Chiral Guanidinium Salt Catalyzed Enantioselective Phospha-Mannich Reactions**

Xiao Fu, Wei-Tian Loh, Yan Zhang, Tao Chen, Ting Ma, Hongjun Liu, Jianmin Wang, and Choon-Hong Tan*

The addition of phosphites [(RO)₂P(O)H] to imines (Pudovik reaction) is a widely utilized method for the formation of P-C bonds and the preparation of chiral a-amino phosphonic acids.^[1,2] Successful enantioselective approaches employed catalysts such as metal complexes,^[3] quinine,^[4] thiourea,^[5] and chiral phosphoric acid.^[6] a-Amino phosphonic acids and their phosphonate esters are excellent inhibitors of proteases and antibodies.^[7] The biological activities of their phosphinic acids^[8] and phosphine oxides analogues have yet to be thoroughly studied and may lead to important discoveries. The lack of such studies may be a result of the absence of reports on the use of other phosphorous nucleophiles such as secondary phosphine oxides [R₂P(O)H] and H-phosphinates [(RO)P(O)HR] for the addition to imines. The only previous report on the preparation of P-chiral phosphinate esters involved a resolution using phosphotriesterase.^[9] Zhang and Yuan reported the synthesis of optically pure α -amino-Hphosphinic acids employing chiral ketimines.^[10]

Electrophilic activation by small-molecule hydrogenbond donors has provided an important paradigm for the design of enantioselective catalysts.^[11] Salts of organic bases^[12] were shown to be successful in the activation of imines and other anionic intermediates through hydrogen bonding. The guanidinium salts^[13] have also demonstrated this potential and were used elegantly by Uyeda and Jacobsen to catalyze a Claisen rearrangement.^[14]

Guanidines and guanidiniums have been shown to be powerful catalysts for enantioselective reactions.^[15] Our goal was to prepare simple, novel guanidine or guanidinium catalysts. Guanidinium salt 1.2HBF₄ was prepared from diamine 2 and pyrrolidinium salt 3 in one step [Eq. (1)]. The free base guanidine 1 was obtained after basifying the guanidinium salt 1.2 HBF₄ with a NaOH solution.

In preliminary studies, it was found that both the guanidinium salt 1.2 HBF₄ and guanidine 1 can catalyze the phospha-Mannich reaction between the secondary phosphine oxide 4a and imines (Table 1, entries 1 and 5). Catalysts

```
[*] X. Fu, W.-T. Loh, Y. Zhang, Dr. T. Chen, T. Ma, H. Liu, J. Wang,
    Prof. C.-H. Tan
    Department of Chemistry, National University of Singapore (NUS)
    3 Science Drive 3, Singapore (Singapore)
    Fax: (+65) 6779-1691
    E-mail: chmtanch@nus.edu.sg
    Homepage: http://staff.science.nus.edu.sg/~chmtanch
[**] This work was supported by ARF grants (R-143-000-337-112 and R-
    143-000-342-112) and a scholarship (to X.F.) from the National
    University of Singapore.
```

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200903971.

Table 1: Guanidine- and guanidinium-catalyzed phospha-Mannich reactions.

	R NTs O≈p-R + ∥ H 4a Ph	5 mol% catalyst THF	Osp-R Ph NHTs	
	R = 1-naphthyl		5a	
Entry	Catalyst	<i>Т</i> [°С]	<i>t</i> [h]	ee [%] ^[a]
1	1 (base)	0	1.5	33
2	1.0.5 HBF₄	0	1.5	63
3	1.HBF₄	0	2.5	80
4	1 .1.5 HBF₄	0	2.5	47
5	1·2 HBF₄	0	4	5
6	1.HPF ₆	0	2.5	80
7	1.HBF₄	-50	14	87
8 ^[b]	1.HBAr ^F 4 ^[c]	-50	14	92

[a] Determined by HPLC analysis on a chiral stationary phase. [b] 97% yield. [c] HBAr^F₄ = HB(3,5-(CF₃)₂C₆H₃)₄. Ts = 4-toluenesulfonyl.

 $1 \cdot x \text{ HBF}_4$ (x = 0.5, 1, 1.5) were prepared by mixing different ratios of the free base 1 and 1.2HBF_4 (ratio = 1:3, 1:1, 3:1, respectively). However, the highest ee value was obtained with catalyst 1·HBF₄, which carried a single proton (Table 1, entry 3). Catalysts with different counterions, such as $1 \cdot HPF_6$ and 1·HBAr^F₄,^[16] were also tested for this reaction (Table 1, entries 6 and 8). The optimum conditions were found using **1**·HBAr^F₄ at a reaction temperature of -50 °C (Table 1, entry 8); the N-protected α -amino phosphine oxide **5a** was obtained in 92% ee.

Under the optimum conditions, the phospha-Mannich reaction was investigated with different imines (Table 2). Both electron-donating (Table 2, entry 1) and electron-withdrawing imines (Table 2, entry 2) provided adducts with high ee values. The reaction time for complete conversion of the bulky 2-naphthyl imine was 14 hours (Table 2, entry 3). A heterocyclic imine (Table 2, entry 4) resulted in a product with a high ee value. Imines derived from aliphatic aldehydes, such as cyclohexanecarbaldehyde, gave adduct with 70% ee

Communications

Table 2: Guanidinium-catalyzed $(1 \cdot \text{HBAr}^{F}_{4})$ phospha-Mannich reaction between phosphine oxides 4a-d and various imines.

Entry	4	R	x [mol %]	5	t [h]	Yield [%] ^[a]	ее [%] ^[b]
1	4a	4-MeC ₆ H₄	5	5 b ^[c]	14	98	92
2	4a	$4-FC_6H_4$	5	5 c	14	97	90
3	4a	2-naphthyl	5	5 d	14	98	92
4	4a	2-furyl	5	5 e	14	92	87
5 ^[d]	4a	Су	10	5 f	16	95	70
6	4a	tBu	10	5 g	40	89	91
7	4a	<i>trans</i> -PhCH=CH	5	5 h	36	89	90
8 ^[e]	4b	Ph	20	5 i ^[f]	96	75	56
9	4c	Ph	20	5 j ^[f]	14	93	82
10	4d	Ph	20	5 k ^[g]	14	90	75;85

[a] Yield of isolated product. [b] Determined by HPLC analysis on a chiral stationary phase. [c] The absolute configuration of **5b** was assigned by using X-ray crystallographic analysis (see the Supporting Information for details). [d] Used tBuOMe as solvent. [e] Used CH_2Cl_2/Et_2O (1:1) as solvent. [f] Protecting group on the imine was 4-phenylbenzenesulfonyl. [g] Protecting group on the imine was benzensulfonyl. Cy = cyclohexyl.

(Table 2, entry 5), whereas an imine derived from pivalaldehyde afforded the adduct with 91 % *ee* (Table 2, entry 6). An imine derived from *trans*-cinnamyl aldehyde provided adduct **5h** with high a *ee* value (Table 2, entry 7). Diaryl phosphine oxides **4b** and **4c** carrying phenyl and *ortho*-trifluoromethylphenyl groups respectively, provided adducts with moderate to good *ee* values (Table 2, entries 8 and 9). The racemic phosphine oxide **4d** added to phenyl imine to generate two diastereisomers with a diastereomeric ratio (d.r.) of 1:1 and high *ee* values (Table 2, entry 10).

We also found that the addition of H-phosphinates [(RO)P(O)HR], such as benzyl benzylphosphinate **6a**, to imines can be catalyzed by $1 \cdot HBF_4$ (Table 3); however, the reaction was slow and a low ee value was observed. Various additives were used and inorganic bases such as K₂CO₃ increased the reaction rate without decreasing the ee value (Table 3, entry 1). Guanidinium salts having different counterions were investigated (Table 3, entries 2-5), and the catalyst **1** HBAr^{F_4} gave the most promising result when the reaction temperature was lowered to -20 °C (Table 3, entry 6). After the reaction was complete, the catalyst was recovered and NMR experiments revealed that the guanidinium catalyst 1·HAr^F₄ was unchanged; the catalyst was not converted into guanidine 1 during the course of the reaction. When CH₂Cl₂ was used as the solvent, a better ee value was observed but the reaction rate was much slower (Table 3, entry 7). The racemic 6a was used as the limiting reagent (Table 3, entries 1-7) in these experiments, resulting in a diastereomeric ratio (d.r.) of 1:1. When the amount of racemic donor 6a was increased from 2:1 (Table 3, entry 8) to 3:1 (Table 3, entry 9), the ee value of the major diastereoisomer $(syn)^{[17]}$ was increased to 82%. A solvent mixture (CH₂Cl₂/

Table 3: Guanidinium-catalyzed phospha-Mannich reaction of benzyl benzylphosphinate **6a**.

Bn O≈P∽0 H	DBn ₊ NTs 6a Ph	5 mol% cat toluene 10 equiv K	alyst O≈	Bn P-OBn O + NHTs Ph yn- 7a a	OBn ⊧ṕ - Bn ∕ NHTs anti- 7a
Entry ^[a]	Catalyst	<i>Т</i> [°С]	<i>t</i> [h] ^[b]	syn- 7 a ee [%] ^[c]	anti- 7 a ee [%] ^[c]
1	1.HBF₄	RT	<1	20	23
2	1.HPF₀	RT	<1	20	20
3	1.HCl	RT	<1	10	5
4	1.HClO₄	RT	<1	3	4
5	1.HBAr ^F ₄	RT	<1	30	50
6	1.HBAr ^F ₄	-20	48	42	70
7 ^[d]	1.HBAr ^F ₄	-20	60	65	50
8 ^[e]	1.HBAr ^F 4	-20	20	72	37
9 ^[f]	1.HBAr ^F ₄	-20	24	82	25

[a] H-phosphinate/imine 1:1.2. [b] Determined by TLC analysis, 100% conversion. [c] Determined by HPLC analysis on a chiral stationary phase. [d] Used CH_2Cl_2 as solvent; d.r. 1:1. [e] H-phosphinate/imine 2:1; d.r. 3:1. [f] H-phosphinate/imine 3:1, CH_2Cl_2 /toluene 1:1 as solvent; d.r. = 4:1. Bn = benzyl.

toluene 1:1) was used to make a balance between the reaction rate and the *ee* value (Table 3, entry 9). The absolute and relative stereochemistries were determined using X-ray crystallographic analysis of *syn*-**7g**.

The phospha-Mannich reaction of benzyl benzylphosphinate **6a** can be additionally optimized by decreasing the reaction temperature to -40 °C (Table 4, entry 1). Good yields and high enantioselectivities of the major diastereoisomer were observed. Several other aromatic *N*-benzenesulfonyl imines (Table 4, entries 2–4) and *N*-tosylated imines (Table 4, entries 5–7) were investigated and they provided the major diastereoisomers (d.r. from 4:1 to 7:1) **7a–7g** with high *ee* values. Different alkyl benzylphosphinates **6b–6e** were prepared to investigate the scope of the reaction (Table 5). Adducts **7h,i** were obtained with high *ee* values (Table 5, entries 1–2). H-phosphinate **6d** bearing an electron-donating

Table 4: Guanidinium-catalyzed phospha-Mannich reaction of benzyl benzylphosphinate **6a** and various imines.

	OBn	10 ITe	mol% 1 l	HBAr ^F ₄ _ O≈	_Bn ⊿⊸OBn	
	O≍p-Bn + H Ar 6a	$\begin{array}{c c} H_2 C H_2 C I_2 \ / \ toluene \ 1:1 \\ \hline 10 \ equiv \ K_2 C O_3, \ -40 \ ^{\circ}C \ Sy \end{array}$			NHTs n- 7a-g	
Entry ^[a]	Ar	syn- 7	<i>t</i> [h]	Yield [%] ^[b]	d.r. ^[c]	syn- 7 ee [%] ^[d]
1	Ph	7 a	39	83	6:1	94
2 ^[e]	$4-FC_6H_4$	7 b	35	90	6:1	90
3 ^[e]	4-CIC ₆ H₄	7 c	108	90	4:1	92
4 ^[e]	4-MeC ₆ H ₄	7 d	100	85	4:1	90
5 ^[f]	2-naphthyl	7e	39	93	6:1	91
6 ^[f]	2-furyl	7 f	40	71	7:1	94
7	trans-PhCH=CH	7g	65	92	3:1	90

[a] H-phosphinate/imine 3:1. [b] Yield of isolated product of two isomers. [c] Approximated by ¹H NMR analysis and confirmed by HPLC analysis on a chiral stationary phase. [d] Determined by HPLC analysis. [e] Protecting group on the imine was benzenesulfonyl. [f] Used 15 mol% catalyst.

Table 5: Guanidinium-catalyzed phospha-Mannich reaction with alkyl benzylphosphinates **6b–6e**.

,	OBn O≈p-R + U H Ph 10 6b-e	10 mol% :H ₂ Cl ₂ / to equiv K ₂ 0	1 HBAr ^F luene 1 CO ₃ , -40	4 O. :1 ⊡°C Phi s	R →OBn NHTs syn-7h-k	5
Entry	6 (R)	syn- 7	<i>t</i> [h]	Yield [%] ^[a]	d.r. ^[b]	syn- 7 ee [%] ^[c]
1	6b (2-naphthyl-CH ₂)	7 h	38	92	6.5:1	94
2	6c (4-CF ₃ C ₆ H ₄ CH ₂)	7 i	36	92	16:1	94
3	6d (4-MeC ₆ H ₄ CH ₂)	7 j	43	83	5:1	88
4 ^{<i>d</i>}	6e (trans-PhCH=CHCH ₂)	7 k	168	82	7:1	82

[a] Yield of the two isolated isomers. [b] Determined by ¹H NMR and HPLC analyses. [c] Determined by HPLC analysis on a chiral stationary phase. [d] 20 mol% catalyst, -60 °C, the protecting group on the imine was benzenesulfonyl.

group and **6e** bearing an alkenyl chain afforded modest *ee* values (Table 5, entries 3–4). The best diastereoselectivity (16:1) was obtained when highly electron-withdrawing H-phosphinate **6c** was used (Table 5, entry 3).

Chiral phosphine oxides and phosphines are typically prepared using enantiopure starting materials, chiral auxiliaries, or by recrystallization of the racemic phosphines.^[18] This methodology can provide an alternative strategy to obtaining enantiomerically pure H-phosphinates through kinetic resolution [Eq. (2)]. The phospha-Mannich reaction was re-optimized and was conducted with *rac*-**6c**. The reaction was stopped at 63 % conversion and the unreacted H-phosphinate (*S*)-**6c** was found to have an *ee* of 87% and was recovered in 85% yield. When the enantiomerically enriched (*S*)-**6c** was resubjected to the reaction conditions in the absence of imine for 24 hours, no racemization was observed. Since we have determined the absolute and relative configuration of (*S*)-**6c**.^[19]

In summary, we have prepared a novel guanidinium catalyst, obtained in a single step from a commercially available diamine. With this catalyst, an asymmetric phospha-Mannich reaction was developed using secondary phosphine oxides and H-phosphinates as the P nucleophile. By using this methodology, a series of enantiomerically enriched α -amino phosphine oxides, α -amino phosphinates, and H-phosphinates containing a P-chiral center were prepared.

Experimental Section

Representative procedure for guanidinium salt $1 \cdot \text{HAr}^{F_4}$ catalyzed enantioselective reaction between H-phosphinate **6a** and phenyl *N*-tosylated imine (Table 4, entry 1): Benzyl benzylphosphinate **6a**

(59.1 mg, 0.24 mmol, 3 equiv), K_2CO_3 (108.8 mg, 0.8 mmol, 10 equiv), toluene (0.2 mL), and CH₂Cl₂ (0.2 mL) were added sequentially to a 5 mL RBF containing catalyst 1·HAr^F₄ (11.0 mg, 0.008 mmol, 10 mol%). The reaction mixture was then cooled to -40°C and stirred for 0.5 h before the *N*-tosylated imine (19.7 mg, 0.08 mmol, 1 equiv) was added. When the reaction was complete, the reaction mixture was purified by flash chromatography (gradient elution with *n*-hexane/ ethyl acetate 10:1 to 1:1). Product **7a** (33.5 mg, 83%) was obtained with an *ee* value of 94% (*syn*-**7a**). The diastereoisomers were separated with another flash chromatography (CH₂Cl₂/ethyl acetate (10:1)).

Received: July 20, 2009 Published online: September 8, 2009

Keywords: guanidinium · Mannich reactions · organocatalysis · phosphinates · synthetic methods

- P. Merino, E. Marqués-López, R. P. Herrera, Adv. Synth. Catal. 2008, 350, 1195–1208.
- [2] H. Gröger, B. Hammer, Chem. Eur. J. 2000, 6, 943-948.
- [3] a) H. Sasai, S. Arai, Y. Tahara, M. Shibasaki, J. Org. Chem. 1995, 60, 6656–6657; b) H. Gröger, Y. Saida, S. Arai, J. Martens, H. Sasai, M. Shibasaki, *Tetrahedron Lett.* 1996, 37, 9291–9292; c) H. Gröger, Y. Saida, H. Sasai, K. Yamaguchi, J. Martens, M. Shibasaki, J. Am. Chem. Soc. 1998, 120, 3089–3103; d) J. P. Abell, H. Yamamoto, J. Am. Chem. Soc. 2008, 130, 10521–10523.
- [4] D. Pettersen, M. Marcolini, L. Bernardi, F. Fini, R. P. Herrera, V. Sgarzani, A. Ricci, J. Org. Chem. 2006, 71, 6269–6272.
- [5] G. D. Joly, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 4102– 4103.
- [6] T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett. 2005, 7, 2583–2585.
- [7] J. Hiratake, J. Oda, Biosci. Biotechnol. Biochem. 1997, 61, 211– 218.
- [8] W. H. Parsons, A. A. Patchett, H. G. Bull, W. R. Schoen, D. Taub, J. Davidson, P. L. Combs, J. P. Springer, H. Gadebusch, B. Weissberger, M. E. Valiant, T. N. Mellin, R. D. Busch, J. Med. Chem. 1988, 31, 1772–1778.
- [9] Y. Li, S. D. Aubert, E. G. Maes, F. M. Raushel, J. Am. Chem. Soc. 2004, 126, 8888–8889.
- [10] D. Zhang, C. Yuan, Chem. Eur. J. 2008, 14, 6049-6052.
- [11] a) M. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550–1573; Angew. Chem. Int. Ed. 2006, 45, 1520–1543; b) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743.
- [12] Selected examples: a) S. B. Tsogoeva, G. Dürner, M. Bolte, M. W. Göbel, *Eur. J. Org. Chem.* 2003, 1661–1664; b) B. M. Nugent, R. A. Yoder, J. N. Johnston, *J. Am. Chem. Soc.* 2004, *126*, 3418–3419; c) A. Singh, R. A. Yoder, B. Shen, J. N. Johnston, *J. Am. Chem. Soc.* 2007, *129*, 3466–3467; d) D. Akalay, G. Dürner, J. W. Bats, M. Botle, M. W. Göbel, *J. Org. Chem.* 2007, *72*, 5618–5624; e) N. Takenaka, R. S. Sarangthem, S. K. Seerla, *Org. Lett.* 2007, *9*, 2819–2822; f) A. Singh, J. N. Johnston, *J. Am. Chem. Soc.* 2008, *130*, 5866–5867; g) J. C. Wilt, M. Pink, J. N. Johnston, *Chem. Commun.* 2008, 4177–4179.
- [13] V. Alcázar, J. R. Morán, J. Mendoza, *Tetrahedron Lett.* 1995, 36, 3941–3944.
- [14] C. Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 9228– 9229.
- [15] For a review on chiral-guanidine-catalyzed enantioselective reactions: a) D. Leow, C.-H. Tan, *Chem. Asian J.* 2009, *4*, 488 507. For contribution from other research groups: b) E. J. Corey, M. J. Grogan, *Org. Lett.* 1999, *1*, 157–160; c) T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda, T. Isobe, *Chem. Commun.* 2001, 245–246; d) T. Kita, A. Georgieva, Y. Hashi-

Communications

moto, T. Nakata, K. Nagasawa, Angew. Chem. 2002, 114, 2956-2958; Angew. Chem. Int. Ed. 2002, 41, 2832-2834; e) T. Ishikawa, T. Isobe, Chem. Eur. J. 2002, 8, 552-557; f) M. T. Allingham, A. Howard-Jones, P.J. Murphy, D.A. Thomas, P. W. R. Caulkett, Tetrahedron Lett. 2003, 44, 8677-8680; g) M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454-1455; h) M. Terada, M. Nakano, H. Ube, J. Am. Chem. Soc. 2006, 128, 16044-16045; i) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 2005, 347, 1643-1648; j) M. Terada, T. Ikehara, H. Ube, J. Am. Chem. Soc. 2007, 129, 14112-14113; For contributions from our group, see: k) W. Ye, D. Leow, S. L. M. Goh, C.-T. Tan, C.-H. Chian, C.-H. Tan, Tetrahedron Lett. 2006, 47, 1007-1010; l) J. Shen, T. T. Nguyen, Y.-P. Goh, W. Ye, X. Fu, J. Xu, C.-H. Tan, J. Am. Chem. Soc. 2006, 128, 13692-13693; m) X. Fu, Z. Jiang, C.-H. Tan, Chem. Commun. 2007, 5058-5060; n) W. Ye, Z. Jiang, Y. Zhao, S. L. M. Goh, D. Leow, Y.-T. Soh, C.-H. Tan, Adv. Synth. Catal. 2007, 349, 2454-2458; o) D. Leow, S. Lin, S. K. Chittimalla, X. Fu, C.-H.

Tan, Angew. Chem. 2008, 120, 5723–5727; Angew. Chem. Int. Ed. 2008, 47, 5641–5645; p) Z. Jiang, W. Ye, Y. Yang, C.-H. Tan, Adv. Synth. Catal. 2008, 350, 2345–2351; q) Z. Jiang, Y. Yang, Y. Pan, Y. Zhao, H. Liu, C.-H. Tan, Chem. Eur. J. 2009, 15, 4925– 4930; r) Z. Jiang, Y. Pan, Y. Zhao, T. Ma, R. Lee, Y. Yang, K.-W. Huang, M. W. Wang, C.-H. Tan, Angew. Chem. 2009, 121, 3681– 3685; Angew. Chem. Int. Ed. 2009, 48, 3627–3631; s) H. Liu, D. Leow, K.-W. Huang, C.-H. Tan, J. Am. Chem. Soc. 2009, 131, 7212–7213.

- [16] H. Kobayashi, T. Sonoda, H. Iwamoto, Chem. Lett. 1981, 579– 580.
- [17] See the Supporting Information for the definition of *syn* and *anti* relative stereochemistry.
- [18] K. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375– 1411.
- [19] See the Supporting Information for details of the kinetic resolution.