DOI: 10.1002/cssc.201100771

Solvent-Free Palladium-Catalyzed Direct Arylation of Heteroaromatics with Aryl Bromides

Souhila Bensaid and Henri Doucet*^[a]

Solvent is one of the major sources of waste in the course of catalyzed direct arylations. Some palladium-catalyzed direct arylations of heteroaromatics can be advantageously performed without any solvent. In the presence of palladium catalysts (1 mol%) and potassium acetate as the base, the direct 5-aryla-

tion of some thiazoles, thiophenes, furans, or pyrroles with aryl bromides as coupling partners proceeds highly regioselectively and in moderate to high yields. However, the use of these solvent-free conditions is limited to electron-deficient aryl bromides.

Introduction

The direct arylation of heteroaromatics is an important field for research in organic synthesis due to the biological or physical properties of aryl/heteroaryl derivatives. Ohta et al. have reported that the direct 2- or 5-arylation of several heteroaromatics with aryl halides proceed in moderate to good yields using Pd(PPh₃)₄ as the catalyst and N,N-dimethylacetamide (DMAc) as the solvent.^[1] Since these innovative results, the palladium-catalyzed direct arylation of heteroaryl derivatives with aryl halides has proved to be a powerful method for the costeffective and environment-friendly synthesis of a wide variety of arylated heterocycles.^[2] Indeed, the major byproducts of the reaction are a base associated to HX (X = Cl, Br, I), instead of metallic salts produced under classical procedures (Suzuki, Negishi, or Stille cross-coupling).^[3] Moreover, the method avoids the preliminary preparation of a requisite organometallic compound thus reducing the number of steps to prepare these compounds. However, the majority of these reactions are currently performed in relatively toxic solvents, such as DMF, DMAc, *N*-methylpyrrolidone (NMP), dioxane, or xylene.^[4–10]

Recently, a few solvents, which can be considered as "greener"^[11] according to principles by Anastas et al., have been employed for direct arylations.^[12] For example, the direct arylation of oxazoles, thiazoles, indazoles, or indoles using water as the solvent was reported by the research groups of Greaney and Djakovitch.^[13] René et al. developed biphasic conditions using water and EtOAc for the direct arylation of thiophenes.^[14a] Polyethylene glycol (PEG 20 000) has been found to be a useful solvent for the direct arylation of triazoles.^[14b] Carbonates, ethers, or alcohols have also been used successfully for the direct arylation of heteroaromatics (thiazole, thiophene, or oxazole derivatives).^[15] Finally, the ruthenium-catalyzed direct arylation of 2-arylpyridines in carbonates or water has been recently reported by Dixneuf et al.^[16]

Waste prevention is a major requirement in organic syntheses. One of the most promising approaches to reduce waste is solvent-free reactions.^[17] Solvent-free organic reactions make syntheses easier due to the reduction in reactor size and simpler workup. Such conditions also save energy, and reduce solvent waste, hazards, and toxicity. Therefore, the use of solventfree conditions for palladium-catalyzed direct arylations would provide an environmentally attractive procedure for the preparation of arylated heteroarenes.^[12a]

To our knowledge, only one example of direct arylation using solvent-free conditions has been reported. Bedford et al. described the reaction of aryl *N*,*N*-diethyl carbamates with diaryliodonium salts, [Arl(mes)][OTf] (OTf=CF₃SO₃, mes=2,4,6-Me₃C₆H₂), using 5 mol% Pd(OAc)₂ as the catalyst to selectively give monoarylated free phenol products in the absence of solvent.^[18] Notably, phenols were isolated in yields that were higher than those achieved previously in acetic acid. On the other hand, to our knowledge, solvent-free conditions have not been employed for the direct arylation of heteroaromatics. Herein, we report the use of such conditions for palladium-catalyzed direct arylations of a range of heteroaromatic derivatives with aryl bromides.

Results and discussion

To determine the suitability of these conditions for palladiumcatalyzed direct arylations, a first set of reactions using benzoxazole and 4-bromobenzonitrile as the coupling partners was carried out under previously reported conditions, but without solvent (Scheme 1). In the presence of polar solvents such as DMF, NMP, dioxane, or diethylcarbonate, high yields of coupling product (1) were obtained.^[9b, 14b] However, in the absence of a solvent, **1** was not obtained, and several unidentified products were formed. The direct arylation of oxazoles at C2

[a]	S. Bensaid, Dr. H. Doucet
	Institut Sciences Chimiques de Rennes
	UMR 6226 CNRS-Université de Rennes 1
	"Catalyse et Organometalliques"
	Campus de Beaulieu, 35042 Rennes (France)
	Fax: + (33) 0223236939
	E-mail: henri.doucet@univ-rennes1.fr

Supporting Information for this article is available on the WWW under http://dx.doi.org/10.1002/cssc.201100771.

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

🛞 WILEY 师

1

CHEMSUSCHEM

Scheme 1. Attempts at coupling benzoxazole with 4-bromobenzonitrile.

seemed to proceed through a simple deprotonation of the oxazole by the base.^[19] Such deprotonated oxazoles were probably less stable in the absence of solvents than in DMF or in carbonates.

Then, we examined the reactivity of 2-*i*-butylthiazole with a set of aryl bromides without solvent. Because 5-arylation of thiazoles proceeded through a different mechanism than 2-arylation (concerted metallation–deprotonation mechanism)^[2i,j,8b] we could expect a different reactivity of these two heteroarenes.^[15d] Moreover, such couplings have already been performed by Greaney et al. using water as the solvent.^[13a]

Employing 2-*i*-butylthiazole and 4-bromobenzonitrile as the coupling partners at 150 °C during 24 h with KOAc as the base and 1 mol% [PdCl(C₃H₅)(dppb)] (dppb=1,4-bis(diphenylphosphino)butane) as the catalyst without solvent, the desired 5-arylation product (**2**) was obtained in 90% yield (Table 1, entry 1). No formation of 4-arylated or 4,5-diarylated thiazoles was detected. A slightly lower yield in **2** was obtained when the reaction was performed at 120 °C; whereas at 80 °C the conversion of 4-bromobenzonitrile was poor (Table 1, entries 3 and 4).

The reaction of other *para*-substituted electron-deficient aryl bromides such as 4-bromoacetophenone, 4-bromobenzaldehyde, methyl 4-bromobenzoate, 4-trifluoromethylbromobenzene, or 4-bromonitrobenzene with 2-alkylthiazoles also gave the desired products (3-7) in 73-92% yields (Table 1, entries 5, 6, and 8-10). 4-Fluorobromobenzene gave the expected coupling product (8) in 79% yield (Table 1, entry 11). As expected, the reactivity of meta-substituted aryl bromides was found to be similar to para-substituted aryl bromides (Table 1 entries 13 and 14). Next, the reactivity of two ortho-substituted aryl bromides was examined. Due to their steric or coordination properties, ortho-substituents on aryl halides generally have a more important influence on the yields of palladiumcatalyzed reactions.^[20] However, both methyl 2-bromobenzoate and 2-bromobenzonitrile were successfully coupled with 2-ibutylthiazole to give 11 and 12 in good yields (Table 1, entries 15 and 16). We also explored the reactivity of 2-alkylthiazoles with some heteroaryl bromides (Table 1, entries 17-20). Good performance of this novel friendly protocol in direct couplings with 5-bromopyrimidine, 3-bromopyridine, or 3-bromoquinoline was observed. With these substrates, target products 13-15 were obtained in 85-87% yield.

We have recently reported that the phosphine-free $Pd(OAc)_2$ catalyst promotes the direct arylation of some heteroaromatics.^[4f,8c] This procedure was also examined for the coupling of four aryl bromides in absence of solvent. Surprisingly, high yields of **2** and **14** were obtained in the presence of 4-bromo-

[a] Conditions: $[PdCl(L_3 A_5)(dpDD)]$ (0.01 equiv), find2ble derivative (2 equiv), aryl bromide (1 equiv), KOAc (2 equiv), 150 °C, 24 h. [b] Pd(OAc)₂ (0.01 equiv). [c] Reaction temperature: 120 °C. [d] Reaction temperature: 80 °C. [e] The formation of biphenyl-4,4'-dicarbaldehyde (12%) was also detected. [f] The formation of a diarylated thiazole was also detected.

benzonitrile or 3-bromopyridine (Table 1, entries 2 and 17). On the other hand, in the presence of 4-bromobenzaldehyde, **4** was only obtained in 70% due to the formation of biphenyl-4,4'-dicarbaldehyde as side-product in 12% yield. With 4-bromofluorobenzene another side-product was detected by GC-

MS analysis due to diarylation of thiazole (Table 1, entries 5 and 10). In the absence of solvent, the aggregation of palladium species to form microparticles seemed faster. Such aggregates are known to promote side-reactions, such as the homocoupling of aryl bromides. Therefore, even if it is possible for the phosphine-free procedure to be employed with some aryl bromides, the use of $[PdCl(C_3H_5)(dppb)]$ as the catalyst appears to be more reliable for such solvent-free reactions.

Then, we studied the reactivity of several other heteroaromatics in absence of solvent. High yields were generally obtained for the coupling of thiophene derivatives with aryl bromides (Table 2–6). 5-Arylation of 2-methylthiophene was found to proceed nicely with electron-deficient aryl bromides (Table 2, entries 1–4); whereas the coupling of 1-bromonaphthalene gave **20** in only 20% yield due to a partial conversion of this aryl bromide (Scheme 2 and Table 2, entry 5).

Table 2. Palladium-catalyzed coupling of 2-methylthiophene with aryl bromides (Scheme 2).							
Entry	Aryl bromide	Product		Yield ^[a] [%]			
1	Br—CN		16	84			
2	Br - NO2		² 17	80			
3	Br		18 le	77			
4	Br-CF3		³ 19	74			
5	Br		20	20			
6	Br-		21	71			
[a] Cond	litions: [PdCl(C ₃ H ₅)	(dppb)] (0.01 equiv	/), 2-meth	ylthiophene			

Scheme 2. Coupling of thiophene derivatives with aryl bromides.

(2 equiv), aryl bromide (1 equiv), KOAc (2 equiv), 150 °C, 24 h.

Thiophene 2-carbonitrile has also been coupled successfully to several electron-deficient aryl bromides (Table 3). Similar yields to those previously obtained in cyclopentyl methyl ether^[15d] were obtained.

Then, both protected and nonprotected 2-acetylthiopenes were employed (Table 4). In most cases, similar yields of coupling products were obtained using these two reagents. For example, in the presence of 4-bromobenzonitrile, **30** and **35** were obtained in 74 and 72% yield (Table 4, entries 1 and 6).

 Table 3. Palladium-catalyzed coupling of thiophene 2-carbonitrile with aryl bromides (Scheme 2).

The acetyl function appeared to be quite stable under these conditions.

A highly functionalized reagent (2-acetyl-4-chlorothiophene) reacted with aryl bromides (e.g., 4-bromoacetophenone, 4-tri-fluoromethylbromobenzene, 2-bromobenzonitrile, or bromopyridines) and gave **42–46** in 75–79% yield (Table 5). Notably, in the course of these reactions no cleavage of the C–Cl bond of the chlorothiophene derivative was detected, thus allowing further transformations.

Then, a thiophene substituted by an ester function at the C2 position was employed (Table 6). The target compounds (**47**—**51**) were obtained in 71–80% yield. Decarboxylation of some thiophene derivatives has been previously observed in DMAc at elevated temperatures.^[41] However, in the course of these reactions only traces of decarboxylated thiophenes were detected.

Several aryl bromides were also coupled with furan derivatives (Table 7). These reactions had been previously observed to proceed nicely in DMAc or diethylcarbonate.^[5d, 15b] Again, for these reactions, [PdCI(C₃H₅)(dppb)] was employed as the catalyst. A poor reactivity of 2-*n*-butylfuran was observed (Table 7, entries 1 and 2). Due to its poor coordination properties, this furan derivative is probably not as good a stabilizing agent for palladium species as thiophenes or thiazoles; whereas furan-2ylmethyl acetate and methyl 2-methylfuran-3-carboxylate were found to be more reactive under these solvent-free conditions, and produced **54–57** in 61–74% yield. These two substrates gave rise to similar results in diethylcarbonate.^[15b]

 Co. KGaA, Weinheim
 www.chemsuschem.org

 These are not the final page numbers!

CHEMSUSCHEM

We previously observed that 1-methyl-2-formylpyrrole had a poor reactivity in direct arylations in diethylcarbonate.^[15b] In absence of solvent, the coupling of this heteroaromatic with 4-bromobenzonitrile led to 58 in only 41% yield (Table 8, entry 1). Better results were obtained for the coupling of 1-methylpyrrole with 4-bromobenzonitrile, 4-bromonitrobenzene, or methyl 4-bromobenzoate (Table 8, entries 2-4).

Finally, three aryl bromides were coupled with 2,5-dimethylisoxazole (Table 9). Yields of 75-86% in 62-64 were obtained using 1 mol% catalyst at 150°C. Notably, lower yields in 62 (47 and 40%) were obtained for the coupling of 4-bromobenzonitrile with this isoxazole derivative in diethylcarbonate or cyclopentyl methyl ether; whereas the use of di-n-butyl ether produced 62 in 89% yield.^[15b,d]

4

Table 5. Palladium-catalyzed coupling of 2-acetyl-4-chlorothiophene with arvl bromides (Scheme 2).

[a] Conditions: [PdCl(C₃H₅)(dppb)] (0.01 equiv), 2-acetyl-4-chlorothiophene (2 equiv), aryl bromide (1 equiv), KOAc (2 equiv), 150 °C, 24 h, yield in isolated product.

Table 6. Palladium-catalyzed coupling of ethyl thiophene-2-carboxylate with arvl bromides (Scheme 2).

Conclusions

These results demonstrated that, in several cases, the direct arylation of heteroaromatics could be performed without solvent. In the presence of palladium catalyst (1 mol%) at 150°C, the direct 5-arylation of some thiazoles, thiophenes, furans, pyrroles, or isoxazoles using aryl bromides as coupling partners proceeded highly regioselectively and in moderate to high yields. Under these solvent-free conditions, palladium catalysts associated to a phosphine ligand should be preferred, even if a phosphine-free catalyst could be employed in some cases.

www.chemsuschem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim **KK** These are not the final page numbers!

CHEMSUSCHEM FULL PAPERS

arvl bromide (1 equiv), KOAc (2 equiv), 150°C, 24 h.

Notably, only electron-deficient aryl bromides were reactive under these conditions. However, a wide range of functions such as acetyl, propionyl, formyl, ester, nitro, nitrile, trifluoromethyl, or fluoro on the aryl bromide was tolerated. The major byproduct of these couplings was KBr and AcOH instead of metallic salts in more classical coupling procedures. Solventfree reactions avoid the hazards and toxicity associated with

the use of solvents, reduce waste costs, and simplify separation procedures at the end of the reaction. For these reasons, this novel process should give an economically viable and environmentally attractive access to several arylated heteroaromatics. Moreover, these results indicated that most of these couplings should also proceed using highly concentrated reaction mixtures, thus allowing industrially viable processes.

Experimental Section

Pd(OAc)₂, [Pd(C₃H₅)Cl]₂, dppb, heteroarenes, KOAc (99%), and Cs₂CO₃ (99%) were purchased from Alfa Aesar and were not purified before use.

Preparation of the [PdCl(C₃H₅)(dppb)] catalyst^[21]

An oven-dried Schlenk tube (40 mL) equipped with a magnetic stirring bar under argon atmosphere was charged with [Pd(C₃H₅)Cl]₂ (182 mg, 0.5 mmol) and dppb (426 mg, 1 mmol). Then, anhydrous dichloromethane (10 mL) was added and the solution was stirred at room temperature for 20 min. The solvent was removed in vacuum. The yellow powder was used without purification. $^{\rm 31}{\rm P}$ NMR (81 MHz, CDCl₃): $\delta\!=\!$ 19.3 ppm (s).

Typical experiment for coupling reactions

The reaction of aryl bromide (1 mmol), heteroaromatic (2 mmol), and KOAc (0.196, 2 mmol) at 150 °C in the presence of Pd(OAc)₂ or [PdCl(C₃H₅)(dppb)] under argon afforded the corresponding product after filtration on silica gel (pentane/ether).

4-(2-lsobutylthiazol-5-yl)benzonitrile (2)

4-Bromobenzonitrile (0.182 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded 2 (0.218 g, 90%). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.97$ (s, 1 H), 7.70 (d, J = 8.5 Hz, 2 H), 7.65 (d, J = 8.5 Hz, 2H), 2.95 (d, J=7.5 Hz, 2H), 2.18 (m, 1H), 1.08 ppm (d, J=7.5 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.7$, 139.5, 136.5, 136.2, 132.8, 126.8, 118.5, 111.2, 42.6, 29.8, 22.2 ppm; elemental analysis calcd (%) for $C_{14}H_{14}N_2S$ (242.34): C 69.39, H 5.82; found: C 69.31, H 5.68.

4-(2-Isobutylthiazol-5-yl)acetophenone (3)^[14a]

The reaction of 4-bromoacetophenone (0.199 g, 1 mmol) and 2-ibutylthiazole (0.282 g, 2 mmol) afforded 3 (0.189 g, 73 %). 4-(2-Isobutylthiazol-5-yl)benzaldehyde (4)

Changeuschang	0000	00	1 10	
Chemsuschem	0000,	00,	1 - 10	

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemsuschem.org These are not the final page numbers! 77

5

The reaction of 4-bromobenzaldehyde (0.184 g, 1 mmol) and 2-ibutylthiazole (0.282 g, 2 mmol) afforded 4 (0.191 g, 78%). ¹H NMR (200 MHz, CDCl₃): $\delta = 10.00$ (s, 1 H), 7.97 (s, 1 H), 7.88 (d, J = 8.5 Hz, 2H), 7.65 (d, J=8.5 Hz, 2H), 2.95 (d, J=7.5 Hz, 2H), 2.18 (m, 1H), 1.08 ppm (d, J = 7.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.2$, 171.4, 139.4, 137.5, 137.0, 135.5, 130.4, 126.7, 42.6, 29.8, 22.3 ppm; elemental analysis calcd (%) for C₁₄H₁₅NOS (245.34): C 68.54, H 6.16; found: C 68.41, H 6.28.

Methyl 4-(2-propylthiazol-5-yl)benzoate (5)^[8c]

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and 2i-butylthiazole (0.264 g, 2 mmol) affords 5 (0.225 g, 86%).

5-[4-(Trifluoromethyl)phenyl]-2-isobutylthiazole (6)^[8f]

The reaction of 4-trifluoromethylbromobenzene (0.225 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded 6 (0.251 g, 88%).

5-(4-Nitrophenyl)-2-isobutylthiazole (7)

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded **7** (0.241 g, 92%). ¹H NMR (200 MHz, CDCl₃): δ = 8.27 (d, J = 8.5 Hz, 2 H), 7.99 (s, 1 H), 7.70 (d, J=8.5 Hz, 2H), 2.95 (d, J=7.5 Hz, 2H), 2.18 (m, 1H), 1.08 ppm (d, J = 7.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 172.1$, 146.9, 140.0, 138.1, 136.0, 126.8, 124.4, 42.6, 29.8, 22.2 ppm; elemental analysis calcd (%) for C₁₃H₁₄N₂O₂S (262.33): C 59.52, H 5.38; found: C 59.38, H 5.20.

5-(4-Fluorophenyl)-2-propylthiazole (8)^[8c]

The reaction of 4-fluorobromobenzene (0.175 g, 1 mmol), and 2propylthiazole (0.264 g, 2 mmol) afforded 8 (0.175 g, 79%).

3-(2-Isobutylthiazol-5-yl)benzonitrile (9)

The reaction of 3-bromobenzonitrile (0.182 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded 9 (0.186 g, 77%). ¹H NMR (200 MHz, CDCl₃): δ = 7.90 (s, 1 H), 7.87–7.75 (m, 2 H), 7.59 (d, J = 8.5 Hz, 1 H), 7.38 (t, J=8.5 Hz, 1 H), 2.95 (d, J=7.5 Hz, 2 H), 2.18 (m, 1 H), 1.08 ppm (d, J=7.5 Hz, 6 H); 13 C NMR (75 MHz, CDCl₃): $\delta =$ 171.2, 138.9, 136.0, 133.1, 131.1, 130.6, 129.9, 129.8, 118.2, 113.4, 42.6, 29.8, 22.2 ppm; elemental analysis calcd (%) for C₁₄H₁₄N₂S (242.34): C 69.39, H 5.82; found: C 69.24, H 6.02.

2-Propyl-5-(3-trifluoromethylphenyl)thiazole (10)^[8c]

The reaction of 3-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol) and 2-propylthiazole (0.264 g, 2 mmol) afforded 10 (0.214 g, 79%). Methyl 4-(2-isobutylthiazol-5-yl)benzoate (11)

The reaction of methyl 2-bromobenzoate (0.205 g, 1 mmol) and 2*i*-butylthiazole (0.282 g, 2 mmol) afforded **11** (0.190 g, 69%). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.77$ (d, J = 8.5 Hz, 1 H), 7.54 (s, 1 H), 7.52-7.36 (m, 3H), 3.21 (s, 3H), 2.91 (d, J=7.5 Hz, 2H), 2.18 (m, 1 H), 1.04 ppm (d, J = 7.5 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 170.6, 168.3, 140.2, 135.8, 131.7, 131.6, 131.3, 131.0, 129.9, 128.3, 52.1, 42.3, 29.8, 22.3 ppm; elemental analysis calcd (%) for C₁₅H₁₇NO₂S (275.37): C 65.43, H 6.22; found: C 65.24, H 6.10.

2-(2-IsobutyIthiazoI-5-yl)benzonitrile (12)

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded 12 (0.150 g, 62%). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.05$ (s, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.70-7.52 (m, 2H), 7.43 (t, J=8.5 Hz, 1H), 2.91 (d, J=7.5 Hz, 2H), 2.18 (m, 1 H), 1.04 ppm (d, J = 7.5 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 172.1, 141.6, 134.9 134.3, 133.6, 133.1, 130.0, 128.1, 118.3, 110.6, 42.5, 29.8, 22.3 ppm; elemental analysis calcd (%) for C₁₄H₁₄N₂S (242.34): C 69.39, H 5.82; found: C 69.58, H 6.00.

5-(2-Propylthiazol-5-yl)pyrimidine (13)^[8c]

The reaction of 5-bromopyrimidine (0.159 g, 1 mmol) and 2-propylthiazole (0.264 g, 2 mmol) afforded 13 (0.178 g, 87%).

3-(2-Propylthiazol-5-yl)pyridine (14)^[8c]

6

The reaction of 3-bromopyridine (0.158 g, 1 mmol) and 2-propylthiazole (0.264 g, 2 mmol) afforded 14 (0.173 g, 85%). 3-(2-IsobutyIthiazol-5-yl)quinoline (15)

The reaction of 3-bromoquinoline (0.208 g, 1 mmol) and 2-i-butylthiazole (0.282 g, 2 mmol) afforded 15 (0.230 g, 86%). ¹H NMR (200 MHz, CDCl₃): $\delta = 9.08$ (s, 1 H), 8.12 (s, 1 H), 8.01 (d, J = 8.5 Hz, 1 H), 7.97 (s, 1 H), 7.73 (d, J=8.5 Hz, 1 H), 7.62 (t, J=8.0 Hz, 1 H), 7.48 (t, J=8.0 Hz, 1 H), 2.91 (d, J=7.5 Hz, 2 H), 2.18 (m, 1 H), 1.04 ppm (d, J = 7.5 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 170.8, 148.5, 147.4, 138.8, 135.0, 132.3, 129.6, 129.3, 127.7, 127.4, 125.0, 42.6, 29.8, 22.3 ppm; elemental analysis calcd (%) for C₁₆H₁₆N₂S (268.38): C 71.60, H 6.01; found: C 71.84, H 5.92.

4-(5-Methylthiophen-2-yl)-benzonitrile (16)^[4f]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 2-methylthiophene (0.196 g, 2 mmol) afforded 16 (0.167 g, 84%).

2-Methyl-5-(4-nitrophenyl)thiophene (17)^[22]

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 2methylthiophene (0.196 g, 2 mmol) afforded 17 (0.175 g, 80%).

4-(5-Methylthiophen-2-yl)-acetophenone (18)^[22]

The reaction of 4-bromoacetophenone (0.199 g, 1 mmol) and 2methylthiophene (0.196 g, 2 mmol) afforded 18 (0.166 g, 77 %).

2-Methyl-5-(4-trifluoromethylphenyl)thiophene (19)[22]

The reaction of 4-trifluoromethylbromobenzene (0.225 g, 1 mmol) and 2-methylthiophene (0.196 g, 2 mmol) afforded 19 (0.179 g, 74%).

2-Methyl-5-naphthalen-1-ylthiophene (20)^[23]

The reaction of 1-bromonaphthalene (0.207 g, 1 mmol) and 2methylthiophene (0.196 g, 2 mmol) afforded 20 (0.045 g, 20%). 3-(5-Methylthiophen-2-yl)pyridine (21)[24]

The reaction of 3-bromopyridine (0.158 g, 1 mmol) and 2-methylthiophene (0.196 g, 2 mmol) afforded 21 (0.124 g, 71%).

5-(4-Acetylphenyl)thiophene-2-carbonitrile (22)^[4f]

The reaction of 4-bromoacetophenone (0.199 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 22 (0.168 g, 74%). 5-(4-Formylphenyl)thiophene-2-carbonitrile (23)^[4f]

The reaction of 4-bromobenzaldehyde (0.185 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 23 (0.156 g, 73%). Methyl 4-(5-cyanothiophen-2-yl)benzoate (24)^[4f]

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 24 (0.173 g, 71%).

5-(4-Nitrophenyl)thiophene-2-carbonitrile (25)^[17]

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 25 (0.168 g, 73 %). 5-(3-Acetylphenyl)thiophene-2-carbonitrile (26)^[15d]

The reaction of 3-bromoacetophenone (0.199 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 26 (0.139 g, 61 %). 5-(3-Formylphenyl)thiophene-2-carbonitrile (27)^{[15d}

The reaction of 3-bromobenzaldehyde (0.185 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 27 (0.136 g, 64%). 5-[3-(trifluoromethyl)phenyl]thiophene-2-carbonitrile (28)^[15d]

The reaction of 3-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 28 (0.185 g, 73%).

5-(2-Cyanophenyl)thiophene-2-carbonitrile (29)^[4f]

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and thiophene 2-carbonitrile (0.218 g, 2 mmol) afforded 29 (0.157 g, 75%). 4-(5-Acetylthiophen-2-yl)benzonitrile (30)^[4f]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 2-acetylthiophene (0.252 g, 2 mmol) afforded 30 (0.168 g, 74%).

Methyl 4-(5-acetylthiophen-2-yl)benzoate (31)^[4f]

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and 2acetylthiophene (0.252 g, 2 mmol) afforded **31** (0.185 g, 71%).

1-[5-(4-Trifluoromethylphenyl)-thiophen-2-yl]-ethanone (32)^[4f] The reaction of 4-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol) and 2-acetylthiophene (0.252 g, 2 mmol) afforded 32 (0.189 g, 70%).

1-(5-Pyridin-3-ylthiophen-2-yl)-ethanone (33)^[25]

The reaction of 3-bromopyridine (0.158 g, 1 mmol) and 2-acetyl-thiophene (0.252 g, 2 mmol) afforded **33** (0.158 g, 78%).

1-(5-Isoquinolin-4-ylthiophen-2-yl)-ethanone (34)

The reaction of 4-bromoisoquinoline (0.208 g, 1 mmol) and 2-ace-tylthiophene (0.252 g, 2 mmol) afforded **34** (0.081 g, 32%). ¹H NMR (400 MHz, CDCl₃): δ =9.20 (s, 1H), 8.51 (s, 1H), 8.12 (d, *J*=8.1 Hz, 1H), 7.94 (d, *J*=8.1 Hz, 1H), 7.72 (d, *J*=3.8 Hz, 1H), 7.69 (t, *J*=7.5 Hz, 1H), 7.58 (t, *J*=7.5 Hz, 1H), 7.26 (d, *J*=3.8 Hz, 1H), 2.55 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =190.6, 153.4, 146.5, 145.2, 143.4, 133.7, 132.7, 131.5, 129.0, 182.3, 128.2, 127.8, 125.4, 124.1, 26.8 ppm; elemental analysis calcd (%) for C₁₅H₁₁NOS (253.32): C 71.12, H 4.38; found: C 71.20, H 4.51.

$\begin{array}{l} \textbf{4-[5-(2-Methyl-1,3-dioxolan-2-yl]benzonitrile} \\ \textbf{(35)}^{[15d]} \end{array}$

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 2-ace-tylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **35** (0.195 g, 72 %).

$\label{eq:2.1} \mbox{4-[5-(2-Methyl-1,3-dioxolan-2-yl]-thiophen-2-yl]-benzaldehyde} \mbox{(36)}^{\mbox{[4f]}}$

The reaction of 4-bromobenzaldehyde (0.185 g, 1 mmol) and 2-acetylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **36** (0.192 g, 70%).

2-Methyl-2-[5-(4-nitrophenyl)-thiophen-2-yl]-[1,3]dioxolane (37)

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 2-ace-tylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **37** (0.215 g, 74%).

2-Methyl-2-[5-(4-trifluoromethylphenyl)-thiophen-2-yl]-[1,3]dioxolane (38)^{[4f]}

The reaction of 4-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol) and 2-acetylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **38** (0.223 g, 71 %). ¹H NMR (400 MHz, CDCl₃): δ = 8.25 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 3.8 Hz, 1H), 7.09 (d, *J* = 3.8 Hz, 1H), 4.15–4.00 (m, 4H), 1.82 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 150.1, 146.6, 140.9, 140.6, 125.8, 125.6, 125.4, 124.4, 107.0, 65.1, 30.9, 27.4 ppm; elemental analysis calcd (%) for C₁₄H₁₃NO₄S (291.32): C 57.72, H 4.50; found: C 57.60, H 4.37.

2-[5-(2-Methyl-1,3-dioxolan-2-yl)thiophen-2-yl]benzonitrile (39)^[4f]

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and 2-acetylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **39** (0.203 g, 75 %).

3-[5-(2-Methyl-1,3-dioxolan-2-yl]-thiophen-2-yl]-pyridine (40)^[4f] The reaction of 3-bromopyridine (0.158 g, 1 mmol) and 2-acetylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **40** (0.203 g, 82%).

4-[5-(2-Methyl-1,3-dioxolan-2-yl)-thiophen-2-yl]-isoquinoline $(41)^{\rm [4f]}$

The reaction of 4-bromoisoquinoline (0.208 g, 1 mmol) and 2-ace-tylthiophene ethylene acetal (0.340 g, 2 mmol) afforded **41** (0.229 g, 77%).

1-[4-(5-Acetyl-3-chlorothiophen-2-yl)-phenyl]-ethanone (42)^[15d]

The reaction of 4-bromoacetophenone (0.199 g, 1 mmol) and 2-acetyl-4-chlorothiophene (0.321 g, 2 mmol) afforded **42** (0.220 g, 79%).

$\label{eq:linear} 1-[4-Chloro-5-(4-trifluoromethylphenyl)-thiophen-2-yl]-ethanone (43)^{[15d]}$

The reaction of 4-trifluoromethylbromobenzene (0.225 g, 1 mmol) and 2-acetyl-4-chlorothiophene (0.321 g, 2 mmol) afforded **43** (0.237 g, 78%).

2-(5-Acetyl-3-chlorothiophen-2-yl)-benzonitrile (44)^[4h]

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and 2-acetyl-4-chlorothiophene (0.321 g, 2 mmol) afforded **44** (0.196 g, 75%).

1-(4-Chloro-5-pyridin-4-yl-thiophen-2-yl)-ethanone (45)^[15d]

The reaction of 4-bromopyridine hydrochloride (0.195 g, 1 mmol) and 2-acetyl-4-chlorothiophene (0.321 g, 2 mmol) afforded **45** (0.180 g, 76%).

1-(4-Chloro-5-pyridin-3-ylthiophen-2-yl)-ethanone (46)[4h]

The reaction of 3-bromopyridine (0.158 g, 1 mmol) and 2-acetyl-4-chlorothiophene (0.321 g, 2 mmol) afforded ${f 46}$ (0.185 g, 78%).

Ethyl 5-(4-cyanophenyl)thiophene-2-carboxylate (47)^[5c]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and ethyl thiophene-2-carboxylate (0.312 g, 2 mmol) afforded **47** (0.201 g, 78%).

Ethyl 5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (48)^[4f] The reaction of 4-trifluoromethylbromobenzene (0.225 g, 1 mmol)

and methyl thiophene-2-carboxylate (0.312 g, 2 mmol) afforded **48** (0.213 g, 71%).

Ethyl 5-(4-methoxycarbonylphenyl)thiophene-2-carboxylate (49)

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and ethyl thiophene-2-carboxylate (0.312 g, 2 mmol) afforded **49** (0.232 g, 80%). ¹H NMR (300 MHz, CDCl₃): δ = 8.06 (d, *J* = 8.5 Hz, 2 H), 7.78 (d, *J* = 4.0 Hz, 1 H), 7.69 (d, *J* = 8.5 Hz, 2 H), 7.38 (d, *J* = 4.0 Hz, 1 H), 4.37 (q, *J* = 7.5 Hz, 2 H), 3.94 (s, 3 H), 1.40 ppm (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 162.0, 149.3, 137.5, 134.1, 133.8, 130.3, 129.9, 125.8, 124.7, 61.3, 52.2, 14.3 ppm; elemental analysis: calcd (%) for C₁₅H₁₄O₄S (290.34): C 62.05, H 4.86; found: C 62.14, H 4.99.

Ethyl 5-(2-cyanophenyl)thiophene-2-carboxylate (50)

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and ethyl thiophene-2-carboxylate (0.312 g, 2 mmol) afforded **50** (0.201 g, 78%). ¹H NMR (300 MHz, CDCl₃): δ = 7.81 (d, *J*=4.0 Hz, 1 H), 7.77 (d, *J*=8.5 Hz, 1 H), 7.67–7.63 (m, 2 H), 7.59 (d, *J*=4.0 Hz, 1 H), 7.50–7.45 (m, 1 H), 4.37 (q, *J*=7.5 Hz, 2 H), 1.40 ppm (t, *J*=7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.8, 145.6, 136.6, 135.2, 134.4, 133.9, 133.2, 129.9, 128.7, 128.0, 118.3, 110.5, 61.4, 14.3 ppm; elemental analysis: calcd (%) for C₁₄H₁₁NO₂S (257.31): C 65.35, H 4.31; found: C 65.20, H 4.47.

Ethyl 5-pyridin-3-ylthiophene-2-carboxylate (51)^[4f]

The reaction of 3-bromopyridine (0.158 g, 1 mmol) and ethyl thiophene-2-carboxylate (0.312 g, 2 mmol) afforded **51** (0.175 g, 75%). **2-n-Butyl-5-(4-cyanophenyl)furan (52)**^[5d]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 2-*n*-bu-tylfuran (0.248 g, 2 mmol) afforded **52** (0.034 g, 15%).

3-(5-n-Butylfuran-2-yl)quinoline (53)^[15b]

The reaction of 3-bromoquinoline (0.208 g, 1 mmol) and 2-*n*-butyl-furan (0.248 g, 2 mmol) afforded **53** (0.043 g, 17%).

Methyl 4-(5-acetoxymethylfuran-2-yl)benzoate (54)

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and acetic acid furan-2-ylmethyl ester (0.280 g, 2 mmol) afforded **54** (0.167 g, 61%). ¹H NMR (400 MHz, CDCl₃): δ =8.03 (d, *J*=8.5 Hz, 2H), 7.71 (d, *J*=8.5 Hz, 2H), 6.72 (d, *J*=3.5 Hz, 1H), 6.50 (d, *J*=3.5 Hz, 1H), 5.10 (s, 2H), 3.90 (s, 3H), 2.09 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =170.2, 166.3, 153.1, 149.7, 134.0, 129.7, 128.5, 123.2, 112.6, 107.6, 57.7, 51.7, 20.5 ppm; elemental analysis calcd (%) for C₁₅H₁4O₅ (274.27): C 65.69, H 5.15; found: C 65.87, H 5.04.

Acetic acid 5-(2-cyanophenyl)furan-2-ylmethyl ester (55)^[15b]

The reaction of 2-bromobenzonitrile (0.182 g, 1 mmol) and acetic acid furan-2-ylmethyl ester (0.280 g, 2 mmol) afforded **55** (0.171 g, 71%).

Methyl 2-methyl-5-(4-nitrophenyl)furan-3-carboxylate (56)^[5d]

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and methyl 2-methylfuran-3-carboxylate (0.280 g, 2 mmol) afforded 56 (0.170 g, 65%).

7

www.chemsuschem.org

Methyl 5-(4-methoxycarbonylphenyl)-2-methylfuran-3-carboxylate (57)^[5d]

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and methyl 2-methylfuran-3-carboxylate (0.280 g, 2 mmol) afforded **57** (0.203 g, 74%).

4-(5-Formyl-1-methylpyrrol-2-yl)benzonitrile (58)[6e]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 1-methyl-2-formylpyrrole (0.219 g, 2 mmol) afforded **58** (0.086 g, 41%).

4-(1-Methylpyrrol-2-yl)benzonitrile (59)^[6e]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 1-methylpyrrole (0.324 g, 4 mmol) afforded **59** (0.135 g, 74%).

1-Methyl-2-(4-nitrophenyl)pyrrole (60)^[26]

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 1methylpyrrole (0.324 g, 4 mmol) afforded **60** (0.137 g, 68%).

Methyl 4-(1-Methylpyrrol-2-yl)benzoate (61)^[27]

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and 1-methylpyrrole (0.324 g, 4 mmol) afforded **61** (0.166 g, 77%).

4-(3,5-Dimethylisoxazol-4-yl)benzonitrile (62)^[10]

The reaction of 4-bromobenzonitrile (0.182 g, 1 mmol) and 3,5-dimethylisoxazole (0.192 g, 2 mmol) afforded **62** (0.148 g, 75%). **Methyl 4-(3,5-dimethylisoxazol-4-yl)benzoate (63)**^[10]

The section of the se

The reaction of methyl 4-bromobenzoate (0.205 g, 1 mmol) and 3,5-dimethylisoxazole (0.192 g, 2 mmol) afforded **63** (0.187 g, 81%). **3,5-Dimethyl-4-(4-nitrophenyl)isoxazole (64)**^[10]

The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 3,5-dimethylisoxazole (0.192 g, 2 mmol) afforded **64** (0.188 g, 86%).

Acknowledgements

8

We wish to thank the CNRS and "Rennes Metropole" for financial support.

Keywords: catalysis · cross-coupling · heterocycles · palladium · synthetic methods

- A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, *Heterocycles* 1990, 31, 1951.
- [2] a) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174; b) T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200; c) L.-C. Campeau, D. R. Stuart, K. Fagnou, Aldrichimica Acta 2007, 40, 35; d) I. V. Seregin, V. Gevoryan, Chem. Soc. Rev. 2007, 36, 1173; e) B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949; f) F. Bellina, R. Rossi, Tetrahedron 2009, 65, 10269; g) L. Ackermann, R. Vincente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976; Angew. Chem. Int. Ed. 2009, 48, 9792; h) J. Roger, A. L. Gottumuk-kala, H. Doucet, ChemCatChem 2010, 2, 20; i) D. Lapointe, K. Fagnou, Chem. Lett. 2010, 39, 1118; j) L. Ackermann, Chem. Rev. 2011, 111, 1315.
- [3] a) J. J. Li, G. W. Gribble, *Palladium in Heterocyclic Chemistry*, Pergamon, Amsterdam, 2000; b) E. Negishi, Ed., *Handbook of Organopalladium Chemistry for Organic Synthesis, Part III*, Wiley, New York, 2002, p. 213;
 c) J. Hassan, M. Sévignon, C. Gozzi, E. Schultz, M. Lemaire, *Chem. Rev.* 2002, 102, 1359.
- [4] For recent examples of direct arylations of thiophenes: a) E. David, S. Pellet-Rostaing, M. Lemaire, *Tetrahedron* 2007, 63, 8999; b) H. A. Chiong, O. Daugulis, Org. Lett. 2007, 9, 1449; c) P. Amaladass, J. A. Clement, A. K. Mohanakrishnan, *Tetrahedron* 2007, 63, 10363; d) M. Nakano, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008, 10, 1851; e) J. J. Dong, J. Roger, H. Doucet, *Tetrahedron Lett.* 2009, 50, 2778; f) J. Roger, F. Požgan, H. Doucet, Green Chem. 2009, 11, 425; g) B. Liégault, I. Petrov, S. I. Gorlesky, K. Fagnou, J. Org. Chem. 2010, 75, 1047; h) K. Beydoun, H. Doucet, J. Organomet. Chem. 2011, 696, 1749; i) L. Chen, J. Roger, C. Bruneau, P. H. Dixneuf, H. Doucet, Chem. Commun. 2011, 47, 1872.
- [5] For recent examples of direct arylations of furans: a) M. Parisien, D. Valette, K. Fagnou, J. Org. Chem. 2005, 70, 7578; b) E. M. Beccalli, G. Broggi-

ni, M. Martinelli, S. Sottocornola, *Synthesis* **2008**, 136; c) B. Liégaut, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* **2009**, *74*, 1826; d) J. J. Dong, J. Roger, F. Požgan, H. Doucet, *Green Chem.* **2009**, *11*, 1832; e) M. Ionita, J. Roger, H. Doucet, *ChemSusChem* **2010**, *3*, 367.

- [6] For recent examples of direct arylations of pyrroles or indoles: a) F. Bellina, S. Cauteruccio, R. Rossi, *Eur. J. Org. Chem.* 2006, 1379; b) X. Wang, D. V. Gribkov, D. Sames, *J. Org. Chem.* 2007, *72*, 1476; c) N. Lebrasseur, I. Larrosa, *J. Am. Chem. Soc.* 2008, *130*, 2926; d) Y. Fall, H. Doucet, M. Santelli, *ChemSusChem* 2009, *2*, 153; e) J. Roger, H. Doucet, *Adv. Synth. Catal.* 2009, *351*, 1977.
- [7] For recent examples of direct arylations of imidazoles: a) F. Bellina, S. Cauteruccio, L. Mannina, R. Rossi, S. Viel, *Eur. J. Org. Chem.* 2006, 693;
 b) I. Cerna, R. Pohl, B. Klepetarova, M. Hocek, *Org. Lett.* 2006, *8*, 5389;
 c) F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, *Tetrahedron* 2007, *63*, 1970;
 d) F. Bellina, S. Cauteruccio, A. Di Flore, R. Rossi, *Eur. J. Org. Chem.* 2008, 5436;
 e) F. Bellina, S. Cauteruccio, A. Di Flore, C. Marchietti, R. Rossi, *Tetrahedron* 2008, *64*, 6060;
 f) J. Roger, H. Doucet, *Tetrahedron* 2009, *65*, 9772.
- [8] For recent examples of direct 2- or 5-arylations of thiazoles: a) A. L. Gottumukkala, H. Doucet, *Eur. J. Inorg. Chem.* 2007, 3629; b) L.-C. Campeau, M. Bertrand-Laperle, J.-P. Leclerc, E. Villemure, S. Gorelsky, K. Fagnou, *J. Am. Chem. Soc.* 2008, 130, 3276; c) J. Roger, F. Požgan, H. Doucet, *J. Org. Chem.* 2009, 74, 1179; d) F. Derridj, J. Roger, F. Geneste, S. Djebbar, H. Doucet, *J. Organomet. Chem.* 2009, 694, 455; e) D. Lapointe, T. Markiewicz, C. J. Whipp, A. Toderian, K. Fagnou, *J. Org. Chem.* 2011, 76, 749.
- [9] For recent examples of direct 2-arylations or vinylations of oxazoles:
 a) C. Hoarau, A. Du Fou de Kerdaniel, N. Bracq, P. Grandclaudon, A. Couture, F. Marsais, *Tetrahedron Lett.* 2005, *46*, 8573; b) R. S. Sánchez, F. A. Zhuravlev, J. Am. Chem. Soc. 2007, *129*, 5824; c) F. Besselièvre, F. Mahuteau-Betzer, D. S. Grierson, S. Piguel, J. Org. Chem. 2008, *73*, 3278; d) F. Derridj, S. Djebbar, O. Benali-Baitich, H. Doucet, J. Organomet. Chem. 2008, *693*, 135; e) T. Yoshizumi, T. Satoh, K. Hirano, D. Matsuo, A. Orita, J. Otera, M. Miura, *Tetrahedron Lett.* 2009, *50*, 3273; f) C. Verrier, C. Hoarau, F. Marsais, *Org. Biomol. Chem.* 2009, *7*, 647.
- [10] For recent examples of direct arylations of isoxazoles: Y. Fall, C. Reynaud, H. Doucet, M. Santelli, *Eur. J. Org. Chem.* 2009, 4041.
- [11] a) P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, **1998**, p. 30; b) T. Welton, Chem. Rev. **1999**, 99, 2071; c) P. T. Anastas, M. M. Kirchhoff, Acc. Chem. Res. **2002**, 35, 686.
- [12] C. Fischmeister, H. Doucet, Green Chem. 2011, 13, 741.
- [13] a) G. L. Turner, J. A. Morris, M. F. Greaney, Angew. Chem. 2007, 119, 8142; Angew. Chem. Int. Ed. 2007, 46, 7996; b) S. A. Ohnmacht, P. Mamone, A. J. Culshaw, M. F. Greaney, Chem. Commun. 2008, 1241; c) E. Ferrer Flegeau, M. E. Popkin, M. F. Greaney, Org. Lett. 2008, 10, 2717; d) S. A. Ohnmacht, A. J. Culshaw, M. F. Greaney, Org. Lett. 2010, 12, 224; e) L. Joucla, N. Batail, L. Djakovitch, Adv. Synth. Catal. 2010, 352, 2929.
- [14] a) O. René, K. Fagnou, Org. Lett. 2010, 12, 2116; b) L. Ackermann, R. Vicente, Org. Lett. 2009, 11, 4922.
- [15] a) J. Roger, C. Verrier, R. Le Goff, C. Hoarau, H. Doucet, *ChemSusChem* 2009, 2, 951; b) J. J. Dong, J. Roger, C. Verrier, T. Martin, R. Le Goff, C. Hoarau, H. Doucet, *Green Chem.* 2010, 12, 2053; c) S. Bensaid, N. Laidaoui, D. El Abed, S. Kacimi, H. Doucet, *Tetrahedron Lett.* 2011, 52, 1383; d) K. Beydoun, H. Doucet, *ChemSusChem* 2011, 4, 526.
- [16] a) P. Arockiam, V. Poirier, C. Fischmeister, C. Bruneau, P. H. Dixneuf, *Green Chem.* 2009, *11*, 1871; b) P. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, *Angew. Chem.* 2010, *122*, 6779; *Angew. Chem. Int. Ed.* 2010, *49*, 6629.
- [17] K. Tanaka, Solvent-free organic synthesis, Wiley-VCH, Weinheim 2003.
- [18] a) R. B. Bedford, C. J. Mitchell, R. L. Webster, *Chem. Commun.* 2010, *46*, 3095; b) R. B. Bedford, J. U. Engelhart, M. F. Haddow, C. J. Mitchell, R. L. Webster, *Dalton Trans.* 2010, *39*, 10464; c) L. Ackermann, N. Hofmann, R. Vincente, *Org. Lett.* 2011, *13*, 1875.
- [19] N. A. Strotman, H. R. Chobanian, Y. Guo, J. He, J. E. Wilson, Org. Lett. 2010, 12, 3578.
- [20] M. Feuerstein, H. Doucet, M. Santelli, Synlett 2001, 1980.
- [21] T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365.
- [22] B. Join, T. Yamamoto, K. Itami, Angew. Chem. 2009, 121, 3698; Angew. Chem. Int. Ed. 2009, 48, 3644.

www.chemsuschem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [23] N. V. Stulin, A. E. Lipkin, D. A. Kulikova, E. A. Rudzit, *Khim. Farm. Zh.* 1975, 9, 20.
- [24] W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2010, 75, 5109.
- [25] I. Kondolff, H. Doucet, M. Santelli, J. Mol. Catal. A 2007, 269, 110.
- [26] D. T. Gryko, O. Vakuliuk, D. Gryko, B. Koszarna, J. Org. Chem. 2009, 74, 9517.

[27] F. Sieber, P. Wentworth Jr., K. D. Janda, J. Comb. Chem. 1999, 1, 540.

Received: November 28, 2011 Revised: January 5, 2012 Published online on

FULL PAPERS

S. Bensaid, H. Doucet*

Solvent-Free Palladium-Catalyzed Direct Arylation of Heteroaromatics with Aryl Bromides

Dry, with some palladium overcast: Several palladium-catalyzed direct arylations of heteroaromatics, performed without solvent, proceeded nicely (see scheme). The yield in coupling products strongly depended on the nature of heteroaromatics and aryl bromide substituents.