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Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under acrobic and solvent-free

conditions (80 °C, air, 7-30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70-93% yields.

Findings

Tertiary phosphines and phosphine chalcogenides are impor-
tant organophosphorus compounds that are widely used in
industry, organic synthesis, polymer science, medicinal and
coordination chemistry [1-4]. Therefore, the synthesis of these
compounds has attracted a great interest and numerous syn-
thetic methods have been developed [5-7]. Among them, the
addition of P(X)-H (X = none, O, S or Se) to diverse alkenes is
one of the most powerful and 100% atom-economic approaches
to construct new C—P bonds, that provide straightforward access
to tertiary phosphines and their chalcogenides [8-12]. Conven-
tionally, the activation of the P-H bonds in this reaction is

achieved by using radical initiators [13-15], Breonsted/Lewis
acids [16,17] and bases [18-20] as well as transition metal cata-
lysts [21-23]. Also, examples of the microwave-assisted [24,25]
and photoinduced [26] addition are described.

Recently, on example of secondary phosphines [27] as well as
secondary phosphine sulfides [28] and selenides [29], it has
been disclosed that the addition of P—H species to the C=C
bonds readily proceeds in the absence of any catalyst or initiator
(Scheme 1). The reactions occur under mild solvent-free condi-
tions (70-80 °C, inert atmosphere, 3—15 h) to chemo- and
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regioselectively furnish the anti-Markovnikov adducts in excel-
lent yields (up to 99%). The substrate scope includes both
EDG- and EWG-substituted alkenes [27-29].

without catalyst

R_X ~ and solvent X
N, R ~_P—R

R*H 70-80°C,3-15h, R R

X = none, S or Se; inert atmosphere up to 99%

R = alkyl, aryl, etc.
R'= EWG, EDG

Scheme 1: Non-catalyzed addition of P-H species to alkenes.

Beilstein J. Org. Chem. 2015, 11, 1985-1990.

In this letter, we report our serendipitous finding that secondary
phosphine oxides 1a—f under aerobic conditions (air, 80 °C,
7—-18 h) easily add to vinyl sulfides 2a—c to give unknown
1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides
3a—h in high yields (Table 1). The 10% excess of 2a—c relative
to 1a—f is found to be optimal since the equimolar ratio of the
reactants leads to incomplete conversion of the secondary phos-

phine oxides.

Importantly, under these conditions, the expected [30] anti-
Markovnikov adducts are not observed in detectable amounts
(3'P NMR). The main byproducts are phosphinic acids,
R,P(O)OH, formed by air oxidation of secondary phosphine

oxides 1a—f. As seen from Table 1, the reaction is applicable to

Table 1: The substrate scope for the aerobic addition of phosphine oxides 1a—f to vinyl sulfides 2a—c.2
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Table 1: The substrate scope for the aerobic addition of phosphine oxides 1a—f to vinyl sulfides 2a—c.2 (continued)
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aReaction conditions: secondary phosphine oxide 1a—f (1.0 mmol), vinyl sulfide 2a—c (1.1 mmol) at 80 °C for 7-30 h under air. Plsolated yield based

on 1a-f.

both aryl- (1b) and arylalkyl-substituted (1a,c—e) secondary
phosphine oxides. The furyl-containing phosphine oxide 1f can
also be reacted under these reaction conditions. On the other
hand, vinyl sulfides bearing alkyl (2a,b) and aryl (2¢)
substituents successfully participate in the reaction to provide
the corresponding phosphine oxides 3a—h. The latter were
isolated as air- and moisture-stable powders (3a—f) or oils
(3g,h), soluble in common organic solvents. Their structures
have been established by X-ray diffraction (for 3d, Figure 1),
NMR (‘H, 13¢, 3'p, 'H,'3C-HSQC) and FTIR techniques.

The presence of an asymmetric carbon atom in the reaction
products leads to non-equivalence of both heminal protons in
the SCH,C* fragment and carbon signals in the arylethyl
moiety. In the '"H NMR spectra of 3a—h, protons of the
PCHCH,S moiety form an ABMX spin system appearing as
three multiplets.

Phosphine oxide 3d crystallizes in the centrosymmetric P2/c
space group. Within its extended structure, strong intermolec-
ular H-bonding interactions between the O—H hydrogen and
P=0 oxygen atom of a second molecule {O(1)-H(1):-O(2),
1.80(6) A; O-H--O angle, 174.9(7)°} leads to the formation of
1D polymeric chains along the b-axis (Figure S1, Supporting
Information File 1).

In FTIR spectra of 3a—h, absorption bands of the P=0O
and O—H bonds appear in the regions of 1100-1150 and
3350-3450 cm™ !, respectively.

Interestingly, the reaction disclosed is specific for secondary
phosphine oxides. Our experiments have shown that their
analogues, secondary phosphine sulfides, under similar condi-
tions provide exclusively the anti-Markovnikov adducts

(Scheme 2). On the other hand, vinyl ethers and vinyl selenides
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Figure 1: ORTEP drawing (30% thermal ellipsoid) of phosphine oxide 3d. A CIF file with the crystallographic data is available as Supporting Informa-
tion File 2 and is also available on request from the Cambridge Crystallographic Data Centre as deposition 1046604.

(congeners of vinyl sulfides) were found to react with phosphi-
ne oxide 1a at 80 °C for about 30 and 20 h, respectively, to
deliver difficult-to-separate mixtures of organophosphorus com-
pounds (3P NMR).

R S air §

\P’/ + /\ _Ph Ph_ /\/th
R H $° " so°c,10n S R
R = CH,CH,Ph almost single product

(P NMR)

Scheme 2: Addition of secondary phosphine sulfide to vinyl sulfide
under aerobic catalyst-free conditions.

To gain a primary insight into the reaction mechanism, several
experiments were carried out. On example of phosphine oxide
la and vinyl sulfide 2¢, we have shown that the reaction
proceeds in the dark with the same efficiency as in the light.
Therefore, the photochemical pathway of the reaction is hardly
probable. Also, the reaction was established under an argon
atmosphere. Under these conditions (argon, 80 °C for 18 h,
exemplified by 1a/2¢ pair) the formation of products 3a—h does
not take place and the starting phosphine oxide remained almost
intact 1P NMR). This indicates that the reaction requires the
presence of oxygen. In the other experiment, when TEMPO, a
widely used radical scavenger, was added (10 mol %) into the
reaction system la/2¢, the product 3d was also formed,

however, a longer reaction time was required for complete

conversion of secondary phosphine oxide 1a as compared to
TEMPO-free conditions (15 vs 11 h). Meanwhile, this observa-
tion does not completely exclude a radical mechanism since the
cross-coupling reactions between TEMPO and radical inter-
mediates can be reversible [31]. In future, we intend to check
various radical scavengers (other than TEMPO) in order to
better understand the reaction mechanism.

Taking these data into account, the following mechanism is
suggested (Scheme 3). The first step is assumed to be the gener-
ation of phosphinoyl (A) and hydroperoxyl (HOO") radicals by
the reaction of O, with phosphine oxide 1. Earlier, the transfer
of a hydrogen atom from the P(O)H species to molecular
oxygen has been reported for example for Ph,P(O)H [30].
Then, the radical addition of A to vinyl sulfide, proceeding in
an anti-Markovnikov manner, takes place. Subsequently, a 1,2-
intramolecular transfer of an H atom within the radical adduct B
(from PCH; group to radical center) leads to the formation of
R,P(0O)-stabilized radical C. The latter recombines with a
hydroperoxide radical to afford the metastable hydroperoxide
D, thermal decomposition of which give rise to the final pro-
duct 3.

Although quantum chemical computations [MP2/6-
311++G(d,p)//B3LYP/6-311++G(d,p)] of the model radicals B
and C (with R, R’ = Me) reveals that the latter is energetically
less preferred than the former, their energy difference is too
small (4.38 kcal/mol) to completely prohibit the B—C transfor-

mation.
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Scheme 3: Putative mechanism.

Conclusion

In summary, we have disclosed an aerobic addition of second-
ary phosphine oxides to vinyl sulfides under solvent- and cata-
lyst-free conditions, which provides an efficient approach to
hitherto unknown 1-hydroxy-2-(organosulfanyl)ethyl(di-
organyl)phosphine oxides in one step. The synthesized phosphi-
ne oxides, bearing hydroxy and sulfide functions, represent
prospective building blocks for organic synthesis and interest-
ing ligands for metal complexes. The results obtained contribute
to the basic chemistry of both phosphine oxides and vinyl
sulfides.
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