and subsequently carefully heating the resulting mixture at $60-80^{\circ}$ C (method *b*) we obtained azomethines **I–IX**, **XV–XXIV, XXVIII**, and **XXIX** in quantitative (99 ± 1%) yields. The purity of the products was $92 \pm 2\%$.

Compounds **I–XXIX** are colorless or slightly colored crystalline compounds with well-defined melting points. The azomethines do not need additional purification and contain no admixtures of the starting compounds. The structure of azomethines **I–XXIX** was established by the elemental analyses and cryoscopic molecular weights (see table), as well as IR, UV, and ¹H NMR spectra.

The IR spectra of azomethines **I–XXIX** show absorption bands (ν , cm⁻¹) of C–H_{Ar} (3100–3000, 890–

 $\begin{array}{ll} R = Me, R^1 = Et \, (I), Pr \, (II), Me_2CH \, (III), Me(CH_2)_6 \, (IV), \\ Me(CH_2)_8 \, (V), & Me(CH_2)_{16} \, (VI), & H_2C=CMe \, (VII), \\ C_6H_5CH_2 \, (VIII), & C_6H_5C(Me)HCH_2 \, (IX), & C_6H_5 \, (X), & 4-\\ ClC_6H_4 \, (XI), & 2,4-Cl_2C_6H_3 \, (XII), & 4-BrC_6H_4 \, (XIII), & 3-\\ O_2NC_6H_4 \, (XIV), & MeO \, (XV), & EtO \, (XVI); R = Et, R^1 = Me \\ (XVII), & Et \, (XVIII), Pr \, (XIX), & Me_2CH \, (XX), & Me_2CHCH_2 \\ (XXI), & Me(CH_2)_8 \, (XXII), & Me(CH_2)_{11} \, (XXIII), & Me(CH_2)_{16} \\ (XXIV), & Z-C_6H_5C(H)=C(C=N) \, (XXV), & 4-MeC_6H_4 \\ (XXVI), & 3,5-(O_2N)_2C_6H_3 \, (XXVII), & MeO \, (XXVIII), & EtO \\ (XXIX). \end{array}$

770), C–H_{Alk} (2980–2800), C=O (1770–1730), C=N (1647–1641), C–C_{arom} (1600–1350), and C–O (1300–1000) bonds. The presence of NO₂ groups in compounds **XIV**, **XXVII** is confirmed by characteristic bands at 1540–1525 and 1349–1345 cm⁻¹. The C=N group in compound **XXV** absorbs at 2225 cm⁻¹.

The UV spectra of compounds **I–XXIX** contain the following absorption bands $[\lambda_{max}, nm \ (\epsilon \ 10^{-3})]$: 209 (13), 220 (13), 253 (9), 300 (4). They are characteristic of the (*E*)-*N*-(3-alkoxy-4-acyloxyphenylmethylene)-*N*-(*e*-cyclohexyl)amine chromophore.

DIKUSAR et al.

Comp. no.	Yield, %	mp, °C	Found, %				Calculated, %			М	
			С	Н	Ν	Formula	С	Н	Ν	found	calculated
Ι	87	52-53	70.74	8.22	4.30	C ₁₇ H ₂₃ NO ₃	70.56	8.01	4.48	281.3	289.4
Π	88	44-45	71.57	8.43	4.41	C ₁₈ H ₂₅ NO ₃	71.26	8.31	4.62	290.5	303.4
III	84	51-52	71.49	8.38	4.37	$C_{18}H_{25}NO_3$	71.26	8.31	4.62	292.7	303.4
IV	83	32–33	73.72	9.37	3.65	C ₂₂ H ₃₃ NO ₃	73.50	9.25	3.90	348.0	359.5
V	89	36-37	74.50	9.86	3.48	C ₂₄ H ₃₇ NO ₃	74.38	9.62	3.61	377.1	387.6
VI	90	65–66	77.08	10.89	2.54	C ₃₂ H ₅₃ NO ₃	76.90	10.69	2.80	481.8	499.8
VII	83	44-45	71.94	7.80	4.33	$C_{18}H_{23}NO_3$	71.73	7.69	4.65	290.2	301.4
VIII	93	33-34	75.35	7.28	3.81	$C_{22}H_{25}NO_3$	75.19	7.17	3.99	337.4	351.4
IX	90	27–28	76.19	7.83	3.52	$C_{24}H_{29}NO_3$	75.96	7.70	3.69	364.0	379.5
X	92	84-85	74.92	6.94	3.92	$C_{21}H_{23}NO_3$	74.75	6.87	4.15	321.6	339.4
XI ^a	93	117–118	68.02	6.04	3.50	$C_{21}H_{22}ClNO_3$	67.83	5.96	3.77	358.5	371.9
$\mathbf{XII}^{\mathrm{b}}$	89	96–97	62.31	5.37	3.19	$C_{21}H_{21}Cl_2NO_3$	62.08	5.21	3.45	390.9	406.3
XIII ^c	93	127-128	60.78	5.40	2.97	$C_{21}H_{22}BrNO_3$	60.59	5.33	3.36	404.4	416.3
XIV	90	73–74	66.14	5.82	7.04	$C_{21}H_{22}N_2O_5$	65.96	5.80	7.33	362.7	382.4
XV	85	27–28	66.25	7.37	4.58	$C_{16}H_{21}NO_4$	65.96	7.26	4.81	282.3	291.3
XVI	86	55–56	67.02	7.69	4.23	$C_{17}H_{23}NO_4$	66.86	7.59	4.59	297.1	305.4
XVII	88	47–48	70.68	8.12	4.22	C ₁₇ H ₂₃ NO ₃	70.56	8.01	4.48	282.0	289.4
XVIII	90	61–62	71.66	8.45	4.47	$C_{18}H_{25}NO_3$	71.26	8.31	4.62	292.2	303.4
XIX	91	42-43	72.04	8.59	4.14	$C_{19}H_{27}NO_{3}$	71.89	8.57	4.41	308.3	317.4
XX	92	53–54	72.06	8.64	4.20	$C_{19}H_{27}NO_{3}$	71.89	8.57	4.41	305.8	317.4
XXI	93	42-43	72.73	8.96	4.01	$C_{20}H_{29}NO_3$	72.47	8.82	4.23	321.8	331.5
XXII	90	46-47	75.05	9.93	3.08	C ₂₅ H ₃₉ NO ₃	74.77	9.79	3.49	387.2	401.6
XXIII	88	47–48	75.91	10.29	2.87	C ₂₈ H ₄₅ NO ₃	75.80	10.22	3.16	429.7	443.7
XXIV	85	30-31	77.34	10.93	2.50	C ₃₃ H ₅₅ NO ₃	77.14	10.79	2.73	492.6	513.8
XXV	93	48-49	74.83	6.55	6.42	$C_{25}H_{26}N_2O_3$	74.60	6.51	6.96	388.4	402.5
XXVI	93	108–109	75.72	7.54	3.55	C ₂₃ H ₂₇ NO ₃	75.59	7.45	3.83	354.9	365.5
XXVII	90	92–93	60.03	5.32	9.18	$C_{22}H_{23}N_3O_7$	59.86	5.25	9.52	421.0	441.4
XXVIII	86	32–33	66.99	7.75	4.46	$C_{17}H_{23}NO_4$	66.86	7.59	4.59	292.5	305.4
XXIX	88	24–25	67.94	8.03	4.10	$C_{18}H_{25}NO_4$	67.69	7.89	4.39	308.7	319.4

Yields, melting points, elemental analyses, and molecular weights of azomethines I-XXIX

^a Found Cl, %: 9.28, calculated Cl, %: 9.53. ^b Found Cl, %: 17.11, calculated Cl, %: 17.45. ^c Found Br, %: 18.89, calculated Br, %: 19.19

The ¹H NMR spectra of azomethines **I–XVI** display signals of the methoxy group as singlets at 3.85–3.92 ppm. The ethoxy protons in the ¹H NMR spectra of compounds **XVII–XXIX** give a triplet at 1.40–1.70 ppm (Me) and a quartet at 4.00–4.50 ppm (CH₂O). The cyclohexyl protons (C₆H₁₁) appear as a multiplet at 1.10–2.10 ppm. The aromatic proton (C₆H₃) signals of azomethines **I–XXIX** resonate at

7.00–7.50 ppm. The HC=N proton signals are singlets at 8.20–8.30 ppm, what is characteristic of E isomers [1–9].

The IR, UV, and ¹H NMR spectra of azomethines **I–XXIX** contain absorption bands and proton signals confirming the presence of corresponding structural fragments of ester groups [1–9].

brackets relate to the axial conformers): I - 101.3(-100.9); VIII -67.7 (-66.5); XVII -102.9 (-100.9); XXVI -76.7 (-75.2). These results show that the equatorial conformation is 0.4-2.2 kcal mol⁻¹ more favored by energy than the axial one. Hence, quantumchemical calculations gave evidence for our

To confirm the E configuration assigned to the

synthesized azomethines, we performed quantum-

chemical calculations of heats of formation (H_f) for the

E and Z isomers of azomethines I, VIII, XVII, and XXVI (equatorial conformations). The calculations

were made by the semiempirical MNDO PM3 method

with full geometry optimization, using the GAMESS

program [10]. The following H_f values (kcal mol⁻¹)

were obtained for the E and Z (in brackets) isomers: I

-101.3 (-100.5); VIII -67.7 (-66.8); XVII -102.9

(-102.5); XXVI -76.7 (-75.9). According to the

quantum-chemical results, the E configuration is 0.4–

0.9 kcal mol⁻¹ more favored by energy than Z, which

equatorial and axial conformers of the more stable Eisomers of azomethines I, VIII, XVII, and XXVI. The

following values (kcal mol⁻¹) were obtained (values in

Heats of formation were also calculated for the

agrees well with data for related compounds [7–9].

assignment to azometines I-XXIX of the (E)-N-(3alkoxy-4-acyloxyphenylmethylene)-N-(e-cyclohexyl)amine structure.

EXPERIMENTAL

The IR spectra were recorded on a Nicolet Protege-460 IR Fourier spectrometer in KBr pellets. The UV spectra were obtained on a Varian UV-Vis Cary-300 spectrophotometer for 1×10^{-4} M solutions in methanol. The ¹H NMR spectra were taken on a Tesla BS-587A (100 MHz) spectrometer for 5% CDCl₃ solutions against TMS. The elemental analyses were obtained on an Elementar Vario EL-II C,H,N,O,S-analyzer (uncertainty 0.1%). The molecular weights were determined cryoscopically in benzene.

Vanillin and vanillal esters were synthesized according to [3–6].

(e-cyclohexyl)amines I-XXIX. Method a. A solution

of 5 mmol of vanillin or vanillal ester and 5 mmol of

(E)-N-(3-Alkoxy-4-acyloxyphenylmethylene)-N-

cycloxexylamine in 30 ml of absolute methanol was refluxed for 15 min and then filtered while hot through a folded paper filter, cooled, and left for 10–15 h at 5°C. Crystals of compounds I-XXIX formed and were filtered off on a glass frit, washed with a little methanol, and dried in air (see table).

(E)-N-(3-Alkoxy-4-acyloxyphenylmethylene)-N-(e-cyclohexyl)amines I-IX, XV-XXIV, XXVIII, and XXIX. Method b. A mixture of 5 mmol of vanillin or vanillal ester and 5 mmol of cyclohexylamine was carefully heated at 60-80°C for 10-15 min in a ceramic crucible. The homogeneous melt that formed crystallized after cooling, and the product was dried in air.

REFERENCES

- 1. Dikusar, E.A., Kozlov, N.G., Tlehenov, R.T., and Uteniyazov, K.U., Azometiny na osnove vanilina i vanilalya (Vanillin- and Vanillal-based Azomethines), Nukus: Karakalpakstan, 2007.
- 2. Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., Zh. Obshch. Khim., 2007, vol. 77, no. 2, p. 306.
- 3. Dikusar, E.A., Vyglazov, O.G., Moiseichuk, K.L., Zhukovskaya, N.A., and Kozlov, N.G., Zh. Prikl. Khim., 2005, vol. 78, no. 1, p. 122.
- 4. Dikusar, E.A. and Kozlov, N.G., Khim. Prirodn. Soedin., 2005, no. 1, p. 74.
- 5. Dikusar, E.A. and Kozlov, N.G., Zh. Org. Khim., 2005, vol. 41, no. 7, p. 1015.
- 6. Dikusar, E.A., Zh. Prikl. Khim., 2006, vol. 79, no. 6, p. 1043.
- 7. Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Zelenkovskii, V.M., Malama, A.A., and Dubovik, S.V., Khim. Prirodn. Soedin., 2005, no. 2, p. 164.
- 8. Dikusar, E.A., Kozlov, N.G., Potkin, V.I., and Zelenkovskii, V.M., Zh. Obshch. Khim., 2006, vol. 76, no. 1, p. 87.
- 9. Dikusar, E.A., Kozlov, N.G., Zhukovskaya, N.A., Potkin, V.I., Ogorodnikova, M.M., and Zelenkovskii, V.M., Zh. Org. Khim., 2006, vol 42, no 2, p. 233.
- 10. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguen, K.A., Su, S.J., Midus, T.L., Dupns, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, no. 7, p. 1347.