A remarkable temperature-dependent, accidental degeneracy of ³¹P NMR chemical shifts in Ru(II) diphosphine/diimine complexes

Paul W. Cyr, Brian O. Patrick and Brian R. James*

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. E-mail: brj@chem.ubc.ca

Received (in Cambridge, UK) 18th April 2001, Accepted 28th June 2001 First published as an Advance Article on the web 2nd August 2001

Several cis-RuX₂((R)-BINAP)(diimine) complexes have been prepared, and many of these exhibit an unusual temperature-dependent, accidental degeneracy of the ³¹P shifts in their solution NMR spectra.

There is on-going research in this laboratory on Ru(II) complexes possessing one chelating, ditertiary phosphine (P-P) per Ru atom, because of their proven ability as hydrogenation catalysts. especially for enantioselective catalysis when P-P is a chiral diphosphine ligand; of such ligands, the C_2 -symmetric BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) and its derivatives have been employed very successfully in asymmetric catalysis.^{3,4} We have also studied Ru(II) complexes with mixed P- and N-donor ligand sets, where the N-donor is either incorporated into the phosphine ligand,⁵ or with separate P- and N-donor ligands,6 and the use of Ru(II) systems with tetradentate 'P2N2' ligands for catalytic hydrogenation7 and epoxidation⁸ reactions has been explored recently. Of particular note, spectacular success has been achieved in the use of chiral Ru(II) complexes with phosphine (either mono- or bidentate) and diamine ligands in catalytic enantioselective hydrogenation.⁴ We report here a warning concerning interpretation of the ³¹P NMR spectra of such systems: 'apparent complications' can result from a remarkable temperature-dependent degeneracy of ³¹P NMR chemical shifts. More specifically, some systems, where two P atoms are trans to different ligands (an N-donor, and a halogen), generate a singlet ³¹P{¹H} signal resulting from an authentic, accidental degeneracy.

Complexes of formula cis-RuCl₂((R)-BINAP)(L_2), where L_2 = a bidentate (N-N) ligand,† were prepared by reaction of L₂ with RuCl₂((R)-BINAP)(PPh₃),‡ and halide metathesis using NaX (X = Br, I) in acetone afforded the corresponding cis- $RuX_2((R)-BINAP)(L_2)$ complexes. The structure of $cis-RuBr_2((R)-BINAP)(bipy)$ (1b) is shown in Fig. 1.§ The crystallographic and solution ³¹P{¹H} NMR data (Table 1) indicate that these complexes are formed stereoselectively. For example, the pseudo-octahedral structure of 1b has the

expected^{3b} λ -conformation of the (R)-BINAP chelate ring, and only the R,Λ diastereomer is seen (where Λ refers to the chirality about the Ru atom; a parallel structural refinement was carried out for both Λ and Δ isomers, but only the Λ structure refined to convergence). Further, the solution ³¹P spectra reveal the presence of only one set of signals at any given temperature, while diastereomeric Ru(II) BINAP complexes have been differentiated by ³¹P NMR data. ^{6b,9} Cis-3a is seen solely as the $R.\Delta$ diastereomer: whether the halide metathesis reaction occurs with retention or inversion of stereochemistry at Ru remains to be established.¹⁰ The solution ³¹P NMR behaviour is

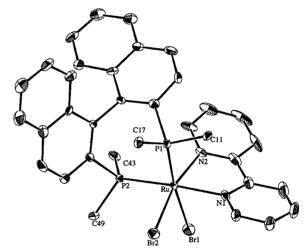
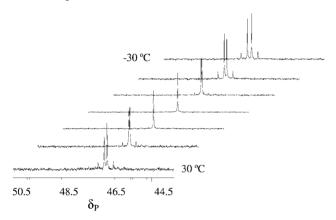


Fig. 1 ORTEP representation (50% probability ellipsoids) of cis-RuBr₂((R)-BINAP)(bipy) (1b). Solvates and H-atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Ru-Br(1), 2.6175(6); Ru-Br(2), 2.5476(7); Ru-P(1), 2.305(1); Ru-P(2), 2.317(2); Ru-N(1), 2.128(4); Ru-N(2), 2.091(4); Br(1)-Ru-Br(2), 89.42(2); P(1)-Ru-P(2), 93.13(5); N(1)-Ru-P(2)Ru-N(2), 77.7(2). Only the *ipso* carbon atoms (C(11), C(17), C(43) and C(49)) of the phenyl groups are shown.


Table 1 31P{1H} NMR spectroscopic data for cis-RuX₂((R)-BINAP)(L₂)a

Complex	$\delta_{ m A},\delta_{ m B}[^2J_{ m AB}/{ m Hz}]^b$		
	C_6D_6	CDCl ₃	CD_2Cl_2
cis-RuCl ₂ ((R)-BINAP)(bipy) 1a	48.0, 46.0 [32.3]	47.1, 46.6 [33.5] ^c	47.2 ^d
cis-RuBr ₂ ((R)-BINAP)(bipy) 1b	47.8, 45.2 [32.1]	47.3, 46.7 [33.3] ^e	47.2, 46.9 [33.7] ^f
cis-RuI ₂ ((R)-BINAP)(bipy) 1c	49.4, 42.5 [30.0]	48.8, 44.2 [30.6]	48.4, 44.6 [31.7]
cis-RuCl ₂ ((R)-BINAP)(dmbipy) 2	47.5, 47.2 [33.4] ^g	48.3, 47.4 [34.6]	48.0, 47.5 [34.4]
cis-RuCl ₂ ((R)-BINAP)(phen) 3a	48.4, 46.2 [34.0]	47.2^{h}	47.9, 47.5 [34.4] ⁱ
cis-RuBr ₂ ((R)-BINAP)(phen) 3b	48.7, 45.7 [32.8]	48.0, 47.0 [33.1] ^j	47.5, 46.9 [34.0] ^k
cis-RuI ₂ ((R)-BINAP)(phen) 3c	50.8, 42.6 [29.7]	49.6, 44.6 [31.3]	49.3, 45.2 [31.5]
cis-RuCl ₂ ((R)-BINAP)(batho) 4	47.8, 45.5 [33.4]	47.6, 46.9 [33.6]	47.4, 47.1 [33.7] ¹
cis-RuCl ₂ ((R)-BINAP)(bpa) 5	50.7, 47.1 [33.3]	50.0, 47.6 [33.5]	49.5, 48.0 [33.6]

^a Satisfactory elemental analyses were obtained for all the complexes listed. ^{10 b} At room temperature (~20 °C) except where noted (121 MHz spectrometer frequency). $^{\circ}$ At 50 $^{\circ}$ C: δ 47.2 (s). d At -30 $^{\circ}$ C: $\delta_{A} = 47.8$, $\delta_{B} = 47.4$ [33.8]; at 35 $^{\circ}$ C: $\delta_{A} = 47.4$, $\delta_{B} = 47.0$ [34.5]. e At -60 $^{\circ}$ C: δ 47.3 (s). f At 10 $^{\circ}$ C: δ 47.2 (s); at -20 $^{\circ}$ C: $\delta_{A} = 47.6$, $\delta_{B} = 47.2$ [32.9]. g At 25 $^{\circ}$ C: δ 47.3 (s); at 40 $^{\circ}$ C: $\delta_{A} = 47.4$, $\delta_{B} = 47.0$ [33.6]. h At -30 $^{\circ}$ C: $\delta_{A} = 47.8$, $\delta_{B} = 47.2$ [34.4]; at 60 °C: $\delta_{\rm A}$ = 47.2, $\delta_{\rm B}$ = 46.9 [33.9]. ¹ At 0 °C: δ 47.9 (s); at -90 °C: $\delta_{\rm A}$ = 48.4, $\delta_{\rm B}$ = 48.1 [34.9]. ¹ At -40 °C: δ 47.7 (s). ^k At -10 °C: δ 47.6 (s); at -20 °C: $\delta_{\rm A}$ = 47.6, $\delta_{\rm B}$ = 47.2 [32.9]. ¹ At 25 °C: δ 47.2 (s).

remarkable in that the expected AB pattern is sometimes 'lost' (Table 1). Thus, 3a in CDCl₃ shows a singlet (δ 47.2) in its room temperature spectrum, while in CD₂Cl₂ an AB pattern (δ _A = 47.9, δ _B = 47.5, ${}^2J_{AB}$ = 34.4 Hz) is present; 1a demonstrates the opposite behaviour (an AB pattern in the CDCl₃ spectrum and a singlet in CD₂Cl₂).

Variable temperature (VT) NMR studies, conducted on all the complexes, are exemplified by the data shown in Fig. 2. From 0 to 10 °C, the spectrum of **1b** consists of a sharp singlet, while an AB pattern is observed either side of this range with increasing separation of the signals; there is clearly no dynamic exchange process between, for example, two species giving a time-averaged singlet. A temperature-dependent, accidental degeneracy of the two signals of the 4-line AB pattern gives rise to the singlet. At a specific solvent and temperature combination, an A₂ pattern is observed, the ³¹P nuclei having become isochronous. This degeneracy occurs in at least one solvent studied (usually chlorinated) for most of the cis-RuX₂((R)-BINAP)(L₂) complexes, while *cis*-RuCl₂((*R*)-BINAP)(dmbipy) (2) is the only complex exhibiting degeneracy in C_6D_6 and not in CDCl₃ or CD₂Cl₂. The dibromo complexes **1b** and **3b** exhibit degeneracy at lower temperatures than the corresponding dichloro analogues (1a and 3a); the diiodo complexes (1c and 3c) show no degeneracy from -90 to 60 °C. Changing from the planar bipy- or phen-based ligand systems (1-4) to that with bis(o-pyridyl)amine (5) sufficiently separates the two ³¹P shifts that degeneracy is not seen (Table 1). The related cis- $RuCl_2(DPPB)(L_2)$ complexes (DPPB = 1,4-bis(diphenylphosphino)butane) possess well separated ($\Delta \delta > 10$) signals in their ³¹P NMR spectra.⁶⁶

Fig. 2 VT 31 P{ 1 H} NMR spectra (CD₂Cl₂, 121 MHz) of *cis*-RuBr₂((*R*)-BINAP)(bipy) (**1b**) from 30 to -30 °C. Spectra are plotted in 10 °C increments.

Such accidental degeneracy is likely involved in some 'anomalies' in earlier work from this laboratory. Within the L(DPPB)Ru(μ -Cl) $_3$ RuCl(DPPB) complexes (L = nitrile), a $_3$ 1P{ $_1$ H} singlet, rather than the expected AB (or AX) pattern, is seen for the two P atoms at Ru at 20 °C in CD $_2$ Cl $_2$ (i.e. a singlet and 2 doublets are observed), while the expected 4 doublets are seen in C $_6$ D $_6$ or CDCl $_3$; $_6$ b at $_1$ 0 °C in CD $_2$ Cl $_2$ the 2 sets of AB patterns are seen. When L is Me $_2$ S, the AB pattern is seen at 20 °C in C $_6$ D $_6$, but not in CDCl $_3$, while the reverse holds true when L is tetrahydrothiophene, although VT NMR experiments were not performed. 12

The temperature-dependence of ^{31}P NMR shifts is well documented, and indeed has been used for measuring sample temperature in VT work; *e.g.* the δ_P values for PPh₃ and O=PPh₃ change linearly with temperature (~ 1.3 Hz $^{\circ}C).^{13}$ Further, the temperature-dependence of the δ_P values for the dimetallic, mixed-halide ClPd(μ -DPPM)₂PdI species (DPPM = bis(diphenylphosphino)methane) formed *in situ* varies with solvent, and the A₂B₂ pattern observed in CDCl₃ at -20 $^{\circ}C$ 'collapses' to a singlet at 35 $^{\circ}C$, and reemerges above 45 $^{\circ}C$, ¹⁴ behaviour similar to that of our Ru complexes.

To our knowledge, the *cis*-RuX₂((R)-BINAP)(L₂) complexes are the first isolated complexes to exhibit temperature-

dependent degeneracy of ³¹P NMR shifts. These data, particularly the observance of the degeneracy at room temperature in common NMR solvents, indicate that caution should be taken in the analysis of ³¹P NMR data, especially for the widely studied chiral P–P systems, where such spectra remain a major characterization technique. The 'impossible' observation of a singlet NMR signal *must* be interrogated further by variation of temperature *and* variation of solvent.

We thank Colonial Metals Inc. for a loan of RuCl₃·3H₂O, Dr S. King (formerly of Merck Research) for a gift of (*R*)-BINAP, and NSERC of Canada for financial support.

Notes and references

† Abbreviations used are: bipy (2,2'-bipyridine), dmbipy (4,4'-dimethyl-2,2'-bipyridine), phen (1,10-phenanthroline), batho (4,7-diphenyl-1,10-phenanthroline, or bathophenanthroline) and bpa (bis(o-pyridyl)-amine).

‡ A representative synthesis is as follows: RuCl₂((R)-BINAP)(PPh₃)^{1b} (0.19 g, 0.18 mmol) and bipy (0.37 g, 0.24 mmol) were dissolved in 7 mL of C₆H₆ and the solution was refluxed for 3 h. The orange product (**1a**, L₂ = bipy), precipitated by the addition of 30 mL hexanes, was washed with hexanes and dried *in vacuo*. Yield: 0.11 g (65%). Anal. Calc. for C₅₄H₄₀N₂Cl₂P₂Ru: C, 68.21; H, 4.24; N, 2.95. Found: C, 68.24; H, 4.23; N, 3.01%.

§ Crystal data for **1b**: $C_{54}H_{40}N_2Br_2P_2Ru\cdot 3C_6D_6$, M=1292.09, monoclinic, space group $P2_1$, a=13.3564(7), b=14.2879(7), c=15.4367(9) Å, $\beta=98.448(4)^\circ$, V=2913.9(2) Å³, Z=2, $D_c=1.473$ g cm⁻³, $\mu=17.45$ cm⁻¹, T=-100 °C, 25153 reflections measured, 6590 unique ($R_{\rm int}=0.089$), R ($R_{\rm w}$) = 0.079 (0.092) on all data. X-ray crystal data are also available for **3a** and **5**.

CCDC reference number 164469. See http://www.rsc.org/suppdata/cc/b1/b103473c/ for crystallographic data in CIF or other electronic format.

- For example: (a) B. R. James, R. S. MacMillan, R. H. Morris and D. K. W. Wang, in *Transition Metal Hydrides*, ed. R. Bau, ACS Symposium Series 167, Washington, DC, 1978, p. 122; (b) A. M. Joshi, I. S. Thorburn, S. J. Rettig and B. R. James, *Inorg. Chim. Acta*, 1992, 198–200, 283; (c) D. E. Fogg, B. R. James and M. Kilner, *Inorg. Chim. Acta*, 1994, 222, 85.
- 2 (a) K. S. MacFarlane, I. S. Thorburn, P. W. Cyr, D. E. K.-Y. Chau, S. J. Rettig and B. R. James, *Inorg. Chim. Acta*, 1998, 270, 130; (b) K. S. MacFarlane, S. J. Rettig, Z. Liu and B. R. James, *J. Organomet. Chem.*, 1998, 557, 213.
- 3 For example: (a) R. Noyori and H. Takaya, Acc. Chem. Res., 1990, 23, 345; (b) R. Noyori, CHEMTECH, 1992, 22, 360; (c) R. Noyori, Acta Chem. Scand., 1996, 50, 380.
- 4 (a) R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40; (b) K. Abdur-Rashid, A. J. Lough and R. H. Morris, Organometallics, 2001, 20, 1047.
- For example: (a) C. R. S. M. Hampton, I. R. Butler, W. R. Cullen, B. R. James, J.-P. Charland and J. Simpson, *Inorg. Chem.*, 1992, 31, 5509; (b)
 E. S. F. Ma, S. J. Rettig and B. R. James, *Chem. Commun.*, 1999, 2463; (c) R. P. Schutte, S. J. Rettig, A. M. Joshi and B. R. James, *Inorg. Chem.*, 1997, 36, 5809; (d) N. D. Jones, K. S. MacFarlane, M. B. Smith, R. P. Schutte, S. J. Rettig and B. R. James, *Inorg. Chem.*, 1999, 38, 3956.
- (a) A. A. Batista, E. A. Polato, S. L. Queiroz, O. R. Nascimento, B. R. James and S. J. Rettig, *Inorg. Chim. Acta*, 1995, 230, 111; (b) D. E. Fogg and B. R. James, *Inorg. Chem.*, 1997, 36, 1961; (c) S. L. Queiroz, A. A. Batista, G. Oliva, M. T. P. Gambardella, R. H. A. Santos, K. S. MacFarlane, S. J. Rettig and B. R. James, *Inorg. Chim. Acta*, 1998, 267, 209.
- 7 J.-X. Gao, T. Ikariya and R. Noyori, Organometallics, 1996, 15, 1087.
- 8 R. M. Stoop, S. Bachmann, M. Valentini and A. Mezzetti, *Organometallics*, 2000, **19**, 4117.
- 9 (a) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A. F. England, T. Ikariya and R. Noyori, *Angew. Chem., Int. Ed.*, 1998, 37, 1703; (b) C.-C. Chen, T.-T. Huang, C.-W. Lin, R. Cao, A. S. C. Chan and W. T. Wong, *Inorg. Chim. Acta*, 1998, 270, 247.
- 10 P. W. Cyr, PhD Dissertation, University of British Columbia, Vancouver, 2001.
- 11 D. E. Fogg, PhD Dissertation, University of British Columbia, Vancouver, 1994.
- 12 K. S. MacFarlane, A. M. Joshi, S. J. Rettig and B. R. James, *Inorg. Chem.*, 1996, 35, 7304.
- 13 F. L. Dickert and S. W. Hellmann, Anal. Chem., 1980, 52, 966.
- 14 C. T. Hunt and A. L. Balch, Inorg. Chem., 1982, 21, 1641.