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Stereoselective isomerization of a-alkyl styrenes is accomplished using a new iron catalyst supported by phosphine-pyridine-oxazoline (PPO) ligand. The
protocol provides anatom-efficientand operationally simple approach to trisubstituted alkenes in high yields with excellent regio- and stereoselectivities
.nder mild conditions. The results of deuterium-labelling and radical trap experiments are consistent with an iron-hydride pathway involving reversible

alkeneinsertionand B-H elimination.

Background and Originality Content

Trisubstituted alkenes are important skeletons in both natural
and synthetic molecules, and act as wersatile intermediates in
various transformations.l!l Since efficent procedures are now
available for the synthesis of termminal alkenes with high
regioselectitiy,?! waste-free isomerization of readily accessible
.2rminal alkenesB! provides an attractive route to waluable
tisubstituted alkenes. Such a transformation is conceptually
simple, but controlling regio- and stereoselectivity poses a large
challenge. Catalysts based on precious transition metals, such as
“h,B Pd,Bl and Ru,l hawe been dewloped to effect the
isomerization of a-alkyl styrenes to trisusbtituted alkenes, which
sually suffers from poor stereoselectivity and limited substrate
scope. In this context, it is highly desirable to dewelop effident
catalysts, espedially those with low-cost and high sustainability,
i or this transformation. During the preparation of this manuscript,
‘- Co catalysts were independently disdosed by the groups of
Lu, Findlater and Xa, for chemo and stereoselective alkene
isomerization to afford trisubstituted alkenes.”! In contrast,

atalyst systems using the most earth-abundant metal, iron, which
has a minimal environmental and toxcological impact, hawe
I2ceived little attentionin this area.[®

Eary studies showed that iron carbonyl complexes Fe(CO)s,
Fe2(CO)q, and Fe3(CO)12, are versatile catalysts forisomerization of
i'nsaturated alcohols, esters, ethers and amines into
.orresponding carbonyl compounds, conjugated esters, ethers
and amines, respectively (Scheme 1a).°! Howeer, these carbonyl

on complexes need thermal or photo-activation to release CO
ligand and generate catalytiaally active metal spedes, limiting
their practicability. In 2013, CGhard and Renaud et. al
“emonstrated thata tetra(isonitrile) iron(ll) complex could replace
toxic iron carbonyls for the isomerization of trifluoromethylated
allylic alcohols into the corresponding ketones (Scheme 1b).[10]

Later, de Vries et. al. found a well-defined pinceriron complexwas
highly effective for the isomerization of allylic alcohols to ketones
using tBuOK as the activator with broad substrate scope (Scheme
1c).11In addition to the isomerization driven by the stabilizing
effects exerted by the heteroatoms, unfunctionalized alkenes
could alsobeisomerized underiron catalysis. In 2011,
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Scheme 1Iron Catalysed Alkene isomerization
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vain Wangelin and coworkers developed a catalytic system of
re(acac)s/ArMgBr combination for the isomerization of 1-alkenes
to 2-alkenes (Scheme 1d).[12] Despite these achievements, iron
cctalyzed stereoselective alkene isomerization to access
' stituted alkenes without the aid of heteroatoms®d remains
underdeveloped.
Driven by our interest in the dewelopment of base metal
talysis,381 we report herein a ctalytic isomerization of
a-substituted styrenes to trisubstituted olefins with an iron
c mplex of phosphine-pyridine-oxazoline (PPO) ligand (Scheme
2). Preliminary mechanistic experiments rewealed that the
isomerization event likely occurs through an alkene insertion and
B H elimination pathway.
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Results and Discussion

Table 1 Evaluation of Iron Catalyst for Isomerization of a-Ethylstyrene @
[Fe] (2 Mol %)

‘ NaHBEt; (4 mol ¢ + +
ArJ\/ 3—(4/0)> Ar/K/ Ar/g Ar/k/

la solvent, rt, 2 h
- -2
Ar = 4-MeOCgH, E-2a z2a 3a

B
N
tBu, —F'e— J tBu,l —F'e— tBu, tBu, —F'e—

cl 1Bu cl' cl
Fe-1 Fe-2 Fe-3
® S
. A_ o |
iPr ,\, N \) O/(Nj\/
—Fe— / tBu2|5—F'e—Ll
B Br iPr Br’ Br \©
iPr Fe4 Fe-5
Yield (%)°
entry? Cat. solvent Conv. (%)?
E2a Z2a 3a
1 Fe-1 pentane 97 96 ND 1
2 Fe-2 pentane 79 76 ND 3
3 Fe-3 pentane 76 75 ND 1
4 Fe-4 pentane 77 76 ND 1
5 Fe-5 pentane <5 ND ND ND
6 Fe-1 THF 96 95 ND 1
7 Fe-1 toluene 96 95 ND 1
8 Fe-1 Et.0 0 ND ND ND

9Reaction condition: 1a (0.5 mmol), [Fe] (0.01 mmol, 2 mol %) and
NaHBEt; (0.02 mmol, 4 mol %)in solvent (2 mL) at room temperature for
2h. bDetermined by GC analysis using mesitylene as the internalstandard.
ND = not detected.

Scheme 2. Synthesis and Molecular Structure of Fe-1
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We initiated ourstudyby evaluating the catalytic efficency of
several iron complexes bearingdifferent pincer ligands for alkene
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Scheme 3. Scope of Iron-Catalyzed Alkene Isomerization.
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?Reaction condition: 1 (0.5 mmol), Fesl (0.01 mmol) and NaHBEt; (0.02
imol) in pentane (2 mL) at room temperature for 2h. Isolated yields. ’1h
(0.2 mmol). Toluene was used as solvent. 98 h.

" omerization using methoxy substituted a-ethyistyrene 1laas the
model substrate and NaHBEts;as the activator (table 1). Note that
the pincer ligands investigated here can be readily prepared in

.wo-to-three steps from commerdally available starting materials.

A new iron complex Fe-1 was synthesized by treatment of a
phosphine-pyridine-oxazoline (PPO) ligand!3dl with iron dichloride
in THF, and its solid structure was established by X-ray diffraction
analysis. To our delight, isomerization of 1a proceeded smoothly
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at room temperature in pentane to give 2a in high vyield (96%)
with striking E-selectivity when (PPO)Fe complex Fe-1 was used as
the precatalyst (entry 1). In this case, the Z-isomer and the
hydrogenation product 3a were barely observed. Replacing the
oxazoline arm with phosphino or pyridine arm, Fe-2(4l and
Fe-3[13a] exhibited excellent selectivity but the yields decreased
significantly, with substantial amount of starting material
recovered (enties 2 and 3). Similady, the wuse of
imino-pyridine-oxazoline (IPO) iron complex (Fe-4)i3d afforded
isomerization product E-2ain 76% yield with trace amount of Z-2a
and 3a (entry 4). An iron complex Fe-5[3% bearing
phosphinite-iminopyridine ligand was proved to be inactive for
the isomerization (entry 5). The influence of the solvent on the
isomerization reaction was inwestigated with Fe-1 as the
precatalyst. While the use of pentane, toluene, THF gawe
comparable reaction outcomes, no reaction happened in ether
(entries 6-8). The coordination ability of ether to the metal center
may poison the catalytically active species and deactivate the
catalyst.

The substrate scope of the (PPO)Fe catalyzed alkene
isomerization was explored (Scheme 3). A wide range of geminal
disubstituted arylalkenes were successfully isomerized to fumish
the desired trisubstituted (E)-alkene in high vyields with
remarkable regio- and stereo-control. The catalytic system was
effective for a-ethyl styrenes with both electron—donating (2a, 2e,
2j, 2m, 2p-2r) and -withdrawing groups (2h, 2k, 2n, 20) on the ary
ring. Various functionalities such as methoxy, silyl ether, CF3, OCF3
and fluoro groups were well tolerated. The substituents at para-,
ortho, and meta-position of the phenyl ring had little impact on
the isomerization (2a-2q). Naphthyl alkene could be readily
isomerized to afford the corresponding trisubstituted alkene 2rin
90% yield with excellent E-selectivity. The a-alkyl styrenes in
which the R group is larger than a methyl group underwent
isomerization smoothly to gain satisfied outputs. The
isomerization of alkene 1u with a bulky propyl group in the
homoallylic position gave the trisubstituted alkene 3uin 88% vyield
with 10% of 1u recovered.’s! To be note, this iron based catalytic
system was compatible with a-benzyl styrene, affording diany
substituted alkene 2xin 96% vyield with E/Z ratio more than 20:1.
Moreower, exocydic alkenes were suitable substrates, produdng
the endocyclic alkenes (2y-2aa) in excellent yields with exdusive
regioselectivity.
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Scheme 4. Mechanisticstudies

a) Deuterium-labelling experiment
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Deuterium-labelling and radical trap experiments were carried
out to provide insights into the mechanism. The deuterated
substrate 1i-d> containing an allylic (D> unit was submitted to the

andard catalytic conditions, affording trisubstituted alkene 2i-d>
ir 92% vyield with 34% D-content in the newly formed methyl
oroup, 94% D in the vinyl group and 5% D in the methyl group
trans to the phenyl group (Scheme 4a). The intramolecular H/D
s ramblingindicates that the formation and deavage of C-H bond
Jauring isomerization is reversible. To probe the possibility of
intermolecular H/D scrambling, a 1:1 mixture of 1i-d> and 1lawas
Jdbjected to the reaction (Scheme 4b). The NMR analysis of the
two isolated isomerization products rewealed a decreased
«uteriumincorporation in D-2ialong with a crossover deuterium
incornoration into D-2a. The intermolecular H/D scrambling ruled
out the concerted H-transfer pathways such as 1,3-H shift
mechanism via allylic metal spedes and oxidative cydization
r echanism. Furthermore, the reaction of 1a in the presence of a
radical scavenger 1,1-diphenylethylene proceeded smoothly
without obvious influence on the reaction outputs (Scheme 4c),
i dicatinga radical pathway maynotbe an operative pathway.

Based on all these experimental observations and previous
literature,®] the (PPO)Fe catalyzed alkene isomerization most
" ely ocaurred via a stepwise H-transfer pathway involving a
Fe-hydride intermediate, which undergoes rewersible alkene
irsertion and -H elimination to produce the isomerized alkene
and regenerate the catalytically active Fe-H spedes (Scheme 5).
The additive NaBHEts; reduces the precatalyst to form Fe-H spedes
to initiate the catalytic cyde. Howewer, the exact structure of Fe-H
intermediate is undearat present.
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Scheme 5. Plausible Mechanism
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Conclusions

In summary, we successfully developed an iron catalyzed
stereoselective isomerization of a-alkyl styrenes to trisubstituted
alkenes with phosphine-pyridine-oxazoline(PPO) as the ligand. A
broad scope of substrates compatible with many common
functional groups were readily isomerized under mild conditions.
Deuterium labelling and radical trapping experiments support a
stepwise H-transfer pathway with an intermediacy of Fe-H spedies,
involving analkeneinsertionand 3-H elimination sequence.

Experimental

General Description. All manipulations were carried out in a
nitrogen-filled glovebox or under an atmosphere of dry argon
using standard Schlenk techniques, unless stated otherwise.
Pentane, tetrahydrofuran (THF) and ether were purchased from
Sinopharm Group Chemical Co., Ltd. and dried owver LiAIH4
ovemight under an atmosphere of dry argon, then distilled prior
to use and stored in an argon atmosphere glovebox. Toluene was
distilled from sodium benzophenone ketyl prior to use. lron
complexes were prepared according to previously reported
procedures.[13141 Al| other reagents and solvents used in this study
were purchased from commerdal sources and used as received.
NMR spectra were recorded on Agilent 400 MHz, Varian 400 MHz
and Bruker 400 MHz at ambient temperature. The residual peak
of deuterated solvent was used as a reference for H and 13C
chemical shifts. GC analysis was acquired on Agilent 7890A gas
chromatograph equipped with a flame-ionization detector.
General procedure for isomerization of a-Alkyl styrenes. In an
nitrogen-filled glove-box, an oven-dried 10 mL thin-wall glass tube
was charged with Fe-1 (10 umol, 4.8 mg), pentane (2 mL), a-alkyl
styrenes (0.5 mmol). The resulting solution was added NaHBEts
(20 pmol, 1 M in THF). The tube was sealed with a Teflon plug,
and the reaction mixture was stirred at room temperature for 2h.
The reaction was quenched by exposing the reaction mixture to
air. The solvent was removed under vacuum and the residue was
purified by flash silica gel column chromatography to give the
product, which was analyzed by 'H NMR to determine the
stereoselectivity.
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