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Cycloadditions of Allenes with Enones**
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Five-membered carbocycles are a common substructure in a
wide array of natural and nonnatural products.[1] Among this
family of compounds, cyclopentenes are particularly impor-
tant targets, in part because derivatization of the olefin often
occurs with good diastereoselectivity, thereby providing
access to highly functionalized, stereochemically complex
cyclopentanes. Although considerable progress has been
described in developing methods for the asymmetric synthesis
of cyclopentenes, the number of effective catalytic enantiose-
lective processes is comparatively small.[2]

Recently, nucleophilic catalysis by phosphines has
emerged as a powerful tool in synthetic organic chemistry.[3]

For example, tertiary phosphines catalyze a variety of
annulation reactions, including Lu$s [3+2] cycloaddition of
allenes with olefins to generate cyclopentenes.[4] In 1997,
Zhang et al. reported a pioneering study in which he
established that a chiral phosphine can furnish good enantio-
selectivity in this process; with respect to scope, only
unsubstituted acrylate esters and diethyl maleate react with
the allene to form the target cyclopentenes in high enantio-
meric excess (ee) [Eq. (1) and (2)].[5]
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In general, there has been only very limited progress to
date in the development of effective phosphine-based meth-
ods for asymmetric nucleophilic catalysis.[6] We recently
reported that phosphepine 2, which was originally designed
as a ligand for metal-catalyzed processes,[7] catalyzes [4+2]
annulations of allenes with imines to generate piperidine
derivatives with good enantioselectivity.[6c,8] Since that initial
study, we have been exploring the utilization of this phos-
phepine for a wide array of nucleophile-catalyzed reactions.
Herein, we establish that 2 catalyzes enantioselective [3+2]
cycloadditions of allenes with a variety of b-substituted a,b-
unsaturated enones to produce highly functionalized cyclo-
pentenes that contain two contiguous stereocenters [Eq. (3)].

In a preliminary investigation, we surveyed the use of
phosphepine 2 and a variety of commercially available mono-
and bisphosphines as catalysts for the asymmetric cyclo-
addition of ethyl-2,3-butadienoate and chalcone (Table 1).
Whereas 2 furnishes the target cyclopentene in good yield, ee,
and regioselectivity (Table 1, entry 1), the other phosphines
are either ineffective as catalysts (Table 1, entries 2–4) or
provide relatively poor enantiomeric excess (Table 1,
entries 5–7).

Phosphepine 2 catalyzes the asymmetric [3+2] cyclo-
addition of allenes with a wide array of enones (Table 2).[9] It
is worth noting that these are the first such processes that
employ b-substituted a,b-unsaturated carbonyl compounds
(other than diethyl maleate)[10] and that the opposite regio-
isomer is produced preferentially as compared with substrates
that lack a b substituent [cf. Eq. (1)].[4,5]

The desired cyclopentene is generated in good enantio-
meric excess for both electron-rich and electron-poor chal-
cone derivatives (Table 2, entries 2–6), although cycloaddi-

tions of electron-rich substrates proceed somewhat less
efficiently and therefore require additional allene (2.0
equivalents, rather than 1.2; Table 2, entries 4 and 6). The
method tolerates heterocyclic substituents in either the b

position (Table 2, entries 7 and 8) or attached to the carbonyl
group (Table 2, entries 9 and 10) of the enone.

Table 1: Survey of chiral phosphine catalysts for the [3+2] cycloaddition
of allenes with enones.[a]

Entry Phosphine[b] Yield [%][c] ee [%][d] A :B

1 (R)-2 64 88 13:1
2 (S)-binapine 0 – –
3 (R)-binap 2 50 >20:1
4 (R)-nmdpp 4 �4 11:1
5 (R,R)-Me-bpe 61 �4 6:1
6 (R,R)-ferrotane 64 11 7:1
7 (R,R)-Et-DuPhos 61 58 7:1

[a] All data are the average of two experiments. [b] binap = 2,2’-
Bis(diphenylphosphanyl)-1,1’-binaphthyl, nmdpp = neomenthyldiphe-
nylphosphine. Molecular structures of (S)-binapine, (R,R)-Me-bpe, (R,R)-
ferrotane, and (R,R)-Et-DuPhos are shown in Ref. [17]. [c] Yield of
isolated A and B. [d] Enantiomeric excess of A. A negative value for ee
signifies that the shown enantiomer of cyclopentene A is the minor
product, rather than the major.

Table 2: Synthesis of functionalized cyclopentenes through catalytic
asymmetric [3+2] cycloadditions.[a]

Entry R R1 Yield [%][b] ee [%][c] A :B

1 Ph Ph 64 88 13:1
2 Ph 4-chlorophenyl 76 82 7:1
3 Ph 4-methylphenyl 61 87 20:1
4 Ph 4-methoxy-

phenyl
54 88 >20:1

5 4-chlorophenyl Ph 74 87 9:1
6 4-methoxy-

phenyl
Ph 67 87 10:1

7 2-furyl Ph 69 88 3:1
8[d] 2-quinolyl Ph 52 88 20:1
9[d] 4-chlorophenyl 2-(5-methyl-

furyl)
54 89 >20:1

10 Ph 2-thienyl 74 90 6:1
11 C�CC5H11 Ph 65 85 6:1
12 C�CTES Ph 70 87 >20:1
13 C5H11 Ph 39[e] 75 >20:1

[a] All data are the average of two experiments. All cycloadditions
employed 1.2 equiv of allene, except for entries 4, 6, 7, and 13, for which
2.0 equiv was used. [b] Yield of isolated A and B. [c] Enantiomeric excess
of A. [d] Because of the low solubility of the enone in toluene, CH2Cl2 was
employed as a co-solvent. [e] The enone can be recovered in 56% yield.

Angewandte
Chemie

1427Angew. Chem. Int. Ed. 2006, 45, 1426 –1429 � 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


This process is not limited to b-(hetero)aryl enones. For
example, phosphepine 2 catalyzes cycloadditions of enones
that bear a b-alkynyl group with good enantiomeric excess
(Table 2, entries 11 and 12). Under our standard conditions, if
an alkyl substituent occupies the b position, formation of the
cyclopentene proceeds sluggishly, but with fairly good selec-
tivity (Table 2, entry 13).

Catalyst 2 can achieve the enantioselective synthesis of
spirocyclic compounds through reactions of trisubstituted
enones, thereby generating adjacent quaternary[11] and ter-
tiary stereocenters [Eq. (4); a single regioisomer is pro-

duced].[12–14] This method is not entirely general—the cyclo-
addition of an indanone proceeds in excellent yield, however,
the reaction of a closely related tetralone is considerably less
efficient [but highly enantioselective; Eq. (4)].[15]

Dienones are also suitable substrates, undergoing a single
phosphine-catalyzed [3+2] cycloaddition [Eq. (5) and (6);

only one regioisomer is observed]). Although for symmetrical
dienones there is no issue of site selectivity, this complication
does arise for unsymmetrical compounds. Interestingly,
phosphepine 2 can achieve enantioselective cycloadditions
with complete site selectivity [Eq. (6)].

We had anticipated that the enantiomerically enriched
cyclopentenes generated in these asymmetric [3+2] cyclo-
additions should be attractive substrates for further function-
alization. An example of such a process, which produces a
diastereomerically pure cyclopentane that bears four contig-
uous stereocenters, is illustrated in Equation (7).[16]

In summary, we have described the first nucleophile-
catalyzed asymmetric [3+2] cycloadditions of allenes with

enones. We have determined that b-substituted enones
undergo reaction with a different regiochemical preference
compared with previously described cycloadditions of b-
unsubstituted a,b-unsaturated carbonyl compounds. We have
applied our method to reactions of trisubstituted olefins,
thereby generating adjacent quaternary and tertiary stereo-
centers. Finally, we have established that the product cyclo-
pentenes can be stereoselectively derivatized to provide
cyclopentanes that bear four contiguous stereocenters. Ongo-
ing efforts are directed at further expanding the currently
limited range of enantioselective processes catalyzed by chiral
phosphine nucleophiles.
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