## COMMUNICATION

## Ph<sub>2</sub>PI as a reduction/phosphination reagent: providing easy access to phosphine oxides<sup>†</sup>

Feijun Wang,\*<sup>a</sup> Mingliang Qu,<sup>a</sup> Feng Chen,<sup>a</sup> Qin Xu\*<sup>a</sup> and Min Shi\*<sup>ab</sup>

*Received 31st May 2012, Accepted 4th July 2012* DOI: 10.1039/c2cc33908k

The reaction of aldehydes with  $Ph_2PI$  provides a facile way to the synthesis of pentavalent phosphine compounds with moderate to good yields.

Phosphorus compounds have emerged as a preeminent class of organic compounds that hold ubiquitous applications serving as versatile ligands for transition metal catalyzed reactions,<sup>1</sup> Lewis basic organocatalysts to promote various organocatalytic transformations, such as Morita–Baylis–Hillman reaction,<sup>2</sup> and useful reagents in a wide array of organic transformations.<sup>3</sup> Therefore, there is a steadily increasing number of reports on the application of phosphorus compounds<sup>4</sup> and the development of convenient and general protocols for the synthesis of phosphorus compounds.<sup>5</sup>

Compared with the reactivity of Me<sub>3</sub>SiCl, Me<sub>3</sub>SiI has showed special reactivities to promote a variety of useful synthetic transformations.<sup>6</sup> For example, Me<sub>3</sub>SiI can promote the reaction of salicylic aldehydes with carbonyl compounds providing a facile way to construct 4*H*-benzopyranic scaffold in our previous work.<sup>7</sup> Therefore, we reasoned that Ph<sub>2</sub>PI may also have more special reactivities than Ph<sub>2</sub>PCl, which has been widely used as a phosphine reagent in organic synthesis. However, Ph<sub>2</sub>PI-mediated reactions received less attention.<sup>8</sup> Herein, we wish to report a novel and practical synthetic method for the synthesis of phosphorus-containing compounds using Ph<sub>2</sub>PI as a multifunctional agent.

The reaction of aldehydes **2** with Ph<sub>2</sub>PCl **1** has been a wellknown reaction to give 1-chloroalkylphosphine oxides at elevated temperature (Scheme 1).<sup>9</sup> However, in order to prepare phosphine oxides, which are key intermediates for the synthesis of *E*-alkenes<sup>10</sup> and tervalent phosphines,<sup>4,5</sup> these 1-chloroalkylphosphine oxides should be treated with reduction systems, such as NaBH<sub>4</sub>/ DMSO.<sup>11</sup> Inspired by the reduction of alkyl iodide with I<sup>-</sup> reagent to give the reductive product with elimination of I<sub>2</sub>,<sup>7</sup> the reaction of aldehydes with Ph<sub>2</sub>PI was envisioned to give 1-iodoalkylphosphine



Scheme 1 The reaction of aldehyde with monohalogenophosphine.

oxides, which were further reduced by  $Ph_2PI$  to afford phosphine oxides in a one-pot operation.

Initially, the reaction mixture of benzaldehyde **2a** with 3 equiv Ph<sub>2</sub>PI generated *in situ* from Ph<sub>2</sub>PCl **1a** and NaI in CH<sub>3</sub>CN was stirred at 80 °C for 24 h, resulting a brown reaction solution with the formation of I<sub>2</sub>. In order to eliminate the I<sub>2</sub> in the work-up procedure, sat. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution was added. However, 45% yield of unexpected benzyldiphenylphosphine sulfide **4a** was obtained, and its structure was undoubtedly confirmed by a single-crystal X-ray diffraction.†<sup>12</sup> The formation of **4a** suggested that tervalent benzyldiphenylphosphine should be afforded in this reaction, and subsequently reacted with S derived from the compound **4a**. The formation of tervalent phosphine was further confirmed by mass spectrometry analysis of the reaction mixture (see the ESI†). Therefore, 30% H<sub>2</sub>O<sub>2</sub> was used to quench this reaction before the addition of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution.

As expected, phosphine oxide **3a** was obtained in 70% yield. Further optimization of the employed amounts of Ph<sub>2</sub>PI and reaction temperature was carried out. As shown in Table 1, up to 99% yield of **3a** was obtained in the presence of 4.5 equiv. of Ph<sub>2</sub>PCl and NaI at 80 °C (Table 1, entry 3). Using KBr instead of NaI could also afford **3a** in 66% yield (Table 1, entry 7).

Next, we examined the substrate scope of this  $Ph_2PI$ -mediated reaction under the optimized conditions (4.5 equiv. of  $Ph_2PCI$  and NaI, CH<sub>3</sub>CN, 80 °C). The results are shown in Table 2. For aldehydes **2b–d**, the different position of the fluorine substituent on the phenyl ring showed little influence on the yields of corresponding phosphine oxides (Table 2, entries 1–3). However, aldehydes with different electronic properties of substituents showed the significant influence on the reaction outcomes (Table 2, entries 3–8). For instance, aldehydes **2** with electron donating groups, such as Me and OMe, gave higher yields of their corresponding products than those of aldehydes **2** with electron-withdrawing groups, such as F and CF<sub>3</sub>. This effect was also found in the oxophilic Lewis acid catalyzed Michaelis–Arbuzov reaction.<sup>13</sup>

<sup>&</sup>lt;sup>a</sup> Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, and 130 MeiLong Road, Shanghai 200237, P. R. China.

*E-mail: feijunwang@ecust.edu.cn, qinxu@ecust.edu.cn* <sup>b</sup> State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China. *E-mail: meli@mail.sica.com* 

*E-mail: mshi@mail.sioc.ac.cn* 

<sup>†</sup> Electronic supplementary information (ESI) available: Experimental procedures, characterization data of new compounds and CCDC 883288. See DOI: 10.1039/c2cc33908k

## Table 1 Screening of reaction conditions<sup>a</sup>

|                    | CHO Ph_PCI 1a and Ph_PCI 1a an | Nal O<br>PPh<br>3aa    | Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>HS |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|--|
| Entry              | X (equiv.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T/^{\circ}\mathrm{C}$ | Yield of $3aa^{b}$ (%)                       |  |
| 1                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                     | 70                                           |  |
| 2                  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                     | 8                                            |  |
| 3                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                     | 99                                           |  |
| 4                  | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                     | 96                                           |  |
| 5                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                     | 25                                           |  |
| 6                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                     | 79                                           |  |
| $7^c$              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                     | 66                                           |  |
| <sup>a</sup> React | ion conditions: (1) <b>2</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1.0 mmol              | <b>1a</b> and NaL (r equiv)                  |  |

CH<sub>3</sub>CN, 24 h; (2) 30% H<sub>2</sub>O<sub>2</sub> used in the work-up procedure. <sup>b</sup> Isolated yield. <sup>c</sup> KBr instead of NaI was used.

Up to 99% yield of 3ai was obtained. 2,4-Dimethyl benzaldehyde 2j and 2,4,6-trimethyl benzaldehyde 2k afforded the corresponding products in up to 99% yield, respectively (Table 2, entries 10-11). In order to synthesize the analogues of these phosphine ligands developed by Buchwald and co-workers,<sup>14</sup> aldehydes **2m** and **2n** with a biaryl framework were used to react with Ph<sub>2</sub>PI, affording products 3am and 3an in 99% and 74% yields, respectively (Table 2, entries 12 and 13). Phosphine oxide 3ao containing a ferrocenyl framework was also prepared from aldehyde 20 in 46% yield under the standard conditions (Table 2, entry 14). Salicylic aldehyde 2p also furnished the corresponding functional phosphine oxide **3ap** in 80% yield (Table 2, entry 15). Alkyl aldehyde 2q can also afford the product 3aq in 40% yield (Table 2, entry 16). Moreover, using Et<sub>2</sub>PCl 1b as a phosphine reagent could furnish trialkyl phosphine oxides **3ba** and **3bg** in up to 99% yields (Table 2, entries 17 and 18).

Subsequently, different work-up procedures were investigated to prepare other pentavalent phosphines. Benzyldiphenylphosphine sulfide **4a** and selenide **4b** were successfully synthesized (Scheme 2).

Other substrates instead of aldehyde 2 were also examined. As shown in Scheme 3, ketone 5a, benzyl ether 5b, 2-phenyloxirane 5c and benzyloxydiphenylphosphine 5d could also afford their corresponding phosphine oxides in moderate yields. Moreover, the reaction of 5d with Et<sub>2</sub>PCl in the presence of NaI afforded the main product 3ba in 60% yield and the minor product 3aa in 6% yield.

In order to further prove the  $Ph_2PI$ -mediated reduction of pentavalent phosphine to tervalent phosphine, the mutual transformation between phosphine oxide and sulfide was investigated. With the treatment of  $Ph_2PI$ , the transformations of **3aa/4a** into **4a/3aa** can be successfully achieved (Scheme 4). Sulfoxide 7 can also be reduced to sulfur compound **8** by  $Ph_2PI$  in 63% yield. Moreover, a deuterium experiment was carried out. Deuterium water was added into this  $Ph_2PI$ -mediated reaction and deuterated phosphine oxide **3aa** was formed in 65% yield (D content 48% determined by ESI-MS).

A possible mechanism for the reaction of benzaldehyde and  $Ph_2PI$  is proposed in Scheme 5. Like the formation of  $\alpha$ -iodo trimethylsilyl ethers from the reaction of Me<sub>3</sub>SiI and aldehydes,<sup>15</sup> intermediate **A** was obtained from the addition of Ph<sub>2</sub>PI to benzaldehyde, and subsequently reduced by HI to give intermediate **B** with elimination of I<sub>2</sub>. Ph<sub>2</sub>PI was used as an oxophilic Lewis acid

Table 2 The reaction of Ph<sub>2</sub>PI and aldehydes<sup>a</sup>

| $\begin{array}{c} \text{R}^{1}-\text{CHO} + \text{R}^{2}_{2}\text{PCI} & \stackrel{\text{1}}{\underset{2}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{\text{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{\overset{CH}}}{CH$ |                                                                                                                         |                        |                          |                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|------------------------|--|--|
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aldehyde                                                                                                                | Chlorophosphine        | Product                  | Yield <sup>b</sup> (%) |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHO<br>2b<br>F                                                                                                          | 1a                     | 3ab                      | 76                     |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHO<br>2c                                                                                                               | 1a                     | 3ac                      | 64                     |  |  |
| 3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2d: $\mathbf{R} = \mathbf{F}$<br>2e: $\mathbf{R} = \mathbf{C}\mathbf{I}$<br>CHO 2f: $\mathbf{R} = \mathbf{B}\mathbf{r}$ | 1a<br>1a<br>1a<br>1a   | 3ad<br>3ae<br>3af<br>3ag | 66<br>68<br>67<br>60   |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2g</b> : R = CF <sub>3</sub><br><b>2h</b> : R = Me                                                                   | 1a                     | 3ah                      | 69                     |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2i</b> : $R = OMe$                                                                                                   | 1a                     | 3ai                      | 99                     |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me Me 2j                                                                                                                | 1a                     | 3aj                      | 99                     |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Me<br>CHO<br>Me CHO                                                                                                     | 1a                     | 3ak                      | 99                     |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         | 1a                     | 3al                      | 99                     |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHO<br>2m                                                                                                               | 1a                     | 3am                      | 99                     |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHO<br>2n                                                                                                               | 1a                     | 3an                      | 74                     |  |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СНО<br>Fe<br>20                                                                                                         | 1a                     | 3ao                      | 46                     |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHO<br>OH 2p                                                                                                            | 1a                     | 3ap                      | 80                     |  |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         | 1a                     | 3aq                      | 40                     |  |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHO<br>2a                                                                                                               | <b>1b</b> : $R^2 = Et$ | 3ba                      | 95                     |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~(-) <sub>4</sub> СНО<br>2q                                                                                             | 1b                     | 3bq                      | 99                     |  |  |

<sup>*a*</sup> Reaction conditions: (1) **2** (1.0 mmol), **1** and NaI (4.5 equiv.), CH<sub>3</sub>CN, 24 h; (2) 30% H<sub>2</sub>O<sub>2</sub> or air used in the work-up procedure. <sup>*b*</sup> Isolated yield.



Scheme 2 The preparation of phosphine sulfide and selenide from 2a.

catalyst to promote the Michaelis–Arbuzov rearrangement of intermediate **B** through a bimolecular process,<sup>13</sup> affording the corresponding product **3aa**. Ph<sub>2</sub>PI with its oxophilic ability further reacted with oxide **3aa** to give zwitterionic



Scheme 3 Ph<sub>2</sub>PI promoted the transformations of a series of oxo-containing compounds.



Scheme 4 Controlled experiments in the Ph<sub>2</sub>PI-mediated reaction.

Scheme 5 A possible mechanism for the  $Ph_2PI$ -mediated reaction.

intermediate C, which was further converted into tervalent phosphine D with the elimination of diphenylphosphinic iodide. Due to the instability of phosphine D for its easy oxidation, oxide **3aa** was obtained in the work-up procedure.

In conclusion, we have developed efficient methods to prepare phosphorus compounds using  $Ph_2PI$  as a multifunctional agent. The unusual reactivities of  $Ph_2PI$  were disclosed in this work, such as its oxophilic ability to promote the transformations of a series of oxo-containing compounds and reducing ability to achieve the reduction of pentavalent phosphine which usually required more than a stoichiometric amount of expensive, explosive and/or not easy to handle reducing agents. Moreover, a possible mechanism for the reaction of benzaldehyde with  $Ph_2PI$  was proposed. Further exploration of  $Ph_2PI$ -mediated reactions and the application of phosphorus compounds are ongoing.

Financial support from the Shanghai Municipal Committee of Science and Technology (11JC1402600), the National Natural Science Foundation of China (21072206, 20902019, 20472096, 20872162, 20672127, 21121062 and 20732008), the National Basic Research Program of China (973)-2010CB833302 and the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

## Notes and references

- (a) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029; (b) V. V. Grushin, Chem. Rev., 2004, 104, 1629; (c) H. Fernández-Pérez, P. Etayo, A. Panossian and A. Vidal-Ferran, Chem. Rev., 2011, 111, 2119.
- 2 For a book, see: M. Shi, F. Wang, M. Zhao and Y. Wei, *The Chemistry of the Morita–Baylis–Hillman Reaction*, RSC Catalysis Series, 2011.
- 3 B. E. Maryanoff and A. B Reitz, Chem. Rev., 1989, 89, 863.
- 4 Selected books: (a) J.-P. Majoral, New Aspects in Phosphorus Chemistry I, Springer, Berlin Heidelberg, 2002; (b) J.-P. Majoral, New Aspects in Phosphorus Chemistry II, Springer, Berlin Heidelberg, 2002. Selected papers: (c) S. Pindi, P. Kaur, G. Shakya and G. Li, Chem. Biol. Drug Des., 2011, 77, 20; (d) P. Kaur, S. Pindi, W. Wever, T. Rajale and G. Li, Chem. Commun., 2010, 46, 4330; (e) A. Kattuboina and G. Li, Tetrahedron Lett., 2008, 49, 1573.
- Selected books: (a) M. L. Clarke and M. J. Williams, in Organophosphorus Reagents, ed. P. J. Murphy, Oxford University Press, New York, 2004, ch. 2; (b) D. G. Gilheany and C. M. Mitchell, in The Chemistry of Organophosphorus Compounds, ed. F. R. Hartley, John Wiley and Sons, Chichester, UK, 1990, vol. 1. Selected papers: (c) H. Ohmiya, H. Yorimitsu and K. Oshima, Angew. Chem., Int. Ed., 2005, 44, 2368; (d) F. Jérôme, F. Monnier, H. Lawicka, S. Dérien and P. H. Dixneuf, Chem. Commun., 2003, 696; (e) A. Caiazzo, S. Dalili and A. K. Yudin, Org. Lett., 2002, 4, 2597.
- 6 (a) G. A. Olah and S. C. Narang, *Tetrahedron*, 1982, **38**, 2225; (b) G. A. Olah, G. K. S. Prakach and R. Krishnamurtiy, *Adv. Silicon Chem*, ed. G. L. Larson, Jai Press, Inc, Greenwich, CT, 1991, vol. 1.
- 7 (a) F. Wang, M. Qu, F. Chen, L. Li and M. Shi, *Chem. Commun.*, 2012, **48**, 437; (b) F. Wang, M. Qu, X. Lu, F. Chen, F. Chen and M. Shi, *Chem. Commun.*, 2012, **48**, 6259–6261.
- 8 Selected papers: (a) V. P. Morgalyuk, P. V. Petrovskii, K. A. Lysenko and E. E. Nifant', *Russ. J. Gen. Chem.*, 2010, 80, 100; (b) A. A. Tolmachev, A. I. Sviridon, A. N. Kostyuk and E. S. Kozlov, *Zh. Obshch. Khim.*, 1992, 62, 2395; (c) A. A. Tolmachev, A. A. Yurchenko and E. S. Kozlov, *Zh. Obshch. Khim.*, 1992, 62, 1667; (d) N. D. Gomelya and N. G. Feshchenko, *Zh. Obshch. Khim.*, 1988, 58, 709.
- Selected papers: (a) K. Sasse, in Methoden der Organischen Chemie, ed. E. Müller, Georg Thieme Verlag, Stuttgart, 1963, vol. 12/1; (b) N. J. De', J. A. Miller, M. J. Nunn and D. Stewart, J. Chem. Soc., Perkin Trans. 1, 1981, 776.
- (a) B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, **89**, 863;
   (b) M. D. Wittman and J. Kallmerten, *J. Org. Chem.*, 1987, **52**, 4303;
   (c) C. Palomo, M. Oiarbide, A. Landa, A. Esnal and A. Linden, *J. Org. Chem.*, 2001, **66**, 4180;
   (d) C. Hoarau, A. Couture, E. Deniau and P. Grandclaudon, *Eur. J. Org. Chem.*, 2001, 2559.
- 11 (a) K. M. Brown, N. J. Lawrence, J. Liddle and F. Muhammad, *Tetrahedron Lett.*, 1994, **36**, 6733; (b) N. J. Lawrence, F. A. Ghani, L. A. Hepworth, J. A. Hadfield, A. T. McGown and R. G. Pritchard, *Synthesis*, 1999, 1656.
- 12 CCDC 883288 **4a** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc. cam.ac.uk/data\_request/cif.
- 13 (a) P.-Y. Renard, P. Vayron, E. Leclerc, A. Valleix and C. Mioskowski, Angew. Chem., Int. Ed., 2003, 42, 2389; (b) P.-Y. Renard, P. Vayron and C. Mioskowski, Org. Lett., 2003, 5, 1661; (c) W. Dabkowski, A. Ozarek, S. Olejniczak, M. Cypryk, J. Chojnowski and J. Michalski, Chem.-Eur. J., 2009, 15, 1747.
- 14 R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461.
- 15 M. E. Jung, A. B. Mossman and M. A. Lyster, J. Org. Chem., 1978, 43, 3698.