

Metal-Free One-Pot Synthesis of 3-Phosphinoylbenzofurans via Phospha-Michael Addition/Cyclization of H-Phosphine Oxides and *in Situ* Generated *ortho*-Quinone Methides

Ji-Yuan Du,^{*,†®} Yan-Hua Ma,[†] Rui-Qing Yuan,[†] Nana Xin,^{†®} Shao-Zhen Nie,[†] Chun-Lin Ma,[†] Chen-Zhong Li,^{†,‡} and Chang-Qiu Zhao^{†®}

[†]College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China [‡]Florida International University, Biomedical Engineering Department EC2671, 10555 West Flagler Street, Miami, Florida 33174, United States

Supporting Information

ABSTRACT: A novel metal-free one-pot protocol for the effective and efficient synthesis of 3-phosphinoylbenzofurans via a phospha-Michael addition/cyclization of H-phosphine oxides and *in situ* generated *ortho*-quinone methides is described. Based on the expeditious construction of $C(sp^2)$ – P bonds, asymmetric synthesis of optically pure 3-phosphinoylbenzofurans containing chiral P-stereogenic center has also been probed by using chiral R_{p} -(-)-menthyl phenylphosphine oxide.

romatic organophosphorus compounds and their deriva-their biological properties and synthetic value.¹ For example, some structurally related organophosphorus compounds have been used as biologically active molecules in medicinal chemistry,^{1b,d} as phosphorus ligands in asymmetric catalysis,^{1a,f} and as buildings blocks in organic synthesis.^{1c} In recent decades, focusing on the synthesis of phosphorylated heterocycles through $C(sp^2)-P$ bond formation, several methodologies have been established on the basis of classical reactions of halophosphine electrophiles with active carbon nucleophiles such as organometallic reagents,² transition-metal-catalyzed cross-coupling reactions of phosphines with aryl (pseudo) halides,^{3,4} Friedel-Crafts reaction,⁵ and P-centered radicals addition to unsaturated systems.⁶ Despite significant progress in the construction of $C(sp^2)$ -P bonds, only a few approaches (Scheme 1) have been developed for the synthesis of 3phosphinoylbenzofurans.⁷ In approach (a), for example, Tsvetkov and Griffiths have developed the protocols for the synthesis of 3-phosphinoylbenzofurans using bisphosphine oxides and dialkyl benzoylphosphonates through Wittig-Horner and rearrangement reactions, respectively.^{7a,c} In 2012, Swamy and co-workers reported a three-step synthetic procedure using allenylphosphine oxides as key intermediates.^{7b,d} Among the above-mentioned approaches, notably, the C(sp²)-P bonds were constructed through traditional substitution reactions using water-sensitive P^{III} reagents. Recently, Liang and co-workers have reported a novel synthesis of 3-phosphinoylbenzofuran derivatives via a copper(II) catalyzed intermolecular cascade annulation reaction of nucleophilic diphenylphosphine oxide and propargylic alco-

Scheme 1. Previous Methods for $C(sp^2)-P$ Bond Construction and Our Design for the Synthesis of 3-Phosphinoylbenzofurans

hols.^{7e} However, the above-mentioned methodologies generally either require expensive metal catalysts or suffer from multistep preparation of the reaction precursors in some cases.

Received: December 12, 2017

Recently, metal-free $C(sp^2)-P$ bond construction reactions have attracted much attention as appealing alternatives to the metal-mediated and environmentally friendly processes.⁸ For example, Miura et al. developed a metal-free approach to phosphorylated heterocycles using Tf₂O through electrophilic phosphination/cyclization of alkynes.^{8h} Despite these elegant improvements, there is still high demand for novel methodologies to efficiently and effectively construct $C(sp^2)-P$ bonds for the synthesis of 3-phosphinoylbenzofuran compounds.

ortho-Quinone methides (o-QMs) are highly reactive as well as ephemeral intermediates which have been employed for decades in the synthesis of natural products and bioactive molecules.⁹ Due to their intrinsic electrophilic reactivity, o-QMs have been generally used in a series of 1,4-conjugate addition, [4 + n]-cycloaddition, intramolecular [5 + 2]-cycloaddition, and oxa- 6π -electrocyclization.¹⁰ Very recently, the Kang group developed a novel organocatalytic phosphonylation through 1,4-conjugate addition of in situ formed o-QMs with trialkylphosphites for the construction of diaryl phosphonates.¹¹ To our knowledge, however, there are few reports on the reaction of o-QMs as nucleophile acceptors with Hphosphine oxides. In light of the importance of 3-phosphinoylbenzofurans compounds and our interest in the development of transformations with o-QMs, herein we report an effective onepot metal-free method for $C(sp^2)$ –P bond formation through intermolecular phospha-Michael addition/intramolecular cyclization reaction (Scheme 1), wherein we envision that both nucleophilic P-center and electrophilic o-QMs would be generated in situ from H-phosphine oxides and chemically stable o-hydroxyl-benzyl alcohols (o-HBAs) under metal-free conditions, respectively.¹

With the above-mentioned consideration, we initiated our screenings for the model reaction of *o*-hydroxyl-benzyl alcohol (*o*-HBA) **1a** and diphenylphosphine oxide **2a** under metal-free reaction conditions (Table 1). Initially, several acids such as TsOH, AcOH, and TFA were chosen for this transformation at ambient temperature in CH₃CN to facilitate the generation of *o*-QM intermediates. Pleasingly, the desired product **3aa** was

Table 1.	Optimization	of the	Reaction	Conditions ^{<i>a</i>}

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} OH \\ H \\ OH \end{array} \end{array} \begin{array}{c} Ph \\ + \end{array} \begin{array}{c} Ph \\ Ph \end{array} \begin{array}{c} O \\ H \\ Ph \end{array} \begin{array}{c} 1) \ solvent, \ temperature \\ additive \ (0.5 \ equiv) \\ \hline 2) \ K_2 CO_3, \ temperature \end{array} \begin{array}{c} \begin{array}{c} Ph \\ Ph \\ OH \end{array} \begin{array}{c} Ph \\ Ph \end{array} \begin{array}{c} Ph \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} Ph \\ Ph \\ Ph \end{array} $					
	1a	2a		3aa	
entry	additive	solvent	temp (°C)	yield (%) ^b	
1	TsOH	CH ₃ CN	25	14	
2	AcOH	CH ₃ CN	25	29	
3	TFA	CH ₃ CN	25	42	
4	_	CH ₃ CN	80	82	
5	_	$(ClCH_2)_2$	80	92	
6	_	toluene	80	75	
7	-	EtOAc	80	76	
8	-	THF	80	79	
9	-	DMF	80	0	

^{*a*}A Schlenk tube (15 mL) charging with a magnetic stirring bar and **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), solvent (2 mL) and additive (0.1 mmol, 0.5 equiv) (if applicable) was sealed without degassing and heated at the indicated temperature until **1a** was disappeared; and then K_2CO_3 as base (0.6 mmol, 3.0 equiv) was added to the resulting mixture and stirred at the indicated temperature. ^{*b*}Yield of isolated product. TFA = trifluoroacetic acid.

obtained, despite low yields (entries 1–3). By considering the acidic instability of *in situ* formed *o*-QM intermediates, this model reaction was examined without an acid additive at increased temperature (80 °C). Surprisingly, the titled reaction proceeded smoothly and gave an improved yield of 82%, clearly demonstrating that the temperature enhancement could positively promote the formation of *o*-QMs (entry 4). In an attempt to further improve the yield, several solvents were examined (entries 5–9). With exception of polar DMF (entry 9), the desired product **3aa** could be obtained in good yields using toluene, EtOAc, (CICH₂)₂, CH₃CN, and THF, in which (CICH₂)₂ as the optimal solvent afforded **3aa** in 92% yield (entry 5).

With the optimal reaction conditions in hand, the scope of *in* situ generated o-QMs in our metal-free, one-pot reaction was first examined. A series of o-HBAs as o-QM precursors were tested in the presence of diphenylphosphine oxide (2a) (Scheme 2). The substrates bearing electron-donating sub-

Scheme 2. Scope of *o*-Hydroxyl Benzyl Alcohols (*o*-HBAs)^{a,b}

^{*a*}Unless otherwise specified, reactions were carried out using 1 (0.2 mmol) and **2a** (0.3 mmol) in $(\text{ClCH}_2)_2$ (2 mL) at 80 °C until 1 disappeared, and then $K_2\text{CO}_3$ (0.6 mmol) was added. ^{*b*}Times listed were for the whole one-pot process.

stituents including methyl (**3ca**, **3ja**), *tert*-butyl (**3da**, **3ia**), and methoxy (**3ba**) groups at ring A afforded the corresponding products in 65–97% yields. The nitro group and halogen (F, Cl, and Br) containing substrates at ring A gave **3ea**–**3ha** in moderate yields under the standard reaction conditions, providing possibilities for late-stage chemical transformations of the products. Besides, aryl and alkyl acetylene based substrates were also screened, affording products (**3ka**–**3ra**) in good to excellent yields. Substrates with different aryl (e.g., 4-MeC₆H₄, 4-ClC₆H₄, 4-*n*-amyl-C₆H₄, **3**-FC₆H₄) substituted acetylene motifs were further investigated, and the desired 3phosphinoylbenzofurans **3ka**–**3na** were afforded in 59–96% yields. Besides, the substrates having alkyl (e.g., *tert*-butyl, cyclopropyl, and *n*-amyl) substituted acetylene units were also tolerable under standard reaction conditions, giving the desired products **3oa** (78%), **3pa** (75%), and **3qa** (88%), respectively. Additionally, one example using the symmetric *o*-HBA substrate **1r** was conducted, and interestingly bis-3phosphinoylbenzofuran product **3ra** was smoothly delivered in 73% yield. To test the synthetic potential of this protocol, we carried out a gram-scale reaction with 5 mmol (1.12 g) of **1a**, and the titled product **3aa** was obtained with analogous reactivity in good yield (91%, 1.85 g).

Next, we explored the scope with respect to the H-phosphine oxides (Scheme 3). Gratifyingly, the reaction of H-phosphine

Scheme 3. Scope of H-Phosphine Oxides^{*a,b*}

^{*a*}Unless otherwise specified, reactions were carried out using 1a (0.2 mmol) and 2 (0.3 mmol) in $(ClCH_2)_2$ (2 mL) at 80 °C until 1a disappeared, and then K_2CO_3 (0.6 mmol) was added. ^{*b*}Times listed were for the whole one-pot process.

oxides bearing the electron-donating groups including methyl (2b, 2c) and methoxy (2d) at the *para* or *ortho* position of the phenyl ring with *o*-HBA (1a) under optimal conditions readily gave products 3ab-3ad in 83%, 92%, and 70% yields, respectively. The substrate 2e with electron-withdrawing chlorine at the phenyl ring could also proceed smoothly, affording the desired product 3ae in 97% yield. While di(benzyl)phosphineoxide (2f) was introduced as the reactant, the product 3af was obtained in good yield (80%). Moreover, the unsymmetrical phosphine oxide (2g) was also effective for this transformation, giving the desired product 3ag in 82% yield. Unexpectedly, diethyl phosphonate (2h) was ineffective in this reaction following the decomposition of the starting materials.

Recently, optically pure R_{p} -(-)-menthyl phenylphosphine oxide 4 was used as an excellent building block for the intramolecular rearrangement reaction and intermolecular addition reaction in our lab, leading to various optically pure tertiary phosphine oxides compounds.¹³ Considering the importance of chiral P-stereogenic phosphorus compounds in organic synthesis, the reactions using the chiral H-phosphine oxide were further explored in the asymmetric synthesis of chiral 3-phosphinoylbenzofurans through phospha-Michael addition/cyclization reactions. As shown in Scheme 4, various *o*-HBAs were examined in this metal-free, one-pot stereoselective reaction. Generally, all the reactions gave the corresponding chiral 3-menthylphenylphosphinoylbenzofurans (**5a**–**5h**) with very high diastereoselectivity in good yields (up to 92% yield). The absolute configuration of **5a** was Scheme 4. Stereoselective Synthesis of Chiral 3-Menthylphenylphosphinoylbenzofurans a,b,c

^{*a*}Unless otherwise specified, reactions were carried out using 1 (0.2 mmol) and 4 (0.3 mmol) in $(ClCH_2)_2$ (2 mL) at 80 °C until 1 disappeared, and then K₂CO₃ (0.6 mmol) was added. ^{*b*}Times listed were for the whole one-pot process. ^{*c*}The diastereomeric ratio were detected by ³¹P NMR spectroscopy.

unambiguously established by X-ray crystallographic analysis (CCDC 1568383).

Based on the above results and previous reports, a plausible mechanism was proposed as shown in Scheme 5. The thermal

Scheme 5. Proposed Mechanism

dehydration of *o*-HBA **1a** first resulted in the generation of *o*-QM intermediate, and then an intermolecular phospha-Michael addition of nucleophilic phosphinous acid **2a**' tautomerized from **2a** produced the alkynylphosphine oxide intermediate **3aa**' (CCDC 1568384). Following the isomerization of **3aa**', *in situ* formed allenylphosphine oxide intermediate **A** quickly underwent an intramolecular 1,4-addition/isomerization to afford the final product 3-phosphinoylbenzofuran **3aa**.

In summary, we have developed a novel metal-free one-pot protocol featuring phospha-Michael addition/cyclization of Hphosphine oxides with *in situ* generated *o*-QMs, leading to an effective method for the construction of $C(sp^2)$ -P bonds in various structurally interesting 3-phosphinoylbenzofurans. Importantly, asymmetric synthesis of 3-phosphinoylbenzofurans containing chiral P-stereogenic centers has been explored by using optically pure $R_{\rm P}$ -(-)-menthylphenylphosphine oxide. Further investigations on the development of phosphorus-directed methodologies initiated by such type of metal-free phospha-Michael addition are currently underway in our group.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b03863.

Experimental procedure and spectra data (PDF)

Accession Codes

CCDC 1568383–1568384 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: dujy2015@163.com.

ORCID [®]

Ji-Yuan Du: 0000-0002-3059-9830 Nana Xin: 0000-0001-5025-2589 Chang-Qiu Zhao: 0000-0002-9016-8151

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from NSFC (21602094, 21502084), Natural Science Foundation of Shandong Province (ZR2016BB11), and this work was supported by "Tai-Shan Scholar Research Fund of Shandong Province".

REFERENCES

(1) (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. (b) George,
 A.; Veis, A. Chem. Rev. 2008, 108, 4670. (c) Queffélec, C.; Petit, M.;
 Janvier, P.; Knight, D. A.; Bujoli, B. Chem. Rev. 2012, 112, 3777.
 (d) Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I. R.; Gibbons,
 S. Chem. Rev. 2014, 114, 10369. (e) Montchamp, J.-L. Acc. Chem. Res.
 2014, 47, 77. (f) Ma, Y.-N.; Li, S.-X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480.

(2) (a) Redmore, D. Chem. Rev. 1971, 71, 315. (b) Coudray, L.; Montchamp, J.-L. Eur. J. Org. Chem. 2008, 2008, 3601. (c) Zhao, D.; Mao, L.; Wang, Y.; Yang, D.; Zhang, Q.; Wang, R. Org. Lett. 2010, 12, 1880. (d) Hatano, M.; Horibe, T.; Ishihara, K. Angew. Chem., Int. Ed. 2013, 52, 4549. (e) Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358. (f) Sobkowski, M.; Kraszewski, A.; Stawinski, J. Recent Advances in H-Phosphonate Chemistry. Part 1. H-Phosphonate Esters: Synthesis and Basic Reactions. In *Phosphorus Chemistry II: Synthetic Methods*; Montchamp, J.-L., Ed.; Springer International Publishing: Cham, 2015; p 137.

(3) (a) Schwan, A. L. Chem. Soc. Rev. 2004, 33, 218. (b) Greenberg, S.; Stephan, D. W. Chem. Soc. Rev. 2008, 37, 1482. (c) Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F. Chem. Commun. 2012, 48, 5181. (d) Zhang, H.-J.; Lin, W.; Wu, Z.; Ruan, W.; Wen, T.-B. Chem. Commun. 2015, 51, 3450. (e) Renaud, J.-L.; Gaillard, S. Iron-Catalyzed Carbon–Nitrogen, Carbon–Phosphorus, and Carbon–Sulfur Bond Formation and Cyclization Reactions. In Iron Catalysis II; Bauer, E., Ed.; Springer International Publishing: Cham, 2015; p 83. (f) Wu, B.; Chopra, R.; Yoshikai, N. Org. Lett. 2015, 17, 5666. (g) Unoh, Y.; Yokoyama, Y.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 5436. (h) Xu, P.; Wu, Z.; Zhou, N.; Zhu, C. Org. Lett. 2016, 18, 1143. (i) Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2016, 57, 3063.

(4) (a) Li, C.; Yano, T.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801. (b) Chen, Y.-R.; Duan, W.-L. J. Am. Chem. Soc. 2013, 135, 16754. (c) Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322. (d) Mi, X.; Huang, M.; Zhang, J.; Wang, C.; Wu, Y. Org. Lett. 2013, 15, 6266. (e) Yang, B.; Yang, T.-T.; Li, X.-A.; Wang, J.-J.; Yang, S.-D. Org. Lett. 2013, 15, 5024. (f) Wu, B.; Santra, M.; Yoshikai, N. Angew. Chem., Int. Ed. 2014, 53, 7543. (g) Hu, G.; Gao, Y.; Zhao, Y. Org. Lett. 2014, 16, 4464. (h) Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. ACS Catal. 2015, 5, 6634. (i) Xiong, B.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. ACS Catal. 2015, 5, 537. (j) Jeon, W. H.; Son, J.-Y.; Kim, S.-E.; Lee, P. H. Adv. Synth. Catal. 2015, 357, 811. (k) Gao, Y.; Deng, H.; Zhang, S.; Xue, W.; Wu, Y.; Qiao, H.; Xu, P.; Zhao, Y. J. Org. Chem. 2015, 80, 1192. (1) Yang, J.; Chen, T.; Han, L.-B. J. Am. Chem. Soc. 2015, 137, 1782. (5) (a) Diaz, A. A.; Young, J. D.; Khan, M. A.; Wehmschulte, R. J. Inorg. Chem. 2006, 45, 5568. (b) Hashimoto, S.; Nakatsuka, S.; Nakamura, M.; Hatakeyama, T. Angew. Chem., Int. Ed. 2014, 53, 14074

(6) (a) Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858. (b) Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852. (c) Wille, U. Chem. Rev. 2013, 113, 813. (d) Zhang, H.; Gu, Z.; Li, Z.; Pan, C.; Li, W.; Hu, H.; Zhu, C. J. Org. Chem. 2016, 81, 2122. (e) Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436. (f) Gao, Y.; Lu, G.; Zhang, P.; Zhang, L.; Tang, G.; Zhao, Y. Org. Lett. 2016, 18, 1242. (g) Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Wu, X.-X.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2016, 18, 216. (h) Li, C.-X.; Tu, D.-S.; Yao, R.; Yan, H.; Lu, C.-S. Org. Lett. 2016, 18, 4928. (i) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Chem. Commun. 2016, 52, 12338. (j) Wu, Z.-G.; Liang, X.; Zhou, J.; Yu, L.; Wang, Y.; Zheng, Y.-X.; Li, Y.-F.; Zuo, J.-L.; Pan, Y. Chem. Commun. 2017, 53, 6637. (k) Gao, Y.; Tang, G.; Zhao, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 589.

(7) (a) Bovin, A. N.; Yarkevich, A. N.; Kharitonov, A. V.; Tsvetkov, E. N. J. Chem. Soc., Chem. Commun. **1994**, 973. (b) Chakravarty, M.; Kumara Swamy, K. C. J. Org. Chem. **2006**, 71, 9128. (c) Cheong, Y.-K.; Duncanson, P.; Griffiths, D. V. Tetrahedron **2008**, 64, 2329. (d) Sajna, K. V.; Kumara Swamy, K. C. J. Org. Chem. **2012**, 77, 5345. (e) Li, X.-S.; Han, Y.-P.; Zhu, X.-Y.; Li, M.; Wei, W.-X.; Liang, Y.-M. J. Org. Chem. **2017**, 82, 11636.

(8) (a) Hirai, T.; Han, L.-B. Org. Lett. 2007, 9, 53. (b) Wang, H.; Cui, X.; Pei, Y.; Zhang, Q.; Bai, J.; Wei, D.; Wu, Y. Chem. Commun. 2014, 50, 14409. (c) Ma, D.; Chen, W.; Hu, G.; Zhang, Y.; Gao, Y.; Yin, Y.; Zhao, Y. Green Chem. 2016, 18, 3522. (d) Wang, S.; Qiu, D.; Mo, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 11603. (e) Zhu, Y.-L.; Wang, D.-C.; Jiang, B.; Hao, W.-J.; Wei, P.; Wang, A.-F.; Qiu, J.-K.; Tu, S.-J. Org. Chem. 2016, 3, 385. (f) Luo, K.; Chen, Y.-Z.; Chen, L.-X.; Wu, L. J. Org. Chem. 2016, 81, 4682. (g) Xie, P.; Wang, J.; Fan, J.; Liu, Y.; Wo, X.; Loh, T.-P. Green Chem. 2017, 19, 2135. (h) Unoh, Y.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2017, 139, 6106.

(9) (a) Van De Water, R. W.; Pettus, T. R. R. *Tetrahedron* 2002, 58, 5367. (b) Willis, N. J.; Bray, C. D. *Chem. - Eur. J.* 2012, 18, 9160.

(10) (a) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655. (b) Singh, M. S.; Nagaraju, A.; Anand, N.; Chowdhury, S. RSC Adv. 2014, 4, 55924.
(c) Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733.
(d) Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81, 10145.

(11) Huang, H.; Kang, J. Y. Org. Lett. 2017, 19, 5988.

(12) (a) Saha, S.; Schneider, C. Org. Lett. 2015, 17, 648. (b) Ma, J.; Chen, K.; Fu, H.; Zhang, L.; Wu, W.; Jiang, H.; Zhu, S. Org. Lett. 2016, 18, 1322.

(13) (a) Zhang, H.; Sun, Y.-M.; Zhao, Y.; Zhou, Z.-Y.; Wang, J.-P.;
Xin, N.; Nie, S.-Z.; Zhao, C.-Q.; Han, L.-B. Org. Lett. 2015, 17, 142.
(b) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644.