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‘tripod-like’ triphosphine sulfides
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The tertiary polyfunctional triphosphine sulfides with amino and (or) ether groups have been synthe-
sized in excellent yields by the exhaustive regioselective (in anti-Markovnikov manner) addition of
secondary phosphines sulfides to trivinyl ethers of aminotriols and triols under free-radical conditions
(UV-irradiation, 1.5–5 h).

Keywords: secondary phosphine sulfides; trivinyl ethers; addition; tertiary triphosphine sulfides

1. Introduction

The tertiary phosphine sulfides are important organophosphorus compounds, which find diverse
application. The are widely used as extractants of noble metals and radionuclides,[1–4] lig-
ands for catalytically active metal complexes,[5–9] capping agents for stabilization of metal
chalcogenide nanoparticles [10–12] as well as reagents for organic synthesis.[13] Furthermore,
tertiary phosphine sulfides can serve as modifiers of rubbers and resins,[14] chemical sensitizers
in photographic materials,[15,16] additives to lubricating oils and electrolytes.[17]

Less available and hence less understood are the triphosphine sulfides, though they are
intriguing ligands for synthesis of useful metal complexes,[18] some of which show promis-
ing results in methanol carbonylation reaction.[19,20] Therefore, synthesis and investigation of
new triphosphine sulfides represent challenging task in organophosphorus chemistry.
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2 L.A. Oparina et al.

Scheme 1. Elemental phosphorus-based synthesis of secondary phosphine sulfides.

As a promising approach to the synthesis of novel functional ‘tripod-like’ triphosphine sul-
fides might be a reaction of radical addition of secondary phosphine sulfides to trivinyl ethers of
triols, which earlier has been successfully realized on the example of secondary phosphines.[21]
Starting trivinyl ethers of triols are readily assessable via the direct vinylation of the triols with
acetylene in superbasic catalytic systems like KOH/DMSO.[22–25] Secondary phosphine sul-
fides are also easily prepared from red phosphorus, styrenes and elemental sulfur according to
Scheme 1.[26,27]

2. Results and discussion

This paper is devoted to the analysis of the experimental results obtained for the reaction of
secondary phosphine sulfides 1, 2 with trivinyl ethers of glycerol 3, triols 4, 5 and aminotriols
6, 7. The phosphorylation has been carried out via exhaustive free-radical addition protocol: the
molar ratio of secondary phosphine sulfides 1, 2:trivinyl ethers 3–7 = 3:1, UV-irradiation, inert
atmosphere, and organic solvent (acetonitrile or 1,4-dioxane).

Under these conditions, phosphine sulfides 1, 2 react with trivinyl ether 3 for 2.5–5 h to afford
in 93–94% yield triphosphine sulfides 8a,b separated by three-dimensional alkane triol spac-
ers (Table 1). Notably, the reaction proceeds chemo- and regioselectively: no corresponding

Table 1. Exhaustive free-radical addition of secondary phosphine sulfides to trivinyl ether of glycerol 3a.

+

1,2

P
R1 S

R1 H

3

UV-irradiation

8a,b

O
O

O

O
O

O

P
P

P

S
S

S

R1

R1

R1

R1

R1

R1

Entry Phosphine sulfide Solvent Time (h) Adduct Yieldb (%)

1 Ph(CH2)2P(S)H (1) Acetonitrile 2.5 8a 93
2 4-Cl-C6H4(CH2)2P(S)H (2) 1,4-dioxane 5 8b 94

aStandard reaction conditions: molar ratio 1,2/3 = 3:1, argon. UV-irradiation (200 W Hg arc lamp).
bIsolated yield.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

be
rd

ee
n]

 a
t 2

3:
27

 1
5 

Fe
br

ua
ry

 2
01

5 



Journal of Sulfur Chemistry 3

Table 2. Exhaustive free-radical addition of secondary phosphine sulfide 1 to trivinyl ether of triols 4–6a.

P
Ph

Ph

S

O R2

O

P
Ph

Ph S

P
Ph

Ph

S

O

UV-irradiationO

O

R2

O

9a-c

4-6

+1
MeCN, 1.5-2.5 h

Entry Trivinyl ether Adduct Time (h) Yieldb (%)

1 (4) (9a) 2.5 90

2 (5) (9b) 2.5 85

3 (6) (9c) 1.5 95

aStandard reaction conditions: molar ratio 1/4–6 = 3:1, argon. UV-irradiation (200 W Hg arc lamp).
bIsolated yield.

mono-, di- and Markovnikov adducts as well as cyclization and telomerization products have
been observed (1H and 31P NMR).

Using phosphine sulfide 1 as an example, we have shown that under UV-irradiation during
1.5–2.5 h, phosphorylation of trivinyl ether 4–6 is also realized chemo- and regioselectively to
give functional ‘tripod-like’ triphosphine sulfides 9a–9c in 85–95% yield (Table 2).

Besides, the general character of the reaction studied is supported by the fact that trivinyl ether
of aminotriol 7 adds three molecules of phosphine sulfide 1 (UV-irradiation, 1.5 h, acetonitrile)
to form in 96% yield triphosphine sulfide 10 with amino and ether groups (Scheme 2).

3. Conclusion

In summary, the atom-economic chemo- and regioselective synthesis of highly branched poly-
functional triphosphine sulfides with amino and (or) ether groups has been developed by
exhaustive free-radical addition of secondary phosphine sulfides to trivinyl ethers of aminotriols
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4 L.A. Oparina et al.

Scheme 2. Exhaustive free-radical addition of secondary phosphine sulfides 1 to N,N,N-tris[2-(vinyloxy)
ethyl]amine 7.

or triols thus providing a facile short-cut to a new family of prospective tripodal ligands for the
design of multi-purpose metal complexes.

4. Experimental

4.1. General

All reactions were carried out under an argon atmosphere. All solvents were dried and/or puri-
fied according to standard procedures. Secondary phosphine sulfides 1, 2 were synthesized from
red phosphorus and styrenes.[26,27] Trivinyl ethers 3–7 were prepared according to a published
method.[22–25] The 1H, 13C and 31P NMR spectra were recorded on a Bruker DPX 400 and
Bruker AV-400 spectrometers (400.13, 100.62 and 161.98 MHz, respectively) at ambient temper-
ature for CDCl3 solutions. Chemical shifts were reported in δ (ppm) relative to CDCl3 (1H, 13C)
as the internal standard or H3PO4 (31P) as the external standard. IR-FT spectra were taken on a
Bruker Vertex 70 spectrometer. The C, H, S microanalyses were performed on a Flash EA 1112
CHNS-O/MAS analyzer, while the P content was determined by the combustion method. The
content of chlorine in 8b was determined by mercurimetric titration. Melting points (uncorrected)
were recorded on a ‘Stuart melting point apparatus’.

4.2. General procedure for the synthesis of triphosphine sulfides 8–10

A solution of phosphine sulfide 1, 2 (0.9 mmol) and trivinyl ether 3–7 (0.3 mmol) in solvent (0.5
ml) was irradiated (200 W Hg arc lamp) in a quartz ampoule (the reaction time is given in Tables 1
and 2). The reaction was monitored by 31P NMR spectroscopy following the disappearance of
the peaks of the starting phosphine sulfides 1, 2 (the 20–21 ppm region) and the appearance of
new peaks in the 48–49 ppm region corresponding to triphosphine sulfides 8–10. The reaction
mixture was dissolved in diethyl ether (3 mL), and passed through a layer of basic Al2O3 (activity
level II, 0.5 cm), the latter was additionally washed with 3 mL of n-hexane/diethyl ether mixture
(1:1). The solvents were removed under reduced pressure to give the triphosphine sulfides 8–10.

4.2.1. 2-{2,3-Bis[2-(diphenethylphosphorothioyl)ethoxy]propoxy}ethyl(diphenethyl)-
phosphine sulfide (8a)

Colorless oil; yield: 0.277 g (93%). 1H NMR (400.13 MHz, CDCl3): δ = 1.89–2.04 (m, 6 H,
PCH2CH2O), 2.08–2.17 (m, 12 H, PCH2), 2.82–2.92 (m, 12 H, PhCH2), 3.40–3.51 (m, 5 H,
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CH2O, CHO), 3.68–3.88 (m, 6 H, PCH2CH2O), 7.16–7.28 (m, 30 H, Ph). 13C NMR (100.62
MHz, CDCl3): δ = 28.52 (PhCH2), 31.27 and 33.54 (2 d, 1JPC = 50.2 and 49.1 Hz, PCH2),
63.93 (d, 2JPC = 2.4 Hz, CH2O), 65.32 (d, 2JPC = 2.3 Hz, CH2O), 70.65 (CH2O), 77.82 (CHO),
126.45 (Cp in Ph), 128.18 (Co in Ph), 128.64 (Cm in Ph), 140.67 (d, 3JPC = 14.2 Hz, Ci in Ph).
31P NMR (161.98 MHz, CDCl3): δ = 49.00 (br s). IR (film, ν, cm−1): 753 (P − C), 600 (P = S).
Anal. Calcd for C57H71O3P3S3: C, 68.92; H, 7.20; P, 9.35; S, 9.68. Found: C, 68.78%; H, 7.15%;
P, 9.30%; S, 9.73%.

4.2.2. 2-(2,3-Bis{2-[bis(4-chlorophenethyl)phosphorothioyl]ethoxy}propoxy)ethyl-[bis(4-
chlorophenethyl)]phosphine sulfide (8b)

Colorless oil; yield: 0.338 g (94%). 1H NMR (400.13 MHz, CDCl3): δ = 1.72–2.08 (m, 18 H,
PCH2), 2.76–2.83 (m, 12 H, CH2Ar), 3.35–3.42 (m, 5 H, CH2O, CHO), 3.73–3.82 (m, 6 H,
PCH2CH2O), 7.00–7.16 (m, 24 H in Ar). 13C NMR (100.62 MHz, CDCl3): δ = 27.72 (CH2Ar),
30.79 and 33.30 (2 d,1JPC = 50.0 and 48.3 Hz, PCH2), 65.06 (d, 2JPC = 2.4 Hz, CH2O), 66.81
(d, 2JPC = 2.3 Hz, CH2O), 70.99 (CH2O), 78.97 (CHO), 128.56 (C-2,6 in Ar), 129.43 (C-3,5 in
Ar), 132.01 (C-4 in Ar), 138.87 (d, 3JPC = 14.2 Hz, C-1 in Ar). 31P NMR (161.98 MHz, CDCl3):
δ = 48.09 (br s). IR (film, ν, cm−1): 775 (P − C), 653 (P = S). Anal. Calcd for C57H65Cl6O3P3S3:
C, 57.05; H, 5.46; Cl, 17.73; P, 7.74; S, 8.02. Found: C, 57.42%; H, 5.12%; Cl, 17.53%; P, 7.82%;
S, 8.13%.

4.2.3. 2-(3-[2-(Diphenethylphosphorothioyl)ethoxy]-2-[2-(diphenethylphosphorothioyl)-
ethoxy]methyl-2-methylpropoxy)ethyl(diphenethyl)phosphine sulfide (9a)

Colorless oil; yield: 0.276 g (90%). 1H NMR (400.13 MHz, CDCl3): δ = 0.82 (s, 3 H,
Me), 2.03–2.09 (m, 6 H, PCH2CH2O), 2.17–2.24 (m, 12 H, PCH2), 2.96 (dt, 3JPH = 9.8,
3JHH = 7.2 Hz, 12 H, PhCH2), 3.16 (s, 6 H, CH2O), 3.62 (dt, 3JPH = 18.4, 3JHH = 5.9 Hz,
6 H, PCH2CH2O), 7.20–7.29 (m, 30 H, Ph). 13C NMR (100.62 MHz, CDCl3): δ = 17.85 (Me),
28.66 (PhCH2), 31.69 and 33.83 (2 d, 1JPC = 49.9 and 48.3 Hz, PCH2), 40.58 (C), 65.50 (d,
2JPC = 2.8 Hz, CH2O), 73.89 (CCH2O), 126.59 (Cp in Ph), 128.31 (Co in Ph), 128.78 (Cm in
Ph), 140.76 (d, 3JPC = 14.4 Hz, Ci in Ph). 31P NMR (161.98 MHz, CDCl3): δ = 48.40. IR (film,
ν, cm−1): 758 (P − C), 599 (P = S). Anal. Calcd for C59H75O3P3S3: C, 69.38; H, 7.40; P, 9.10;
S, 9.42. Found: C, 69.40%; H, 7.72%; P, 9.29%; S, 9.58%.

4.2.4. 2-(2,2-Bis[2-(diphenethylphosphorothioyl)ethoxy]methylbutoxy)ethyl-
(diphenethyl)phosphine sulfide (9b)

Colorless oil; yield: 0.264 g (85%). 1H NMR (400.13 MHz, CDCl3): δ = 0.71 (t, 3J = 7.4 Hz,
3 H, Me), 1.22 (q, 3JHH = 7.4 Hz, 2 H, CH2Me), 2.02–2.07 (m, 6 H, PCH2CH2O), 2.15–2.22
(m, 12 H, PCH2), 2.93 (dt, 3JPH = 9.5, 3JHH = 7.2 Hz, 12 H, PhCH2), 3.14 (s, 6 H, CH2O),
3.62 (dt, 3JPH = 18.4, 3JHH = 6.0 Hz, 6 H, PCH2CH2O), 7.18–7.31 (m, 30 H, Ph). 13C NMR
(100.62 MHz, CDCl3): δ = 7.59 (Me), 23.01 (CH2Me), 28.64 (PhCH2), 31.40 and 33.54 (2 d,
1JPC = 50.3 and 48.3 Hz, PCH2), 42.93 (C), 65.44 (d, 2JPC = 3.6 Hz, CH2O), 71.49 (CCH2O),
126.57 (Cp in Ph), 128.28 (Co in Ph), 128.75 (Cm in Ph), 140.875 (d, 3JPC = 14.4 Hz, Ci in Ph).
31P NMR (161.98 MHz, CDCl3): δ = 48.47. IR (film, ν, cm−1): 753 (P − C), 600 (P = S). Anal.
Calcd for C60H77O3P3S3: C, 69.60; H, 7.50; P, 8.97; S, 9.29. Found: C, 69.40%; H, 7.72%; P,
8.59%; S, 9.14%.
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4.2.5. 2-[2-(Diphenethylphosphorothioyl)ethoxy]-1,1-bis[2-
(diphenethylphosphorothioyl)ethoxy]methylethylamine (9c)

White powder; yield: 0.291 g (95%); m.p. 90°C. 1H NMR (400.13 MHz, CDCl3): δ = 1.39 (br
s, 2 H, NH2), 1.96–2.02 (m, 6 H, PCH2CH2O), 2.08–2.15 (m, 12 H, PCH2), 2.85–2.91 (m, 12
H, PhCH2), 3.16 (s, 6 H, OCH2), 3.61 (dt, 3JPH = 17.5, 3JHH = 6.2 Hz, 6 H, PCH2CH2O),
7.13–7.26 (m, 30 H, Ph). 13C NMR (100.62 MHz, CDCl3): δ = 28.20 (PhCH2), 31.10 and 33.50
(2 d, 1JPC = 50.3 and 48.3 Hz, PCH2), 55.43 (CNH2), 65.24 (d, 2JPC = 2.4 Hz, CH2O), 72.89
(OCH2C), 126.20 (Cp in Ph), 127.86 (Co in Ph), 128.37 (Cm in Ph), 140.25 (d, 3JPC = 14.4 Hz,
Ci in Ph). 31P NMR (161.98 MHz, CDCl3): δ = 48.25. IR (KBr, ν, cm−1): 3375, 3288 (N − H),
752 (P − C), 599 (P = S). Anal. Calcd for C58H74NO3P3S3: C, 68.14; H, 7.30; N, 1.37; P, 9.09;
S, 9.41. Found: C, 68.40%; H, 7.62%; N, 1.44%; P, 9.56%; S, 9.08%.

4.2.6. N,N,N-tris2-[2-(diphenethylphosphorothioyl)ethoxy]ethylamine (10)

Colorless oil; yield: 0.303 g (96%). 1H NMR (400.13 MHz, CDCl3): δ = 2.01–2.06 (m,
6 H, PCH2CH2O), 2.10–2.16 (m, 12 H, PCH2), 2.59 (t, 3J = 5.8 Hz, 6 H, NCH2),
2.86 (dt, 3JPH = 8.9, 3JHH = 8.3 Hz, 12 H, PhCH2), 3.35 (t, 3JHH = 5.8 Hz, 6 H,
OCH2), 3.68 (dt, 3JPH = 17.6, 3JHH = 6.1 Hz, 6 H, PCH2CH2O), 7.13–7.25 (m, 30
H, Ph). 13C NMR (100.62 MHz, CDCl3): δ = 28.25 (PhCH2), 31.40 and 33.26 (2 d,
1JPC = 49.5 and 48.3 Hz, PCH2), 54.17 (NCH2), 64.61 (d, 2JPC = 2.8 Hz, CH2O), 69.30
(d, 2JPC = 2.4 Hz, CH2O), 126.15 (Cp in Ph), 127.88 (Co in Ph), 128.33 (Cm in Ph),
140.39 (d, 3JPC = 14.4 Hz, Ci in Ph). 31P NMR (161.98 MHz, CDCl3): δ = 48.47. IR
(film, ν, cm−1): 752 (P − C), 599 (P = S) cm−1. Anal. Calcd for C60H78NO3P3S3: C,
68.61; H, 7.48; N, 1.33; P, 8.85; S, 9.16. Found: C, 68.40%; H, 7.72%; N, 1.62%; P,
8.39%; S, 9.61%.
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