Frustrated Lewis Pairs

Activation of Carbon Dioxide by Silyl Triflate-Based Frustrated Lewis Pairs

Sarah A. Weicker and Douglas W. Stephan^{*[a]}

Abstract: Silyl triflates of the form $R_{4-n}Si(OTf)_n$ (n=1, 2; $OTf=OSO_3CF_3$) are shown to activate carbon dioxide when paired with bulky alkyl-substituted Group 15 bases. Combinations of silyl triflates and 2,2,6,6-tetramethylpiperidine react with CO_2 to afford silyl carbamates via a frustrated

Introduction

Nature delicately balances carbon dioxide levels through the processes of photosynthesis, cellular respiration, and organic decomposition. In the past two centuries, however, this global carbon cycle has been disrupted by human activities. Anthropogenic carbon dioxide emissions, most significantly from fossil fuel combustion, have resulted in increased atmospheric CO₂ concentrations and have been a strong contributor to global climate change.^[1] As such, CO₂ is very attractive for use as a cheap, abundant, and environmentally-friendly C1 building block. The development of systems designed to sequester or chemically modify CO₂ to fuels or compounds of higher value has garnered significant attention.^[2] Frustrated Lewis pairs (FLPs), combinations of sterically hindered Lewis acids and bases with unquenched reactivity, can capture CO₂ by simultaneous nucleophilic attack of the Lewis base at carbon and binding of the Lewis acid to oxygen (Figure 1). In 2009, we described the activation of CO₂ by boron Lewis acids in conjunction with phosphines.^[3] Subsequent studies by Piers,^[4] O'Hare,^[5] Fontaine,^[6] and ourselves^[7] revealed that B/N, B/P, or Al/P based FLPs can effect the stoichiometric or catalytic reduction of the activated CO₂ moiety upon treatment with an appropriate reducing agent.

Main Group Lewis acids outside of Group 13 have also been employed in the activation of CO₂. In 2012, we^[8] reported the insertion of CO₂ into the P–N bonds of strained amidophosphoranes. This reactivity was compared to a frustrated Lewis pair, as the amidophosphoranes contained both acidic and basic P,N functionalities. Efforts to apply silicon Lewis acids in CO₂ activation have focused on highly Lewis acidic silylium cations. Müller and co-workers^[9] used silylium cations in conjunc-

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201501904.

Lewis pair-type mechanism. With trialkylphosphines, the silyl triflates $R_3Si(OTf)$ reversibly bind CO_2 affording $[R'_3P(CO_2)SiR_3]$ [OTf] whereas when $Ph_2Si(OTf)_2$ is used one or two molecules of CO_2 can be sequestered. The latter bis- CO_2 product is favoured at low temperatures and by excess phosphine.

Figure 1. Selected examples of CO₂ activation by frustrated Lewis pairs.

tion with hydrosilanes to stoichiometrically reduce CO_2 to yield formic acid or methanol after an aqueous quench. The Müller^[10] and Ashley^[11] groups have also described CO_2 sequestration by silylium/phosphine Lewis pairs.

The application of neutral four-coordinate silicon Lewis acids in the context of FLP chemistry has been quite limited, although Manners and co-workers^[12] have described the reactions of Group 14 triflates/amine based FLPs with amine and phosphine–borane adducts. As electronically-saturated, fourcoordinate silicon compounds can display Lewis acidic properties, they have been previously employed as Lewis acid catalysts for organic carbon–carbon bond forming reactions such as the Diels–Alder reaction,^[13] Mukaiyama aldol,^[14] and couplings of acetals or acetal-like compounds with nucleophiles.^[15] Recently, Tilley and co-workers^[16] have also reported catalytic aldehyde hydrosilylation by bis(perfluorocatecholato)silane.

Motivated by the above findings and targeting FLP chemistry beyond traditional Lewis acids, we have probed the use of electronically-saturated silicon Lewis acids, demonstrating that combinations of four-coordinate silyl triflates and amine or phosphine bases can be exploited in FLP/CO₂ chemistry.

Chem. Eur. J. 2015, 21, 13027 - 13034

Wiley Online Library

 [[]a] S. A. Weicker, Prof. Dr. D. W. Stephan Department of Chemistry, University of Toronto 80 St. George St. Toronto, Ontario, M5S 3H6 (Canada) E-mail: dstephan@chem.utoronto.ca

Results and Discussion

A CD_2Cl_2 solution of $Ph_2Si(OTf)_2$ (1) was added to one equivalent of 2,2,6,6-tetramethylpiperidine (TMP) in a J-Young NMR tube. The ¹H NMR spectrum of this mixture appeared unchanged from the starting materials, indicating that an adduct was not formed. The NMR tube was degassed and backfilled with carbon dioxide gas prompting precipitation of a white solid. Analysis of the CD₂Cl₂ soluble components by ¹H NMR spectroscopy revealed two sets of aromatic resonances in a 1:1 ratio, corresponding to a mixture of free 1 and a new compound containing phenyl substituents. The resonance attributable to the tetramethylpiperidine N-H proton was absent from the ¹H NMR spectrum, implying complete consumption of TMP. The presence of unreacted **1** suggested that the stoichiometry of this reaction was not 1:1 with respect to the Lewis acid and Lewis base. Adjusting the ratio of reagents to a 2:1 mixture of TMP and 1 followed by exposure to CO₂ yielded the same white precipitate. The precipitate was isolated by filtration and dissolved in CD₃CN. Proton NMR spectroscopy revealed a broad downfield 1:1:1 triplet at $\delta_{\rm H}\!=\!6.53~{\rm ppm}$ ($^1\!J_{\rm HN}\!=\!12~{\rm Hz}$) and aliphatic proton signals, while the ¹⁹F spectrum exhibited a single free triflate resonance at $\delta_{\rm F} = -79.39$ ppm. These observations suggested the formulation of this species as [TMPH] [OTf] (2). The ${}^{13}C{}^{1}H$ NMR spectrum of the CD_2CI_2 soluble product displays a resonance at $\delta_{\rm C} = 165.02$ ppm, attributable to a carbonyl carbon. Repeating this reaction again using ¹³CO₂ resulted in augmentation of this resonance, confirming the incorporation of carbon dioxide into this product. While the spectroscopic data was consistent with the formulation $C_9H_{18}NCO_2SiPh_2(OTf)$ (3) (Scheme 1), the identity of this species was ultimately confirmed by X-ray crystallographic studies (Figure 2). Compound 3 was isolated as a white solid in 88% yield.

Scheme 1. Synthesis of 3.

The solid-state molecular structure of **3** reveals a five-coordinate silicon centre with a distorted trigonal bipyramidal geometry. Interestingly, the CO₂ molety is bound to silicon in a κ^2 fashion. The Si1–O1 and Si1–O2 bond lengths are not equal in magnitude, with values of 1.747(3) and 1.938(3) Å, respectively. Additionally, the Si1–O3 bond length of 1.823(3) Å is elongated relative to the Si–O bond in **1** (1.6792(2) Å). The C19–O2 bond length of 1.283(5) Å is consistent with a C–O bond order of

A European Journa

Full Paper

Figure 2. POV-ray depiction of the molecular structure of 3. H atoms and disorder in the TMP moiety omitted for clarity.

less than 2, while the O1-C19-O2 angle of $107.5(3)^{\circ}$ is significantly smaller than the idealized carbonyl bond angle of 120° . These parameters suggest the donation of electron density from O2 into the σ^* -orbital of the Si–O3 bond.

The silyl triflates $(C_6F_5)_3Si(OTf)$ (4), $Ph_3Si(OTf)$ (5), and $Me_3Si(OTf)$ (6) were found to react in an analogous fashion when combined with two equivalents of TMP and exposed to CO_2 gas. Following reaction and removal of the salt by-product, the corresponding silyl carbamates **7–9** were isolated in yields of 86, 95, and 83%, respectively (Scheme 2). Single crystals of **7** and **8** suitable for X-ray diffraction analysis were obtained by slow evaporation of pentane solutions (Figures 3 and 4).

Scheme 2. Synthesis of 7–9.

Figure 3. POV-ray depiction of the molecular structure of 7. H atoms omitted for clarity.

The solid-state molecular structures of **7** and **8** (Figures 3 and 4) display tetrahedral geometries about silicon. In contrast to the structure of **3**, the CO_2 moieties are not bound in a chelating fashion. In fact, the Si1–O2 contact distances for **7** and **8** are quite long, with distances of 2.390(1) and 2.8280(1) Å, respectively. This suggests only weak donation from the carbonyl oxygen to silicon in **7**, while there is no evidence for such in-

Figure 4. POV-ray depiction of the molecular structure of 8. H atoms omitted for clarity.

teraction in **8**. The C19–O2 bond length of 1.237(2) Å and O1-C19-O2 angle of 114.2(1)° for **7** show slight deviations from typical carbamate metric parameters;^[17] however, those for **8** (C19-O2 1.2200 Å; O1-C19-O2 119.44°) are consistent with a C=O double bond and very close to the idealized sp² hybridized carbon angle of 120°.^[18] The degree of the Si1-O2 interaction in **3**, **7** and **8** appears to be strongly dependent on the electrophilicity of the silicon centre.

A comparison of the NMR data reveals that the ²⁹Si signal for compound **3** ($\delta_{si} = -72.0 \text{ ppm}$) is more upfield than those of **7** ($\delta_{si} = -49.9 \text{ ppm}$), **8** ($\delta_{si} = -12.1 \text{ ppm}$), and **9** ($\delta_{si} = -12.1 \text{ ppm}$).

19.2 ppm), and the parent Lewis acid Ph₂SiOTf₂ (δ_{Si} = -24.6 ppm). Such upfield shifts in the ²⁹Si NMR signal have been previously seen for five coordinate silicon^[19] and suggests the κ^2 binding of CO₂ is present for **3** in solution. Furthermore, the more downfield ¹³C carbonyl resonance of **3** (δ_c = 165.02) is also consistent with a different CO₂ binding motif than in **7** (δ_c = 157.67), **8** (δ_c = 155.92), and **9** (δ_c = 156.36).

When these silyl carbamates **3**, **7**–**9** are placed under vacuum, no release of CO_2 is observed. This stands in contrast to a related species, [TMPH] [$C_9H_{18}NCO_2B(C_6F_5)_3$], reported by Piers and co-workers,^[4b] which -15.5 ppm (**10**, shifted due to equilibrium) and $\delta_P = 38.4$ ppm (**11**). Repetition of this experiment with isotopically enriched ¹³CO₂ gas resulted in the same broad singlet at $\delta_P = -15.5$ ppm as well as a doublet at $\delta_P = 38.4$ ppm (¹J_{PC} = 115 Hz) in the ³¹P{¹H} NMR spectrum. The ¹³C NMR spectrum displayed a corresponding broad doublet at $\delta_C = 163.14$ ppm with a matching coupling constant (¹J_{CP} = 115 Hz). This one bond P-C coupling suggests reversible insertion of CO₂ into the Si–P adduct **10**. Insertion of CO₂ into weak Lewis acid-base adducts is known,^[20] as has been reported for PMes₃/AIX₃ (X = Cl, Br) adducts.^[7b]

Variable-temperature NMR experiments using labeled $^{13}\text{CO}_2$ demonstrate that at $-20\,^\circ\text{C}$, full conversion to the CO_2 insertion product is observed (Figure 5); however, due to the reversible nature of this CO_2 insertion, the product **11** was not isolable. Nonetheless, all NMR spectroscopic data supports the formulation [Et_3PCO_2SiMe_3][OTf] (**11**) (Scheme 3).

In a similar manner, the stoichiometric reaction of **5** with PEt₃ yields a weak adduct, [Ph₃SiPEt₃][OTf] (**12**), evidenced by the singlet in the ³¹P NMR spectrum at $\delta_P = -16.4$ ppm which is slightly downfield from free PEt₃. Addition of CO₂ to this adduct results in the rapid formation of an equilibrium between the Si–P donor–acceptor adduct and a new species (**13**) at $\delta_P = 41.0$ ppm. The ¹³C NMR spectrum of this mixture dis-

Figure 5. Variable-temperature ³¹P{¹H} NMR study depicting the conversion between **10** and **11** in a ¹³CO₂ filled NMR tube. * denotes $[HPEt_3]^+$ impurity arising from moisture in the CO₂ gas.

liberates CO_2 on exposure to vacuum. The increased stability of silyl carbamates **3**, **7–9** is presumably a consequence of the isolation from the salt by-product, which precludes the reverse reaction.

In a similar fashion, treatment of **6** with one stoichiometric equivalent of PEt₃ resulted the formation of an adduct [Me₃SiPEt₃][OTf] (**10**), as evidenced by a sharp singlet in the ³¹P{¹H} NMR spectrum at $\delta_P = -11.5$ ppm (Figure 5). Interestingly, the ²⁹Si spectrum of this adduct did not display Si–P coupling, suggesting that the adduct dissociates reversibly on the NMR time scale. This mixture was exposed to CO₂ gas in a J-Young NMR tube, and the ³¹P{¹H} NMR spectrum of the reaction mixture after 20 min revealed two broad singlets at $\delta_P =$

Scheme 3. Synthesis of 10–15.

plays a characteristic doublet at $\delta_c = 163.49$ ppm exhibiting a P–C coupling of 112 Hz as well as resonances for constituent silicon and phosphorus fragments. This spectroscopic data supports the reversible formation of an analogous CO₂ insertion product [Et₃PCO₂SiPh₃][OTf] (**13**) (Scheme 3); similarly, attempts to isolate **13** were unsuccessful due to loss of CO₂ under a nitrogen atmosphere.

In an effort to minimize adduct formation and promote CO₂ capture, the more sterically hindered phosphine PtBu₃ was examined as the Lewis base partner. In contrast to PEt₃, PtBu₃ (Tolman cone angle of 182° vs 132°)^[21] in combination with **6** shows no Lewis acid/base interaction by NMR spectroscopy. Exposure to ¹³CO₂ in a sealed J-Young NMR tube shows resonances in the ³¹P and ¹H NMR spectra that are significantly broadened in comparison to that of free PtBu₃; however, no phosphorus–carbon coupling was observed. The ¹³C NMR spectrum of this mixture showed a broadened resonance attributable to free CO₂ as well as an extremely broad signal in the baseline from $\delta_{\rm C}$ =158–166 ppm,

suggesting very weak CO_2 binding by **6** and $PtBu_3$.

Cooling of the reaction mixture to 0°C, revealed a very broad doublet (due to ³¹P-¹³C visible coupling), at $\delta_{P} =$ 51.6 ppm inferring an equilibrium with free PtBu₃. Further cooling to -40 °C, resulted in the disappearance of the free PtBu₃ resonance and yields a spectrum with a sharp doublet at $\delta_{P} =$ 50.2 ppm (${}^{1}J_{CP} = 87 \text{ Hz}$) corresponding to a CO₂ captured species. The low temperature ¹³C{¹H} NMR spectrum displays the expected resonances for the condenced by a small doublet in in the ³¹P{¹H} spectrum $\delta_P = 57.5 \text{ ppm} (^{1}J_{PC} = 85 \text{ Hz})$ and a corresponding doublet in the ¹³C spectrum at $\delta_C = 162.93 \text{ ppm}$. Allowing this mixture to stand for a day at room temperature led to no change in composition, with free PtBu₃ still remaining as the predominant species in solution.

We anticipated that reactions of CO₂ with **1** and trialkylphosphines would yield more stable products due to the potential for κ^2 binding of CO₂. Treatment of **1** with one stoichiometric equivalent of PEt₃ did not result in adduct formation. Following addition of CO₂, the ³¹P{¹H} NMR spectrum revealed two new resonances at $\delta_P = 43.9$ ppm (**16**, major) and $\delta_P = 41.7$ ppm (**17**, minor). Repetition of this reaction with ¹³CO₂ gas revealed that both new signals in the ³¹P NMR spectrum couple to ¹³C nuclei with similar coupling constants of ¹J_{PC} = 112 Hz (**16**) and ¹J_{PC} = 119 Hz (**17**). Changing the relative ratio of the **1** and PEt₃ reagents had a significant effect on the ratio of **16** and **17** in solution (Figure 6).

Figure 6. ³¹P{¹H} NMR spectra depicting the activation of ¹³CO₂ by 1 and different stoichiometric equivalents of PEt₃. * denotes [HPEt₃]⁺ impurity arising from moisture in the CO₂ gas.

stituent silicon and phosphorus fragments, as well as a doublet at $\delta_P = 161.45$ ppm with a matching P–C coupling of 87 Hz. This spectroscopic data supports the proposed formulation [tBu₃PCO₂SiMe₃][OTf] (14) (Scheme 3).

It is interesting and perhaps counterintuitive that **10** is only observable in solution at low temperature. By contrast, CO_2 capture by **6** and PEt₃ readily occurs at room temperature. As PtBu₃ is actually a slightly stronger donor than PEt₃ (Tolman electronic parameters: PEt₃ 2061.7 cm⁻¹, PtBu₃ 2056.1 cm⁻¹)^[21] this difference in reactivity must be attributable to steric effects. It is proposed that the weak and reversible adduct formation between **6** and PEt₃ allows for pre-association of the Lewis acid and base components and facilitates CO_2 activation. At room temperature, pre-organization of more hindered Lewis bases, such as PtBu₃, with tetrahedral Lewis acids may be less favourable due to increased steric congestion.

The analogous reaction employing **5** similarly displayed weak CO_2 binding at room temperature. Upon addition of ${}^{13}CO_2$ gas to a 1:1 stoichiometric mixture of **5** and PtBu₃, NMR spectroscopy revealed minor conversion (~10%) to a new CO_2 captured species [tBu₃PCO₂SiPh₃][OTf] (**15**) (Scheme 3) as evi-

With 0.5 stoichiometric equivalents of PEt₃, **16** is the predominant species in solution; however, with 4.0 equivalents of PEt₃, the major species, **17**, appears to be in equilibrium with free phosphine giving rise to a broadened ³¹P{¹H} spectrum. Increasing the equivalents of phosphine in the reaction mixture presumably shifts the equilibrium towards species **17**.

The ¹³C NMR spectra of these reaction mixtures reveal that the carbonyl carbon resonances of **16** and **17** have nearly identical chemical shifts of δ_c =162.83 and 162.65 ppm. For each reaction, the ¹⁹F NMR spectrum displays only one triflate signal at room temperature. As a greater amount of PEt₃ is utilized, this ¹⁹F NMR resonance shifts upfield. At 0.5 equivalents of PEt₃, the triflate signal appears at δ_F =-76.57 ppm, whereas with 4.0 equivalents the resonance appears at δ_F = -78.78 ppm (cf. δ_F =-76.10 ppm for **1**). A more upfield resonance is consistent with a greater degree of dissociation of the triflate anion. These chemical shifts imply the dissociation of a single triflate in **16** and both triflate anions in **17**. Thus, it is proposed that **16** and **17** correspond to stepwise CO₂ activation products in which one or two molecules of CO₂ are bound, [Et₃P(CO₂)SiPh₂(OTf)][OTf] (**16**) and [(Et₃PCO₂)₂SiPh₂]

[OTf]₂ (17), respectively (Scheme 3). This is further supported by the low temperature NMR spectrum of the reaction between 1, excess PEt₃, and CO₂. At low temperatures, the P–Et resonances of 17 and free PEt₃ split in the ¹H NMR spectrum. Although still broad, integration of the CH_2 -PCO₂ resonance relative to the aromatic signals reveals a ratio of two PEt₃ moieties per equivalent of Lewis acid.

Examples of double activation of small molecules by FLP systems are relatively rare. In 2011, we reported that the bisborane $(C_6F_5)_2B(C_6F_4)B(C_6F_5)_2$ could activate two molecules of nitrous oxide using two equivalents of PtBu₃ to afford the biszwitterion $tBu_3P(N_2O)B(C_6F_5)_2C_6F_4(C_6F_5)_2B(ON_2)PtBu_3$.^[22] For this system, it is proposed that N₂O activation occurs in a stepwise fashion. In 2012, our group also reported the double activation of CO₂ using the diamidophosphorane $(C_6H_4(NMe))_2PPh$.^[8] This process occurs by the insertion of two molecules of CO₂ into the P–N bonds to yield the bis(carbamato)phosphorane $(C_6H_4NMe(CO_2))_2PPh$.^[8] In contrast to the bis-borane system, which contains two different Lewis acidic centres, the diamidophosphorane uses a single phosphorus Lewis acidic centre for the double activation process.

Treatment of 1 with one stoichiometric equivalent of PtBu₃ did not result in adduct formation. Addition of ¹³CO₂ to this mixture resulted in a ³¹P{¹H} NMR spectrum that displayed a broadened PtBu₃ resonance and a broad doublet ($\delta_P = 57.5$, ${}^{1}J_{PC} = 80$ Hz) corresponding to the CO₂ captured product [tBu₃P(CO₂)SiPh₂(OTf)][OTf₂] (18) (Scheme 4). Attempts to promote the generation of a bis-CO₂ activation product analogous to 17 by addition of excess PtBu₃ only accelerated degradation of 18. However, upon cooling to -30 °C, a 1:2 stoichiometric mixture of 1 and PtBu3 pressurized with ¹³CO2 showed consumption of PtBu₃ and 18 and the generation of a species proposed to be $[(tBu_3P(CO_2))_2SiPh_2][OTf_2]_2$ (19) (Scheme 4) (see Supporting Information). Interestingly at room temperature, there is no evidence for the formation of a bis-CO₂ activation product. Over time, decomposition of 18 occurs at room temperature. The major decomposition species can be identified by a doublet in the ¹³C NMR spectrum at $\delta_c = 181.61$ ppm $({}^{1}J_{PC} = 45 \text{ Hz})$ and a corresponding signal in the ${}^{31}P$ NMR spectrum at $\delta_{\rm P}$ = 49.7 ppm. Resonances arising from isobutylene were also observed in the ¹H NMR spectrum and the product was presumed to be the phosphinoformate species, tBu₂P(CO₂)SiPh₂(OTf). This could be formed by the deprotonation of a tert-butyl substituent of 18 and loss of isobutylene.

Conclusion

Silyl triflates and tetramethylpiperidine are shown to react with CO_2 to yield silyl carbamates in the form of $C_9H_{18}N(CO_2)SiR_3$ and the ammonium triflate salt [TMPH][OTf]. In these carbamate products, the CO_2 moiety was found to bind to silicon in either a κ^1 or κ^2 fashion depending on the electrophilicity of the silicon centre. Silyl triflates (R₃SiOTf) are also shown to be active in the complexation of CO_2 in combination with PEt₃ or PtBu₃ to yield species of the general form [R'₃P(CO₂)SiR₃][OTf]. These species are unstable with respect to CO_2 liberation and thus are only stable in a CO_2 filled vessel. When employing

Scheme 4. Synthesis of 16-19.

PEt₃ or PtBu₃ as the Lewis base partner, Ph₂Si(OTf)₂ has been proposed to activate either one or two molecules of CO₂ depending on the stoichiometric equivalents of phosphine used as well as the temperature. Reactions employing PtBu₃ tended to yield less CO₂ incorporation at equilibrium than their PEt₃ counterparts. The increased steric hindrance of PtBu₃ is presumably less conducive to the prearrangement of the Lewis acidic and basic components when used with tetrahedral Lewis acids.

These findings illustrate that CO_2 activation can be achieved with electronically saturated Lewis acids. We are continuing to investigate the application of four-coordinate silicon Lewis acids in FLP chemistry and their use in the activation of CO_2 .

Experimental Section

General methods: All preparations and manipulations were carried out under an anhydrous N₂ atmosphere using standard glovebox and Schlenk-line techniques. Glassware was oven-dried and cooled under vacuum prior to use. Unless specified, all reagents were used as received without further purifications. 2,2,6,6-Tetramethylpiperidine was distilled from CaH₂ prior to use. (C₆F₅)₃Si(OTf) (4) was prepared by literature methods. $^{\scriptscriptstyle [23]}$ Me_3Si(OTf) (6) was purchased from Strem Chemicals. Solvents (CH₂Cl₂ and pentane) were dried using an Innovative Technologies solvent purification system, degassed, and stored over molecular sieves. CD₂Cl₂ was dried over CaH₂, degassed, and stored over activated molecular sieves. NMR spectra were obtained on a Bruker Avance III-400 MHz, Varian 400 MHz, Agilent DD2 500 MHz, Agilent DD2 600 MHz, or Varian Mercury 300 MHz spectrometer. All NMR experiments were conducted at a temperature of 25 °C unless otherwise noted. ¹H, ¹¹B, ¹³C, ¹⁹F, ²⁹Si, and ³¹P NMR spectra were referenced using (residual) solvent resonances relative to $SiMe_4$ (^1H and $^{13}\text{C})$ or relative to an external standard (^{11}B: (Et_2O)BF_3, \ ^{19}F: CFCl_3, \ ^{29}Si: SiMe_4, \ ^{31}P: 85\,\% H₃PO₄). Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Combustion analyses were performed by ANALEST at the University of Toronto with a PerkinElmer CHN Analyzer.

Ph₂Si(OTf)₂ (1): A solution of Ph₂SiCl₂ (534 mg, 2.11 mmol, 1.0 equiv) in CH_2Cl_2 (2 mL) was added to a suspension of AgOTf (1.084 g, 4.22 mmol, 2.0 equiv) in CH_2Cl_2 (3 mL). The resulting mixture was left stirring at room temperature in the dark for 24 h The AgCl precipitate was removed by filtration and the solvent was re-

moved in vacuo. The resulting solid was washed with minimal pentane (1 mL) to give a white powder (930 mg, 92%). Crystals suitable for X-ray diffraction were grown from a concentrated CH₂Cl₂ solution at room temperature. The product can also be recrystallized from pentane in the freezer at -35 °C. ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 7.61$ (dd, 4H, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 8$ Hz, ${}^{m}C_{6}H_{5}$), 7.76 (tt, 2H, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz, $p-C_{6}H_{5}$), 7.83 ppm (dd, 4H, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz, $p-C_{6}H_{5}$), 122.73 (s, *i*- $C_{6}H_{5}$), 129.47 (s, *m*- $C_{6}H_{5}$), 134.75(s, *p*- $C_{6}H_{5}$), 135.60 ppm (s, *o*- $C_{6}H_{5}$); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -76.10$ ppm (s, CF₃); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): $\delta = -24.6$ ppm (s); elemental analysis calcd for (%): C₁₄H₁₀F₆O₆S₂Si: C 35.00, H 2.10; found: C 34.57, H 2.39.

[TMPH][OTf] (2): The precipitate from reactions yielding 3, 7–9 was isolated by filtration of the reaction mixtures. The white solid was washed with CH₂Cl₂ and pentane (5 mL) and then dried in vacuo. NMR spectroscopy and X-ray diffraction identified this species as [TMPH][OTf]. Single crystals suitable for X-ray diffraction were grown at room temperature from CH₂Cl₂. ¹H NMR (400.0 MHz, CD₃CN): δ = 1.41 (s, 12 H, CH₃), 1.65 (m, 4 H, CH₂), 1.74 (m, 2 H, CH₂), 6.53 ppm (brt, 2 H, ¹J_{HN} = 12 Hz, NH); ¹³C{¹H} NMR (75.4 MHz, CD₃CN): δ = 16.71 (s, CH₂), 27.39 (s, CH₃), 35.36 (s, CH₂), 59.04 (s, C-Me₂), 121.78 ppm (q, ¹J_{CF} = 320 Hz, CF₃); ¹⁹F{¹H} NMR (376.4 MHz, CD₃CN): δ = -79.39 ppm (s, CF₃).

C_oH₁₈N(CO₂)SiPh₂(OTf) (3): A J-Young NMR tube was charged with 1 (34 mg, 0.0708 mmol, 1.0 equiv) and 2,2,6,6-tetramethylpiperidine (20 mg, 0.142 mmol, 2.0 equiv) in CD₂Cl₂ (1 mL). The J-Young was degassed and filled with CO2. Following this, a white solid started to precipitate from solution. The progress of the reaction was monitored by ¹H NMR spectroscopy; upon reaction completion, the contents of the J-Young were transferred to a vial and pentane was added (3 mL). The mixture was filtered to remove the precipitate 2. Volatiles were removed from the filtrate in vacuo affording 3. The product is a white solid which can be recrystallized from pentane or CH_2Cl_2 /pentane solutions at -30 °C (32 mg, 88%). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a pentane solution. ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta =$ 1.58 (s, 12 H, CH₃), 1.66 (m, 2 H, CH₂), 1.76 (m, 4 H, CH₂), 7.45 (ddm, 4 H, ${}^{3}J_{HH} = 7$ Hz, ${}^{3}J_{HH} = 7$ Hz, m-C₆H₅), 7.51 (tt, 2 H, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} =$ 2 Hz, p-C₆H₅), 7.84 ppm (ddd, 4 H, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 1$ Hz, ${}^{4}J_{HH} =$ 1 Hz, $o-C_6H_5$; ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = 16.14$ (s, CH₂), 29.16 (s, CH₃), 41.52 (s, CH₂), 61.22 (s, C-Me₂), 119.29 (q, ${}^{1}J_{CF} =$ 318 Hz, CF₃), 128.49 (s, m-C₆H₅), 131.42 (s, p-C₆H₅), 132.84 (s, i-C₆H₅), 135.53 (s, o-C₆H₅), 165.02 ppm (s, NCO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -77.77$ (s, CF₃); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): $\delta_{Si} =$ -72.0 ppm (s); elemental analysis calcd for (%) C₂₃H₂₈F₃NO₅SSi: C 53.58, H 5.47, N 2.72; found: C 53.88, H 5.69, N 3.23.

Ph₃Si(OTf) (5): A solution of Ph₃SiCl (460 mg, 1.56 mmol, 1.0 equiv) in CH₂Cl₂ (2 mL) was added to a suspension of AgOTf (400 mg, 1.56 mmol, 1.0 equiv) in CH₂Cl₂ (3 mL). The resulting mixture was stirred in the dark for 12 h. The AgCl precipitate was removed by filtration and the solvent was removed in vacuo, affording a white solid (495 mg, 78%). Single crystals suitable for X-ray diffraction were grown from a concentrated pentane solution at room temperature. ¹H NMR (400.0 MHz, CD₂Cl₂): δ = 7.53 (dd, 6H, ³J_{HH} = 8 Hz, ³J_{HH} = 8 Hz, *m*-C₆H₅), 7.63 (t, 3H, ³J_{HH} = 8 Hz, *p*-C₆H₅), 7.75 ppm (d, 6H, ³J_{HH} = 8 Hz, *o*-C₆H₅); ¹³C[¹H} NMR (100.6 MHz, CD₂Cl₂): δ = 118.86 (q, ¹J_{CF} = 318 Hz, CF₃), 128.94 (s, *m*-C₆H₅), 129.11 (s, *i*-C₆H₅), 132.46 (s, *p*-C₆H₅), 136.03 ppm (s, *o*-C₆H₅); ¹⁹F[¹H} NMR (376.4 MHz, CD₂Cl₂): δ = -76.87 ppm (s), CF₃); ²⁹Si[¹H} NMR (79.5 MHz, CD₂Cl₂): δ = 1.7 ppm (s); elemental analysis calcd for (%) C₁₉H₁₅F₃O₃SSi: C 55.87, H 3.70; found: C 55.84, H 3.92. $C_9H_{18}N(CO_2)Si(C_6F_5)_3$ (7), C₉H₁₈N(CO₂)SiPh₃ (8) and C₉H₁₈N(CO₂)SiMe₃ (9): These compounds were prepared in a similar fashion to 3 and thus only one preparation is detailed. 7: Scale: 4 (20 mg, 0.0295 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidine (8 mg, 0.0590 mmol, 2.0 equiv). The product was obtained as a white solid (20 mg, 95%). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a pentane solution. ¹H NMR (500.0 MHz, CD_2CI_2): $\delta = 1.41$ (s, 12 H, CH_3), 1.61 (m, 2 H, CH_2), 1.68 ppm (t, 4 H, ${}^3\!{\it J}_{HH}\!=\!6$ Hz, CH_2); ${}^{13}C\{{}^1H\}$ NMR (125.73 MHz, CD₂Cl₂): $\delta = 16.10$ (s, CH₂), 29.37 (s, CH₃), 41.36 (s, CH₂), 58.89 (s, C-Me₂), 106.99 (t, ${}^{2}J_{CF} = 28$ Hz, $i-C_{6}F_{5}$), 137.81 (dm, ${}^{1}J_{CF} = 253$ Hz, m- C_6F_5), 142.78 (dm, ${}^{1}J_{CF} = 257$ Hz, $p-C_6F_5$), 149.19 (dm, ${}^{1}J_{CF} = 245$ Hz, o-C₆F₅), 157.67 ppm (s, NCO₂); ${}^{19}F{}^{1}H{}$ NMR (376.4 MHz, CD₂Cl₂): $\delta =$ -128.35 (d, 6F, $^{3}J_{FF}\!=\!18.1$ Hz, $o\text{-}C_{6}F_{5}\text{)},\ -149.22$ (t, 3F, $^{3}J_{FF}\!=\!19.9$ Hz, $p\text{-}C_{6}F_{5}\text{)},\ -161.16$ ppm (m, 6F, $m\text{-}C_{6}F_{5}\text{)};\ ^{29}\text{Si}$ NMR (79.5 MHz, CD_2Cl_2): $\delta = -49.9 \text{ ppm}$ (s); elemental analysis calcd for (%) C₂₈H₁₈F₁₅NO₂Si: C 47.13, H 2.54, N 1.96; found: C 46.89, H 2.26, N 2.00.

8: Scale: **5** (30 mg, 0.0734 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidine (21 mg, 0.147 mmol, 2.0 equiv). The product was obtained as a white solid (27 mg, 83%). Single crystals suitable for X-ray diffraction were grown by slow evaporation of a pentane solution. ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.47$ (s, 12 H, C-CH₃), 1.64 (m, 2 H, CH₂), 1.71 (t, 4H, ${}^{3}J_{HH} = 6$ Hz, CH₂), 7.39 (dd, 6H, ${}^{3}J_{HH} = 7$ Hz, ${}^{3}J_{HH} = 7$ Hz, $m-C_{6}H_{5}$), 7.45 (t, 3 H, ${}^{3}J_{HH} = 7$ Hz, $p-C_{6}H_{5}$), 7.66 ppm (d, 6 H, ${}^{3}J_{HH} = 7$ Hz, $o-C_{6}H_{5}$); 1³C{¹H} NMR (125.73 MHz, CD₂Cl₂): $\delta = 15.95$ (s, CH₂), 29.94 (s, CH₃), 40.40 (s, CH₂), 57.06 (s, C-Me₂), 128.13 (s, m-C₆H₅), 130.39 (s, $p-C_{6}H_{5}$), 134.23 (s, $i-C_{6}H_{5}$), 136.04 (s, $o-C_{6}H_{5}$), 155.92 ppm (s, NCO₂); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): $\delta = -12.1$ ppm (s); elemental analysis calcd for (%) C₁₃H₂₇NO₂Si: C 75.80, H 7.50, N 3.16; found: C 76.49, H 7.50, N 2.97.

9: Scale: **6** (30 mg, 0.135 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidine (38 mg, 0.270 mmol, 2.0 equiv). The product was obtained as a colourless oil (30 mg, 86%). ¹H NMR (500.0 MHz, CD₂Cl₂): δ = 0.26 (s, 9 H, Si-CH₃), 1.39 (s, 12 H, C-CH₃), 1.58 (m, 2 H, CH₂), 1.64 ppm (t, 4 H, ³J_{HH} = 6 Hz, CH₂); ¹³C{¹H} NMR (125.73 MHz, CD₂Cl₂): δ = 0.24 (s, Si-CH₃), 16.25 (s, CH₂), 29.94 (s, C-CH₃), 41.11 (s, CH₂), 56.53 (s, C-Me₂), 156.36 ppm (s, NCO₂); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): δ = 19.2 ppm (s); elemental analysis calcd for (%) C₁₃H₂₇NO₂Si: C 60.65, H 10.57, N 5.44; found: C 60.05, H 11.01, N 6.13.

 $[Me_3SiPEt_3][OTf]$ (10) and $[Ph_3SiPEt_3][OTf]$ (12): These compounds were prepared in a similar fashion and thus only one is detailed.

10: 6 (30 mg, 0.135 mmol, 1.0 equiv) and PEt₃ (10 mg, 0.135 mmol, 1.0 equiv) were combined in CD₂Cl₂ and the resulting adducts were examined by multinuclear NMR spectroscopy. ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 0.53$ (s, 9H, Si-CH₃), 1.16 (dt, 9H, ³J_{HP} = 16 Hz, P-CH₂CH₃), 1.83 ppm (m, 6H, P-CH₂); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = -0.53$ (s, Si-CH₃), 8.26 (s, P-CH₂CH₃), 14.81 (br, P-CH₂), 119.73 ppm (q, ¹J_{CF}=318 Hz, CF₃); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -78.09$ ppm (s, CF₃); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): $\delta = 30.9$ ppm (s); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -11.5$ ppm (s);

12: Scale: **5** (22 mg, 0.0539 mmol, 1.0 equiv), PEt₃ (4 mg, 0.0539 mmol, 1.0 equiv); ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.04$ (dt, 9H, ³J_{HP}=15 Hz, ²J_{HH}=8 Hz, CH₃), 1.53 (qd, 6H, ²J_{HH}=8 Hz, ²J_{HP}= 2 Hz, P-CH₂), 7.52 (ddm, 6H, ³J_{HH}=7 Hz, ³J_{HH}=7 Hz, m-C₆H₅), 7.62 (m, 3H, ³J_{HH}=7 Hz, p-C₆H₅), 7.69 ppm (dm, 6H, ³J_{HH}=7 Hz, o-C₆H₅); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = 9.01$ (d, ¹J_{CP}=8 Hz, P-CH₂), 17.41 (s, P-CH₂CH₃), 119.40 (q, ¹J_{CF}=318 Hz, CF₃), 128.24 (brs, *i*-C₆H₅); 1²P{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -77.32$ ppm (s, CF₃); ²⁹Si{¹H} NMR (HMBC) (99.3 MHz, CD₂Cl₂): $\delta = -1.0$ ppm (s); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -16.4$ ppm (s).

Chem. Eur. J. 2015, 21, 13027 - 13034

www.chemeurj.org

```
13032
```


[Et₃PCO₂SiMe₃][OTf] (11), [Et₃PCO₂SiPh₃][OTf] (13), [tBu₃PCO₂SiMe₃][OTf] (14), [tBu₃PCO₂SiPh₃][OTf] (15): These compounds were prepared in a similar fashion and thus a general procedure is detailed. A J-Young NMR tube was charged with the appropriate silyl triflate (1.0 equiv) and PEt₃ (1.0 equiv) in CD₂Cl₂ (1 mL); The reaction mixture was then examined for adduct formation by multinuclear NMR spectroscopy. Following this, the J-Young NMR tube was degassed and CO₂ gas was added. In each case, NMR spectra obtained after one hour revealed the presence a CO₂ sequestered species in equilibrium with free starting materials or an adduct. The Si/P CO₂ captured species were not isolable and thus were characterized in a CO₂-filled J-Young NMR tube.

11: Scale: **6** (30 mg, 0.135 mmol, 1.0 equiv), PEt₃ (10 mg, 0.135 mmol, 1.0 equiv); (Reaction mixture with **10**): ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 0.48$ (s, Si-CH₃), 1.16–1.42 (br, 11 P-Et), 1.54–1.80 (br, 10 P-Et), 2.25–2.40 (br, 10 P-Et), 2.40–2.90 ppm (br, 11 P-Et); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = -0.10$ (s, Si-CH₃), 6.36 (br, P-CH₂CH₃), 12.45 (br, P-CH₂), 120.06 (q, ¹J_{CF} = 319 Hz, CF₃), 125.28 (br, free CO₂), 163.14 ppm (brd, ¹J_{CP} = 115 Hz, P-CO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -78.39$ ppm (s, CF₃); ²⁹Si{¹H} NMR (HMBC) (99.3 MHz, CD₂Cl₂): $\delta = 40.3$ ppm (br); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -13.9$ (br, 10), 38.4 ppm (br, 11).

13: Scale: **5** (22 mg, 0.0539 mmol, 1.0 equiv), PEt₃ (4 mg, 0.0539 mmol, 1.0 equiv); (Reaction mixture with **12**): ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.04$ (br m, 12 P-CH₂CH₃), 1.28 (dt, ³J_{HP} = 20 Hz, ³J_{HH} = 8 Hz, 13 P-CH₂CH₃), 1.48 (br m, 12 P-CH₂), 2.62 (dq, ²J_{HP} = 14 Hz, ³J_{HH} = 8 Hz, 13 P-CH₂(H₃), 7.51 (br, *m*-C₆H₅), 7.60 (br, *p*-C₆H₅), 7.68 ppm (br, *o*-C₆H₅); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = 6.24$ (d, ²J_{PC} = 6 Hz, 13 P-CH₂CH₃), 9.05 (br, 12 P-CH₂CH₃), 12.62 (d, ¹J_{PC} = 42 Hz, 13 P-CH₂), 17.58 (br, 12 P-CH₂), 118.90 (q, ¹J_{CF} = 318 Hz, CF₃), 125.27 (s, free CO₂), 128.86 (s, 12 *i*-C₆H₅), 132.27 (s, 13 *m*-C₆H₅), 132.46 (s, 13 *p*-C₆H₅), 136.02 (s, 13 *o*-C₆H₅), 132.27 (s, 12 *p*-C₆H₅), 132.46 (s, 13 *p*-C₆H₅), 136.02 (s, 13 *o*-C₆H₅), 163.49 ppm (d, ¹J_{CP} = 112 Hz, P-CO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -78.20$ ppm (s, CF₃); ²⁹Si{¹H} NMR (HMBC) (99.3 MHz, CD₂Cl₂): $\delta = -0.5$ (s, 12), 0.5 ppm (s, 13); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -15.2$ (s, 12), 41.0 ppm (s, 13).

14: Scale: 6 (22 mg, 0.0990 mmol, 1.0 equiv), $PtBu_3$ (20 mg, 0.0990 mmol, 1.0 equiv); Reaction mixture (25 °C): ¹H NMR (400.0 MHz, 25 °C, CD₂Cl₂): $\delta = 0.49$ (s, 9H, Si-CH₃), 1.19–1.50 ppm (br, 27 H, PC(CH₃)₃); ${}^{13}C{}^{1}H$ NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ = 0.32 (s, Si-CH₃), 32.36 (br, PC(CH₃)₃), 34.70 (br, P-C), 119.54 (q, ${}^{1}J_{CF} =$ 319 Hz, CF₃), 161.97 ppm (br, P-CO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -77.86$ ppm (s, CF₃); ²⁹Si{¹H} NMR (HMBC) (99.3 MHz, CD₂Cl₂): $\delta = 43.7$ ppm(s); ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): $\delta =$ 62.5 (brs); (-40 °C): ¹H NMR (500.0 MHz, -40 °C, CD₂Cl₂): $\delta = 0.44$ (s, 9H, Si-CH₃), 1.65 ppm (d, 27H, ${}^{3}J_{HP} = 15$ Hz, PC(CH₃)₃); ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz, $-40\,^\circ\text{C}$, $\text{CD}_2\text{Cl}_2\text{)}\text{:}~\delta\!=\!-0.67$ (s, Si-CH_3), 29.86 (s, $PC(CH_3)_3)$, 40.99 (d, ${}^1J_{CP} = 18$ Hz, P-C), 120.49 (q, ${}^1J_{CF} = 321$ Hz, CF_3), 161.45 ppm (d, ${}^{1}J_{CP} = 87 \text{ Hz}$, P-CO₂); ${}^{19}\text{F}{}^{1}\text{H}$ NMR (376.4 MHz, CD_2Cl_2): $\delta_F = -79.07 \text{ ppm}$ (s, CF_3); ²⁹Si{¹H} NMR (HMBC) (99.3 MHz, CD_2Cl_2): $\delta = 38.2 \text{ ppm}$ (s); ${}^{31}P{}^{1}H$ NMR (202.4 MHz, $-40 \degree C$, CD_2Cl_2): $\delta =$ 50.23 ppm (d, ${}^{1}J_{\rm CP} =$ 87 Hz).

15: Scale: **5** (30 mg, 0.0734 mmol, 1.0 equiv), PtBu₃ (15 mg, 0.0734 mmol, 1.0 equiv); Reaction mixture: ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.31$ (d, ³ $J_{HP} = 10$ Hz, free PtBu₃), 1.66 (d, ³ $J_{HP} = 15$ Hz, 15 P-C(CH₃)₃), 7.51 (dd/br, ³ $J_{HH} = 7$ Hz, ³ $J_{HH} = 7$ Hz, m-C₆H₅), 7.61 (brt, ³ $J_{HH} = 7$ Hz, p-C₆H₅), 7.71 ppm (brd, ³ $J_{HH} = 7$ Hz, o-C₆H₅); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = 30.69$ (br, P-C), 32.61 (d, ³ $J_{CP} = 13$ Hz, P-C(CH₃)₃), 119.43 (q, ¹ $J_{CF} = 321$ Hz, CF₃), 125.32 (s, free CO₂), 128.91 (s, m-C₆H₅), 129.09 (s, *i*-C₆H₅), 132.44 (s, *p*-C₆H₅), 136.02 (s, *o*-C₆H₅), 162.93 ppm (brd, ¹ $J_{PC} = 85$ Hz, 15 P-CO₂); ¹⁹F{¹H} NMR (376.4 MHz, 25 °C, CD₂Cl₂): $\delta = -77.42$ ppm (brs, CF₃); ²⁹Si NMR (HMBC)

(79.5 MHz, CD₂Cl₂): δ = 1.6 ppm (s); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): δ = 57.5 (brs, 15), 62.5 ppm (brs, free PtBu₃).

[Et₃P(CO₂)SiPh₂(OTf)][OTf] (16) and [(Et₃PCO₂)₂SiPh₂][OTf]₂ (17): A J-Young NMR tube was charged with 1 (1.0 equiv) and PEt₃ (0.5, 1.0, 2.0, or 4.0 equiv) in CD₂Cl₂ (1 mL). No adduct formation was observed between Ph₂Si(OTf)₂ and PEt₃ by ³¹P NMR spectroscopy. The J-Young NMR tubes were degassed and CO₂ gas was added. The relative amounts of **16** and **17** observed in the reaction mixtures are strongly dependent on the number of equivalents of PEt₃ used. NMR spectroscopic data is provided for the reactions using 0.5 equiv and 4.0 equiv PEt₃.

Reaction mixture with 0.5 equiv PEt₃: Scale: **1** (29 mg, 0.0604 mmol, 1.0 equiv), PEt₃ (2 mg, 0.0302 mmol, 0.5 equiv); ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.35$ (m, 16 PCH₂CH₃), 2.69 (br m, 16 P-CH₂), 7.61 (br dd, ³J_{HH} = 8 Hz, ³J_{HH} = 8 Hz, m-C₆H₅), 7.76 (tt, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz, p-C₆H₅), 7.83 ppm (dm, ³J_{HH} = 8 Hz, o-C₆H₅); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): $\delta = 6.15$ (d, ²J_{PC} = 6 Hz, 16 P-CH₂CH₃), 12.66 (d, ¹J_{PC} = 42 Hz, 16 P-CH₂), 118.97 (q, ¹J_{CF} = 318 Hz, CF₃), 122.84 (s, *i*-C₆H₅), 125.30 (s, free CO₂), 129.52 (s, *m*-C₆H₅), 134.79 (s, *p*-C₆H₅), 135.65 (s, *o*-C₆H₅), 162.83 ppm (d, ¹J_{PC} = 112 Hz, 16 P-CO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): $\delta = -76.57$ ppm (s, CF₃); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): $\delta = -24.6$ ppm (s, 16); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = 41.7$ (br, trace, 17), 43.9 ppm (s, 16).

Reaction mixture with 4.0 equiv PEt₃: Scale: 1 (29 mg, 0.603 mmol, 1.0 equiv), PEt₃ (18 mg, 0.241 mmol, 4.0 equiv); ¹H NMR (400.0 MHz, CD₂Cl₂): δ = 0.90–1.50 (br, overlapping PEt₃ and 17 P-Et), 2.40–2.80 (br, 17 P-CH₂CH₃), 7.59 (dd, ³J_{HH} = 7 Hz, ³J_{HH} = 7 Hz, *m*-C₆H₅), 7.69 (t, ³J_{HH} = 7 Hz, *P*-C₆H₅), 7.83 ppm (dd, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz, o-C₆H₅); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂): δ = 6.00 (br, 17 P-CH₂CH₃), 9.30 (br, PEt₃ P-CH₂CH₃), 12.24 (br, 17 P-CH₂), 18.48 (br, PEt₃ P-CH₂), 121.14 (q, ¹J_{CF} = 320 Hz, CF₃), 124.56 (s, *i*-C₆H₅), 125.25 (br, free CO₂), 129.33 (s, *m*-C₆H₅), 133.92 (s, *p*-C₆H₅), 135.66 (s, o-C₆H₅), 162.65 ppm (brd, ¹J_{PC} = 119 Hz, PCO₂); ¹⁹F{¹H} NMR (376.4 MHz, CD₂Cl₂): δ = -78.78 ppm (s, CF₃); ²⁹Si NMR (79.5 MHz, CD₂Cl₂): δ = -18.6 (br, PEt₃), 41.7 (br, 17), 43.9 ppm (br, trace, 16).

[tBu₃P(CO₂)SiPh₂(OTf)][OTf₂] (18) and [(tBu₃PCO₂)₂SiPh₂][OTf]₂ (19): A J-Young NMR tube was charged with 1 (1.0 equiv) and PtBu₃ (1.0 or 2.0 equiv) in CD₂Cl₂ (1 mL). No adduct formation was observed between 1 and PtBu₃ by ³¹P NMR spectroscopy. The J-Young NMR tubes were degassed and CO₂ gas was added. Partial conversion to 18 was observed at room temperature, while formation of 19 was only observable at low temperature (-30 °C).

18: Reaction mixture with 1.0 equiv PtBu₃: Scale: **1** (30 mg, 0.0624 mmol, 1.0 equiv), PtBu₃ (13 mg, 0.0624 mmol, 1.0 equiv); (25 °C): ¹H NMR (400.0 MHz, CD₂Cl₂): $\delta = 1.30$ (br, free PtBu₃), 1.70 (br, 18 P-C(CH₃)₃), 7.62 (dd/br, ³J_{HH} = 8 Hz, ³J_{HH} = 8 Hz, *m*-C₆H₅), 7.76 (brt, ³J_{HH} = 8 Hz, *p*-C₆H₅), 7.81 ppm (dd, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz, o-C₆H₅); ¹³C[¹H] NMR (125.7 MHz, CD₂Cl₂): $\delta = 30.58$ (br), 32.51 (br), 34.63 (brd, ¹J_{CP} = 30 Hz, P-C), 42.76 (brd, ¹J_{CP} = 12 Hz, P-C), 119.41 (q, ¹J_{CF} = 319 Hz, CF₃), 122.80 (brs, i-C₆H₅), 122.89 (brs, i-C₆H₅), 125.29 (brs, free CO₂), 129.51 (brs, *m*-C₆H₅), 129.75 (brs, *m*-C₆H₅), 162.96 ppm (brd, ¹J_{CP} = 80 Hz, PCO₂); ¹⁹F[¹H] NMR (376.4 MHz, CD₂Cl₂): $\delta = -77.32$ ppm (s, CF₃); ²⁹Si[¹H} NMR (HMBC) (99.3 MHz, CD₂Cl₂): $\delta = -24.6$ (s, Ph₂Si(OTf)₂), -20.7 ppm (s, 18); ³¹P[¹H] NMR (161.9 MHz, CD₂Cl₂): $\delta = 57.5$ (brs, 18), 62.5 ppm (brs, free PtBu₃).

19: Reaction mixture with 2.0 equiv PtBu₃: Scale: **1** (29 mg, 0.0603 mmol, 1.0 equiv), PtBu₃ (24 mg, 0.121 mmol, 2.0 equiv); $(-30 \degree C)$: ¹H NMR (500.0 MHz, CD₂Cl₂): $\delta = 1.64$ (d, 54 H, ³ $J_{HP} = 16$ Hz, P-C(CH₃)₃), 7.62 (dd, 4H, ³ $J_{HH} = 8$ Hz, ³ $J_{HP} = 8$ Hz, m-C₆H₅), 7.76 ppm (m, 6H, overlapping *p*-C₆H₅ o-C₆H₅); ¹³C(¹H) NMR (125.7 MHz,

Chem. Eur. J. 2015, 21, 13027 - 13034

www.chemeurj.org

 $\begin{array}{l} \text{CD}_2\text{Cl}_2\text{): } \delta = 29.91 \ (\text{s}, \ \text{P-C}(\text{CH}_3)_3\text{)}, \ 45.04 \ (\text{d}, \ ^1J_{\text{CP}} = 16 \ \text{Hz}\text{)}, \ 120.57 \ (\text{q}, \ ^1J_{\text{CF}} = 320 \ \text{Hz}, \ \text{CF}_3\text{)}, \ 122.08 \ (\text{s}, \ \textit{i-C}_6\text{H}_5\text{)}, \ 129.55 \ (\text{s}, \ \textit{m-C}_6\text{H}_5\text{)}, \ 134.49 \ (\text{s}, \ \textit{p-C}_6\text{H}_5\text{)}, \ 135.09 \ (\text{s}, \ \textit{o-C}_6\text{H}_5\text{)}, \ 129.55 \ (\text{s}, \ \textit{m-C}_6\text{H}_5\text{)}, \ 134.49 \ (\text{s}, \ \textit{p-C}_6\text{H}_5\text{)}, \ 135.09 \ (\text{s}, \ \textit{o-C}_6\text{H}_5\text{)}, \ 163.26 \ \text{ppm} \ (\text{d}, \ ^1J_{\text{CP}} = 80 \ \text{Hz}, \ \text{PCO}_2\text{)}; \ ^{19}\text{F}^1\text{H} \ \text{NMR} \ (470.4 \ \text{MHz}, \ \text{CD}_2\text{Cl}_2\text{): } \delta = -78.9 \ \text{ppm} \ (\text{s}, \ \text{CF}_3\text{)}; \ ^{31}\text{P}^1\text{H} \ \text{NMR} \ (202.4 \ \text{MHz}, \ \text{CD}_2\text{Cl}_2\text{): } \delta = 55.6 \ (\text{d}, \ ^1J_{\text{PC}} = 81 \ \text{Hz}, \ 18, \ \textit{trace}\text{)}, \ 56.1 \ \text{ppm} \ (\text{d}, \ ^1J_{\text{PC}} = 80 \ \text{Hz}, \ \text{CD}_2\text{Cl}_2\text{): } \delta = -17.7 \ \text{ppm}(\text{s}). \end{array}$

X-ray diffraction studies: Single crystals were coated with Paratone-N oil and mounted under a cold nitrogen stream. Data sets were collected on a Bruker Kappa Apex II CCD diffractometer using a graphite monochromater with Mo_{Ka} radiation ($\lambda = 0.71073$ Å). Data reduction was performed using the Bruker SMART software package. Data sets were corrected for absorption effects using SADABS. The structures were solved by direct methods using XS and refined by full-matrix least-squares on F^2 using XL as implemented in the SHELXTL suite of programs. All non-hydrogen atoms were refined anisotropically unless noted otherwise. Hydrogen atoms were placed in calculated positions using an appropriate riding model and coupled isotropic temperature factors. In the case of $C_9H_{18}N(CO_2)SiPh_2(OTf)$ (3), this structure was both twinned and disordered. The TMP moiety is disordered over two positions (50:50). The disordered atoms were refined isotropically, while the remaining non-hydrogen atoms were refined anisotropically.

CCDC 1400630, 1400631, 1400632, 1400633 and 1400634 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Acknowledgements

D.W.S. gratefully acknowledges the financial support of the NSERC of Canada and is thankful for the award of a Canada Research Chair. S.A.W. is grateful for the support of an NSERC CGS-M scholarship.

Keywords: carbon dioxide activation • frustrated Lewis pairs • phosphines • silicon • silyl triflates

- IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds.: R. K. Pachauri, L. A. Meyer), Geneva, Switzerland, 2014, p. 151.
- [2] a) C. Maeda, Y. Miyazaki, T. Ema, Catal. Sci. Technol. 2014, 4, 1482–1497;
 b) D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058–6082; Angew. Chem. 2010, 122, 6194–6219; c) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kuhn, Angew. Chem. Int. Ed. 2011, 50, 8510–8537; Angew. Chem. 2011, 123, 8662–8690; d) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 10.1038/ncomms6933.
- [3] C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan,
 G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643–6646; Angew. Chem.
 2009, 121, 6770–6773.
- [4] a) F. A. LeBlanc, W. E. Piers, M. Parvez, Angew. Chem. Int. Ed. 2014, 53, 789–792; Angew. Chem. 2014, 126, 808–811; b) A. Berkefeld, W. E. Piers, M. Parvez, J. Am. Chem. Soc. 2010, 132, 10660–10661.
- [5] A. E. Ashley, A. L. Thompson, D. O'Hare, Angew. Chem. Int. Ed. 2009, 48, 9839–9843; Angew. Chem. 2009, 121, 10023–10027.

- [6] a) M.-A. Courtemanche, J. Larouche, M.-A. Légaré, W. Bi, L. Maron, F.-G. Fontaine, *Organometallics* 2013, *32*, 6804–6811; b) M.-A. Courtemanche, M.-A. Légaré, L. Maron, F.-G. Fontaine, *J. Am. Chem. Soc.* 2014, *136*, 10708–10717; c) R. Declercq, G. Bouhadir, D. Bourissou, M.-A. Légaré, M.-A. Courtemanche, K. S. Nahi, N. Bouchard, F.-G. Fontaine, L. Maron, *ACS Catal.* 2015, *5*, 2513–2520; d) F.-G. Fontaine, M.-A. Courtemanche, M.-A. Légaré, *Chem. Eur. J.* 2014, *20*, 2990–2996; e) M.-A. Légaré, M.-A. Courtemanche, F.-G. Fontaine, *Commun.* 2014, *50*, 11362–11365; f) M. A. Courtemanche, M. A. Legare, L. Maron, F. G. Fontaine, *J. Am. Chem. Soc.* 2013, *135*, 9326–9329.
- [7] a) G. Ménard, D. W. Stephan, *Dalton Trans.* 2013, *42*, 5447–5453; b) G. Ménard, D. W. Stephan, *J. Am. Chem. Soc.* 2010, *132*, 1796–1797; c) G. Ménard, D. W. Stephan, *Angew. Chem. Int. Ed.* 2011, *50*, 8396–8399; *Angew. Chem.* 2011, *123*, 8546–8549; d) G. Ménard, T. M. Gilbert, J. A. Hatnean, A. Kraft, I. Krossing, D. W. Stephan, *Organometallics* 2013, *32*, 4416–4422; e) M. J. Sgro, J. Dömer, D. W. Stephan, *Chem. Commun.* 2012, *48*, 7253–7255; f) T. Wang, D. W. Stephan, *Chem. Eur. J.* 2014, *20*, 3036–3039; g) T. Wang, D. W. Stephan, *Chem. Commun.* 2014, *50*, 7007–7010.
- [8] L. J. Hounjet, C. B. Caputo, D. W. Stephan, Angew. Chem. Int. Ed. 2012, 51, 4714–4717; Angew. Chem. 2012, 124, 4792–4795.
- [9] A. Schäfer, W. Saak, D. Haase, T. Muller, Angew. Chem. Int. Ed. 2012, 51, 2981–2984; Angew. Chem. 2012, 124, 3035–3038.
- [10] a) A. Schäfer, M. Reißmann, A. Schäfer, M. Schmidtmann, T. Müller, *Chem. Eur. J.* **2014**, *20*, 9381; b) M. Reissmann, A. Schafer, S. Jung, T. Muller, *Organometallics* **2013**, *32*, 6736–6744.
- [11] a) T. J. Herrington, A. J. W. Thom, A. J. P. White, A. E. Ashley, *Dalton Trans.* 2012, 41, 9019–9022; b) T. J. Herrington, B. J. Ward, L. R. Doyle, J. McDermott, A. J. P. White, P. A. Hunt, A. E. Ashley, *Chem. Commun.* 2014, 50, 12753–12756.
- [12] G. R. Whittell, E. I. Balmond, A. P. M. Robertson, S. K. Patra, M. F. Haddow, I. Manners, *Eur. J. Inorg. Chem.* **2010**, 3967–3975.
- [13] a) K. Hara, R. Akiyama, M. Sawamura, Org. Lett. 2005, 7, 5621; b) K. Kubota, C. L. Hamblett, X. Wang, J. L. Leighton, Tetrahedron 2006, 62, 11397; c) Y. Sakaguchi, Y. Iwade, T. Sekikawa, T. Minami, Y. Hatanaka, Chem. Commun. 2013, 49, 11173.
- [14] a) N. Iwasawa, T. Mukaiyama, Chem. Lett. 1987, 463; b) M. Sai, M. Akakura, H. Yamamoto, Chem. Commun. 2014, 50, 15206–15208.
- [15] A. D. Dilman, S. L. loffe, Chem. Rev. 2003, 103, 733.
- [16] A. L. Liberman-Martin, R. G. Bergman, T. D. Tilley, J. Am. Chem. Soc. 2015, 137, 5328–5331.
- [17] B. H. Bracher, R. W. H. Small, Acta Crystallogr. 1967, 23, 410.
- [18] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 1987, S1–S19.
- [19] a) J. A. Cella, J. D. Cargioli, E. A. Williams, J. Organomet. Chem. 1980, 186, 13–17; b) A. D. Dilman, V. V. Levin, A. A. Korlyukov, P. A. Belyakov, M. I. Struchkova, M. Y. Antipin, V. A. Tartakovsky, J. Organomet. Chem. 2008, 693, 1005–1019.
- [20] a) J. Boudreau, M. A. Courtemanche, F. G. Fontaine, *Chem. Commun.* 2011, 47, 11131–11133; b) F. Bertini, F. Hoffmann, C. Appelt, W. Uhl, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, *Organometallics* 2013, 32, 6764–6769.
- [21] C. A. Tolman, Chem. Rev. 1977, 77, 313-348.
- [22] R. C. Neu, E. Otten, A. Lough, D. W. Stephan, Chem. Sci. 2011, 2, 170– 176.
- [23] V. V. Levin, A. D. Dilman, P. A. Belyakov, A. A. Korlyukov, M. I. Struchkova, V. A. Tartakovsky, *Eur. J. Org. Chem.* 2004, 5141–5148.

Received: May 14, 2015 Published online on July 28, 2015