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ENVIRONMENTALLY FRIENDLY AND HIGHLY
EFFICIENT Co(OAc)2-CATALYZED AEROBIC
OXIDATION TO ACCESS 2,6-DI-ELECTRON-DONATING
GROUP SUBSTITUTED 4-HYDROXYBENZALDEHYDES

Jian-An Jiang, Jia-Lei Du, Zhong-Nan Zhang, Jiao-Jiao Zhai,
and Ya-Fei Ji
School of Pharmacy, East China University of Science and Technology,
Shanghai, China

GRAPHICAL ABSTRACT

Abstract A highly efficient and green aerobic oxidation has been developed for selectively

preparing a series of valuable 2,6-dialkyl-, dialkoxyl-, and alkoxylalkyl-substituted

4-hydroxybenzaldehydes from corresponding 4-cresols in good to excellent yields, using a

catalytic system of Co(OAc)2 � 4H2O (1.0mol%)–NaOH (1.0 equiv)–O2 (1.0 atm) in

aqueous ethylene glycol (EG/H2O¼ 20/1, v/v) at 50 �C. Furthermore, a plausible

mechanism was proposed for the direct oxyfunctionalization of the aromatic methyl group

into the aldehyde group.

Keywords Aerobic oxidation; Co(OAc)2; ethylene glycol; 4-hydroxybenzaldehydes;

oxyfunctionalization

INTRODUCTION

Versatile 4-hydroxybenzaldehydes have been incredibly important organic
materials for pharmaceutical, perfume, dye, and agrochemical industries, as well as
for fundamental research.[1] For example, 3,5-dimethyl-4-hydroxybenzaldehyde is a
significant intermediate for the synthesis of potential cancer chemopreventive
agents,[2] nonnucleoside reverse transcriptase inhibitors,[3] and other bioactive com-
pounds.[4] More notably, commercially famous syringaldehyde (3,5-dimethoxy-4-
hydroxybenzaldehyde), widely used for the synthesis of the classical antibacterial
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agent Trimethoprim,[5] the antiepileptic drug N-isopropyl-3,4,5-trimethoxycinna-
mide,[6] and many bioactive molecules,[7] was produced on a scale of thousands of
tons annually to meet worldwide demands.[8]

Although some strategies, including Reimer–Tiemann reaction,[9] glyoxylic
acid method,[10] stoichiometric oxidation by oxidants[11] and electric=electrocatalytic
oxidation,[12] have been massively employed for preparing valuable 4-hydroxyben-
zaldehydes, tedious separation and serious pollution did hinder their widespread
application. In this respect, the straightforward catalytic oxidation of the seemingly
inert methyl group of 4-cresols into the fascinating aldehyde group becomes the most
appealing synthetic approach.[13,14] In past decades, notable achievements in
transition-metal-catalyzed oxidation of 2,4,6-trimethylphenol have granted this
direct transformation the limelight.[13] As noted, most of the developed catalyst
systems for this aerobic oxidation were based on coordination complexes of
transition metals, such as cobalt(II)–Schiff base complex,[13a] copper(II)–amine
complex,[13b–d] and copper(II)–neocuproine sodium methoxide complex.[13g,h] While
effective, needs of ligand=additive and greater oxygen pressure have brought
noticeable disadvantages and limitations in view of cost, waste, and safety issues.
However, more desired ligand-free catalytic systems have long remained out of reach
for the oxidation of 2,4,6-trimethylphenol and its analogs. It was only in 2004 that Li
and coworkers reported the first efficient ligand-free, iron-based catalyst, tackling
this interesting task with pressured molecular oxygen.[13e,f] Another ligand-free
stoichiometric copper-mediated oxidation by hydrogen peroxide was reported in
2008.[13i] Not surprisingly, the development of more green catalytic oxidation
has proven to be imperative for sustainable production of the significant
4-hydroxybenzaldehydes.

Herein, we report a highly efficient Co(OAc)2 � 4H2O (1.0mol%)–NaOH (1.0
equiv)–O2 (1.0 atm) catalytic system that effects aerobic oxidation of 2,6-di-electron-
donating group substituted 4-cresols in aqueous ethylene glycol (EG, EG=H2O¼ 20=
1, v=v, Scheme 1). The reactions proceeded in good yields at atmospheric pressure
without any ligand=additive and achieved highly chemoselective and regioselective
C(sp3)-H oxyfunctionalization, giving valuable 4-hydroxybenzaldehydes without
overoxidation to carboxylic acids[14c–e] or quinines.[15] Beyond doubt, it is one of
the most important goals in oxidation chemistry to utilize molecular oxygen in an
atom-economic and environmentally friendly transformation with water as the only
by-product.[16] In addition, general high-boiling-point nonflammable EG can reliably
avoid safety issue associated with low-boiling-point organic solvents.[17]

Scheme 1. Co(OAc)2-catalyzed selectively aerobic oxidation of 2,6-disubstituted 4-cresols into valuable

4-hydroxybenzaldehydes.

Co(OAc)2-CATALYZED AEROBIC OXIDATION 1431

D
ow

nl
oa

de
d 

by
 [

A
na

do
lu

 U
ni

ve
rs

ity
] 

at
 0

2:
16

 1
3 

M
ay

 2
01

4 



RESULTS AND DISCUSSION

To identify an efficient catalyst system that meets the criteria of green chemistry,
we initially investigated various easily available and less toxic cobalt sources with
sodium hydroxide (1.0 equiv) and molecular oxygen (1.0 atm). At first, the influence
of different cobalt catalysts on the model oxidation of 2,4,6-trimethylphenol (1a) was
evaluated in methanol at a mild reaction temperature of 50 �C. We discovered that
halogenated cobalt salts CoCl2, CoBr2, and CoF2 showed some activity toward the
oxidation, giving desired product 3,5-dimethyl-4-hydroxybenzaldehyde (2a) in poor
yields (Table 1, entries 1–3). Then, the slightly improved result was observed by

Table 1. Optimization of the reaction conditions for the aerobic oxidation of 1a into 2aa

Entry Co source (n1mol%) NaOH (n2equiv) Solvent Yield (%)b

1 CoCl2(5.0) 1.0 MeOH 26

2 CoBr2(5.0) 1.0 MeOH 31

3 CoF2(5.0) 1.0 MeOH 24

4 Cobalt(II)acetylacetonate (5.0) 1.0 MeOH 45

5 Co(OAc)2 � 4H2O (5.0) 1.0 MeOH 71

6 Co3O4(5.0) 1.0 MeOH Trace

7 nano-Co3O4(5.0) 1.0 MeOH Trace

8 CoTMPP (5.0) 1.0 MeOH 13

9c Co(OAc)2 � 4H2O (5.0) 1.0 MeOH 54

10 Co(OAc)2 � 4H2O (5.0) 1.0 EtOH 69

11 Co(OAc)2 � 4H2O (5.0) 1.0 n-PrOH 65

12 Co(OAc)2 � 4H2O (5.0) 1.0 i-PrOH 63

13 Co(OAc)2 � 4H2O (5.0) 1.0 EG 85

14 Co(OAc)2 � 4H2O (5.0) 1.0 THF 0

15 Co(OAc)2 � 4H2O (5.0) 1.0 CH3CN 0

16 Co(OAc)2 � 4H2O (5.0) 1.0 CH2Cl2 0

17 Co(OAc)2 � 4H2O (1.0) 1.0 EG 85

18d Co(OAc)2 � 4H2O (0.5) 1.0 EG 74

19 Co(OAc)2 � 4H2O (1.0) 0.8 EG 68

20 Co(OAc)2 � 4H2O (1.0) 0.5 EG 45

21 Co(OAc)2 � 4H2O (1.0) 1.5 EG 85

22e Co(OAc)2 � 4H2O (1.0) 1.0 EG=H2O 86

23f Co(OAc)2 � 4H2O (1.0) 1.0 EG/H2O 88

24g Co(OAc)2 � 4H2O (1.0) 1.0 EG=H2O 55

aReaction conditions: substrate 1a (5.0mmol), cobalt source (n1 mol%), sodium hydroxide (n2 equiv),

and solvent (5.0mL), O2 (1.0 atm), 50 �C for 18 h.
bIsolated yield.
cReaction performed at 40 �C.
dReaction time of 24 h.
eReaction time of 16 h, EG=H2O¼ 5.0mL=0.1mL.
fReaction time of 12 h, EG=H2O¼ 5.0mL=0.25mL.
gReaction time of 6 h, EG=H2O¼ 5.0mL=0.75mL.
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applying cobalt(II) acetylacetonate (entry 4). To our delight, the oxidation could
give 2a with a promising yield of 71% in the presence of Co(OAc)2 � 4H2O (entry
5). However, further screening showed that Co3O4, nano-Co3O4, and CoTMPP
[5,10,15,20-tetra(4-methoxyphenyl)-21H,23H-porphine cobalt(II)] almost were inac-
tive for the transformation (entries 6–8). While lowering the reaction temperature
to 40 �C, the reaction provided 2a in unsatisfactory 54% yield (entry 9). Hence, with
effective Co(OAc)2 � 4H2O, other reaction parameters would be further optimized
at 50 �C.

While examining solvents, alcohols were found to be generally effective (entries
10–13), and more polar EG is the best choice to provide the dramatically increased
yield of 85% (entry 13). On the other hand, the reactions failed to oxidize 1a into
2a in aprotic solvents, clearly proving the indispensable mediation of alcohols to
the oxidation (entries 14–16). More pleasingly, variation of catalyst loading indicated
that 1.0mol% Co(OAc)2 � 4H2O also efficiently catalyzed the oxidation (entry 17),
whereas applying 0.5mol% Co(OAc)2 � 4H2O brought about 2a in visibly lowered
yield, albeit prolonging reaction time to 24 h (entry 18). As surveyed, a decreased
amount of sodium hydroxide led to sharply lowered yields (entries 19 and 20), but
more sodium hydroxide did not give better outcome (entry 21). Evidently, 1.0 equiv
sodium hydroxide was a requisite to efficiently achieving the oxidation with 1.0mol%
Co(OAc)2 � 4H2O.

Given that water is the only by-product in the oxidation, the influence of water
content in EGwas also investigated. The results revealed that a small amount of water
could facilitate the oxidation, giving greater yields along with reduced reaction time
(entries 22 and 23), and the best yield of 88% was achieved for 2a in aqueous EG
(EG=H2O¼ 5.0mL=0.25mL, entry 23). However, more water badly impaired the
selectivity of this oxidation to result in sharply reduced yield of 55%, though 1a could
be more quickly consumed within 6 h (entry 24). Conclusively, a highly efficient green
catalytic system of Co(OAc)2 � 4H2O (1.0mol%)–NaOH (1.0 equiv)–O2(1.0 atm) in
aqueous EG (EG=H2O¼ 20=1, v=v) at 50 �C has been established as the optimal
reaction conditions to fulfil the selectively aerobic oxidation.

With the optimized conditions in hand, a range of 2,6-dialkyl-, dialkoxyl-, and
alkoxylalkyl-substituted 4-cresols 1a–n were used to explore the generality of the
oxidation. As shown in Table 2, 2,6-dialkyl-4-cresols 1a–c could be oxidized into
the corresponding aldehydes 2a–c in good yields of 81–88% (Table 2, entries 1–3).
Likewise, for 2,6-dialkoxyl-4-cresols 1d–j, these reactions consistently provided the
desired products 2d–j in good to excellent yields of 80%–91% (entries 4–10). As antici-
pated, the oxidation also enabled 2-alkoxyl-6-alkyl-4-cresols 1k–n to smoothly trans-
form into the aldehydes 2k–n in good yields of 80–83% (entries 11–14). All results
undoubtedly demonstrated that this simple Co(OAc)2-catalyzed oxidation could be
successfully applied in the efficient conversion of a range of 2,6-di-electron-donating
group substituted 4-cresols into the corresponding 4-hydroxybenzaldehydes. It was
noteworthy that there was no any formation of salicylaldehydes (with regard to
substrates 1a, 1c, and 1k–n), benzoic acids, or quinones in our reaction system, which
exhibited excellent chemoselectivity and regioselectivity.

Further investigations were undertaken to probe the mechanism of the
Co(OAc)2-catalyzed oxidation (Scheme 2). The model reactions showed that the feed-
stock 1 gradually generated the desired 2 via the corresponding ethereal intermediates

Co(OAc)2-CATALYZED AEROBIC OXIDATION 1433
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Table 2. Generality of 1 for the oxidationa

Entry Substrate Product Yield (%)b

1 88

2 81

3 83

4 91

5 83

6 82

7 91

8 81

9 84

10 81

11 83

12 81

(Continued )
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3 (Scheme 2a). Indeed, the isolated ethers 3 efficiently underwent the second oxidation
into 2 (Scheme 2b). Unlike in previous reports,[13g–i] the acetal intermediates were not
detected over our whole scenario. Additionally, under argon atmosphere, the oxi-
dation only gave a trace of the desired products even with 10mol% Co(OAc)2 � 4H2O
(Scheme 2c), explicitly instructing molecular oxygen as a terminal oxidant (the
experiments see Supplementary Material, available online).

On the basis of these findings, a plausible oxidation mechanism is suggested in
Scheme 3. The reaction is initiated by single-electron transfer from phenolic anion
of 1 to direct oxidant Co(III) species derived from Co(OAc)2 to generate phenoxy
radicals A. The radicals A are rapidly disproportionated to original 1 and transiently

Scheme 2. Mechanistic investigations.

Table 2. Continued

Entry Substrate Product Yield (%)b

13 81

14 80

aReaction conditions: substrate 1 (5.0mmol), Co(OAc)2 � 4H2O (0.05mmol, 12mg),

sodium hydroxide (5.0mmol), EG=H2O (5.0mL=0.25mL), O2 (1.0 atm), 50 �C for 12 h.
bIsolated yield.
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highly reactive p-benzoquinone methides B,[13g–i,14a,7a,18] to which the nucleophilic
additions of EG inevitably lead to ethereal intermediates 3. In the same fashion,
the intermediate anions are converted into transitory B0, which give the desired 2

upon fast hydrolysis driven by spontaneous aromatization. In the course of the reac-
tion, molecular oxygen can powerfully activate Co(OAc)2 to regenerate the direct
oxidant Co(III) species.

CONCLUSIONS

In summary, we have developed a highly efficient aerobic oxidation of 2,6-
dialkyl-, dialkoxyl-, and alkoxylalkyl-substituted 4-cresols into commercially and
academically valuable 4-hydroxybenzaldehydes, using simple Co(OAc)2 � 4H2O
(1.0mol%)–NaOH (1.0 equiv)–O2(1.0 atm) catalytic system in aqueous EG (EG=
H2O¼ 20=1, v=v) at 50 �C. This straightforward oxidation protocol has excellent
chemoselectivity and regioselectivity but also features green chemistry: atom econ-
omy, step economy, inexpensive oxidant, only 1.0mol% catalyst Co(OAc)2 � 4H2O,
and safe solvent ethylene glycol.

EXPERIMENTAL

All reactions were carried out in oven-dried glassware and monitored by thin
layer chromatography (TLC, precoated silica-gel plates containing HF254). Reaction
products were purified by silica-gel chromatography (200–300 mesh). Melting points
were determined using open capillaries and are uncorrected. NMR spectra were
determined on Bruker AV400 in CDCl3 with Tetramethylsilane (TMS) as internal
standard for 1H NMR (400MHz) and 13C NMR (100MHz), respectively. High-
resolution mass spectrometry (HRMS) was carried out on a QSTAR Pulsar I LC=
TOF MS mass spectrometer.

Scheme 3. Plausible mechanism.
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Typical Procedure for the Co(OAc)2-Catalyzed Aerobic Oxidation of 1

A mixture of substrate 1 (5.0mmol), Co(OAc)2 � 4H2O (0.05mmol, 12mg), and
NaOH (5.0mmol, 0.2 g) in EG=H2O (5.0mL = 0.25mL) was stirred with O2 (1.0 atm)
and bubbled at 50 �C for 12 h. Hydrochloric acid (10.0mL, 2%) and chloroform
(10.0mL) were successively added to the reaction mixture. The chloroform phase
was separated, and the aqueous phase was further extracted with chloroform
(10.0mL� 2). The combined organic layer was dried over anhydrous sodium sulfate
and concentrated to give a residue, which was purified by column chromatography
on silica gel (eluents: petroleum ether=ethyl acetate, 5=1) to provide the desired
products 2.

3,5-Dimethyl-4-hydroxybenzaldehyde (2a)[11b,14a]

White solid, 0.66 g (88% yield), mp 112–114 �C (lit.[11b] mp 113–114 �C); 1H
NMR (400MHz, CDCl3, ppm): d 9.81 (br s, 1H), 7.54 (s, 2H), 5.46 (br s, 1H),
2.31 (s, 6H); 13C NMR (100MHz, CDCl3, ppm): d 191.5, 158.1 (2C), 131.0, 129.3,
123.7 (2C), 15.8 (2C). HRMS (ESI): m=z [MþHþ] calcd. for C9H11O2 151.0759;
found 151.0750.
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