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ABSTRACT: Incorporation of the tridentate phosphine-enamidoiminophosphorane 
onto cobalt(II) produces tetrahedral Co(NpNPiPr)Cl, 1, which upon reduction un-
der dinitrogen generates the T-shaped, paramagnetic Co(I) complex Co(NpNPiPr), 
2. This paramagnetic T-shaped derivative is in equilibrium with the paramagnetic 
dinitrogen derivative, Co(NpNPiPr)(N2), 3, which can be detected by IR and low 
temperature UV-vis spectroscopy. Both 1 and 2 act as a homogenous catalysts for 
the conversion of molecular nitrogen into tris(trimethylsilyl)amine (N(SiMe3)3) 
(~200 equiv, quantified as NH4Cl after hydrolysis) in the presence of excess KC8 
and Me3SiCl at low temperatures.  
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The only known industrial process that uses molecular 
nitrogen (N2) as a feedstock is the Haber-Bosch reaction, 
which converts N2 and dihydrogen (H2) into ammonia 
(NH3). The production of NH3 by this process occurs at 
high pressures and temperatures over a heterogeneous 
iron or ruthenium catalyst, and since its discovery over 
100 years ago, the major improvements have been to 
make this conversion more efficient.1 While one can 
imagine many other transformations that could use N2 as 
a feedstock,2 the fact that no other process has been de-
veloped is likely due to the intrinsic inertness of this 
readily available diatomic molecule. Without a doubt the 
discovery of a new catalytic process that utilizes N2 as 
reactant is a worthy goal and is being actively pursued 
by numerous research groups.3 

Recently, some intriguing proof-of-concept homoge-
neous catalytic processes that use dinitrogen have been 
reported.4  While not industrially relevant, the produc-
tion of ammonia and hydrazine via the addition of ex-
cess reducing agents and proton sources to molecular 
nitrogen in the presence of various Mo, Fe, and Co com-
plexes has generated many intriguing results.  Interest-

ingly, the very first report of a homogeneous process that 
was shown to convert N2 to the higher value 
tris(trimethylsilyl)amine, N(SiMe3)3, actually predates 
the aforementioned ammonia-producing systems.5  The 
conditions used for the catalytic production of 
N(SiMe3)3 also involve the reaction of N2 in the pres-
ence of excess reducing agent, but with excess Me3SiCl 
in lieu of protons. While the initial metal halide catalysts 
gave very low turnovers,5a the use of the Mo(0) dinitro-
gen-phosphine complex, cis-Mo(N2)2(PMe2Ph)4, gave 
24 equivalents of N(SiMe3)3 per Mo center.5b  More re-
cent improvements on this catalytic process involve the 
use of a chelating diphosphine with a ferrocenyl back-
bone attached to generate a molybdenum dinitrogen 
complex, which produced 226 equiv of N(SiMe3)3;

6 
even more intriguing, the use of a dicobalt system with a 
ligand scaffold that involves three amido units linked to 
three phosphine arms produced 196 equiv N(SiMe3)3 per 
Co2 complex using similar reagents.7 There are also 
mononuclear and polynuclear iron-based catalyst pre-
cursors and other metal systems that are productive in 
this reaction but generate lower numbers of equivalents 
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of tris(trimethylsilyl)amine (≤ 65 equiv/metal center).8 
To continue the advances in the area of catalytic dinitro-
gen conversion to higher value organonitrogen deriva-
tives, exploration of chemical space to discover new 
productive systems is critical. In this work, we document 
an electron-rich iminophosphorane-cobalt derivative that 
acts extremely efficiently to produce N(SiMe3)3 (~200 
equiv) via the reduction of N2 in the presence of excess 
reducing agent and Me3SiCl. 

We have previously reported9a the synthesis of a new 
tridentate ligand precursor, Li(NpNPiPr) (A) (where 
NpNPiPr = phosphine-enamidoiminophosphorane); this 
ligand contains a Nacnac mimic10 decorated with an 
electron-rich phosphine arm. Upon reaction of A with 
CoCl2 in Et2O, the cobalt(II) complex Co(NpNPiPr)Cl (1) 
is formed as shown in Scheme 1; 1 is isolated as brown 
crystals and is paramagnetic with µeff = 4.04 µB con-
sistent with 3 unpaired electrons (S = 3/2, Evans meth-
od). 

Scheme 1. Synthesis of Co(NpNP
iPr
)Cl (1) and reduc-

tion under N2 to Co(NpNP
iPr
) (2), which is in equilib-

rium with Co(NpNP
iPr
)(N2) (3) 

Reduction of 1 with potassium graphite (KC8) in Et2O 
under dinitrogen leads to the formation of 2, which can 
be isolated as red crystals. In solution, under argon, 2 is 
also paramagnetic with µeff = 2.40 ± 0.05 µB, which is 
invariant from 293-193 K and corresponds to two un-
paired electrons (S = 1).11 Interestingly, as shown in 
Scheme 1, 2 exists in equilibrium with a small amount 
of the dinitrogen complex 3 (vide infra). 

That the N2 complex 3 forms to a small extent under 
dinitrogen was first evident upon taking an IR spectrum 
of the crystals of 2, which revealed a weak absorption at 
2071 cm-1; performing the synthesis under 15N2 resulted 
in a new band shifted to 2001 cm-1. Re-examination of 
the solid-state structural data did show some residual 
electron density above the plane of the complex con-

sistent with a small contamination of the crystals of 2 
with dinitrogen complex 3. Fortunately, after many at-
tempts to grow crystals, we were able to isolate one 
batch that could be modeled by a 90:10 disorder in 2 
with 3.12, 14  The individual structures are shown in Fig-
ures 1 and 2. 

To provide further evidence for this equilibrium, we 
examined the solution UV-Vis spectrum of 2 under N2 
and observed changes as a function of temperature at-
tributable to the formation of 3: an absorption at 500 nm 
decreases as a function of temperature under N2 whereas 
this same band shows no change under Ar when the 
temperature is lowered.[14] 

 

Figure 1. ORTEP drawing of the solid-state molecular 
structure of Co(NpNPiPr) 2 (ellipsoids at 30% probability 
level), which is modeled as 90% of the disorder.  All hy-
drogen atoms have been omitted for clarity. Selected bond 
lengths (Å), angles (deg): Co1–P2 2.1560(8), Co1–N1 
1.9169(19), Co1–N2 2.028(2), P1–N2 1.630(6), P1–C17 
1.753(2), N1–C13 1.337(4), C13–C17 1.389(4); N1–Co1–
P2 166.13(8), P2–Co1–N2 87.20(7), N1–Co1–N2 
106.34(10). 
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Figure 2. ORTEP drawing of the solid-state molecular 
structure of Co(NpNPiPr)N2 3 (ellipsoids at 30% probability 
level), which is modeled as a 10% disorder in 2.  All hy-
drogen atoms have been omitted for clarity. Selected bond 
lengths (Å), angles (deg): Co2–P2 2.1851(7), Co2–N1 
1.9735(19), Co2–N2 2.063(3), Co2–N3 1.99(4), N3–N4 
1.12(6), P2–Co2–N1 152.91(7), P2–Co2–N2 85.57(6), P2–
Co2–N3 91.6(9), N1–Co1–N2 106.34(10). 

In solution (THF or toluene), we calculate via UV-vis 
spectroscopy (Figure 3) that at room temperature and 1 
atm N2, only about 15% of 3 is present at equilibrium, 
whereas at -80 ˚C, the mixture contains almost 90% of 
the dinitrogen complex 3. Interestingly, 1H NMR spec-
troscopy is not sensitive to the formation of 3 as the var-
iable temperature NMR spectra of 2 under Ar and 2 un-
der N2 do not show any differences as a function of tem-
perature (293 K – 193 K)14. In contrast, the related T-
shaped Co(I) complex, Co(SiPNP) (where (SiPNP) = 
N(SiMe2CH2PBut

2)2), is in equilibrium with the dia-

magnetic square planar dinitrogen complex 
Co(SiPNP)(N2);

13a other Co(PNP) systems typically gen-
erate diamagnetic N2 complexes upon reduction under 
dinitrogen.4d, 13e

 
 

 

Figure 3. UV-vis spectra of 2 in toluene under N2 as a 
function of temperature.   

On the basis of the above solution spectral data, the 
structure of 3 is distorted tetrahedral, which was con-
firmed by the disordered solid-state structure of 2 (Fig-
ures 1 and 2).13  Additional support for the presence of 
the tetrahedral paramagnetic dinitrogen complex 3 is 
that the IR stretching frequency of the coordinated N2 
unit of 2071 cm-1 is indicative of very weak activation of 
the dinitrogen moiety, which contrasts the corresponding 
IR stretching frequency of the aforementioned 
Co(SiPNP)(N2) at 2004 cm-1; this lower stretching fre-
quency is consistent with a low spin Co(I) complex13a 
and more back bonding from Co to the N2 unit. The two-
coordinate iron(0) complex, Fe(CAAC)2 (where CAAC 
= bulky cyclic(amino)-alkyl(carbene)), also coordinates 
dinitrogen only at low temperatures (<-80 ˚C), which 
facilitates isolation of the anionic  dinitrogen complex, 
[Fe(CAAC)2N2]

–, upon reduction at low temperature 

with KC8 in the presence of [18-crown-6]. Importantly, 
Fe(CAAC)2 is productive in the catalytic silylation of N2 
to produce 20 – 27 equiv of N(SiMe3)3 using excess KC8 
(600 equiv) and Me3SiCl (600 equiv) at room tempera-
ture.8c 

We investigated the ability of the T-shaped Co(I) com-
plex 2 to act as a catalyst precursor for the catalytic si-
lylation of dinitrogen.  The general conditions are shown 
in Scheme 2. 

 

Scheme 2. Conditions: 1 atm N2, ~2000 equiv 

Me3SiCl and ~1500 equiv KC8 with respect to 1 equiv 

of 2. 

 

Optimization experiments showed that low tempera-
tures and long reaction times (10 days) favored highest 
turnover numbers; in fact, at -40 ˚C, we observed 200 ± 
20 equivalents of N(SiMe3)3 with 2 as the catalyst pre-
cursor using excess reducing agent (KC8) and Me3SiCl; 
analysis was carried after hydrolysis with excess HCl.14, 

15 The conditions indicated in the caption to Scheme 2 
were done in triplicate and vary by ± 10%. The more 
efficient catalytic turnover at low temperature is con-
sistent with the aforementioned shift in the equilibrium 
favoring formation of the N2 complex 3. We also find 
that the choice of solvent is important; THF and DME 
generate similar efficient turnovers while toluene is infe-
rior.14 We also tested catalyst robustness; after 10 days 
(215 equiv N(SiMe3)3 measured after hydrolysis), the 
solution was filtered and a new charge of 2000 equiv 
Me3SiCl and 1500 equiv KC8 was added and the mixture 
stirred for 3 days at -40 ˚C. This generated an additional 
55 equiv of N(SiMe3)3 after hydrolysis (total = 270 
equiv). 

We have endeavored to understand this process by 
performing a number of preliminary stoichiometric reac-
tions.  For example, addition of Me3SiCl to the T-shaped 
Co(I) complex Co(NpNPiPr) (2) partially regenerates14 
the starting Co(II) species Co(NpNPiPr)Cl (1) as shown 
at the top of Scheme 3.  The fate of the Me3Si• radical is 
unknown, but we suggest that it can react with the small 
amount of dinitrogen complex 3 present at low tempera-
ture to generate putative Co(NpNPiPr)(NNSiMe3) (4), a 
likely intermediate6,7,13 in the formation of 
tris(trimethylsilyl)amine. Unfortunately, our attempts to 
detect this species or other intermediates have thus far 
been unsuccessful. 

One intriguing idea (Scheme 3) is that the equilibrium 
between T-shaped 2 and dinitrogen complex 3 may con-
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tribute to how this system catalytically turns over: coor-
dinatively unsaturated 2 abstracts Cl• from Me3SiCl to 
generate the Co(II) chloride 1, which is then reduced by 
the excess KC8 back to 2; dinitrogen complex 3 traps the 
generated Me3Si•. Consistent with this is that starting 
Co(II) chloride complex 1 acts as an efficient catalyst 
for this reaction under these conditions with comparable 
turnover numbers for N(SiMe3)3 generation.14  Separate 
attempts to generate another potential species in the pro-
cess, the anionic formally Co(0) dinitrogen complex 
K[Co(NpNPiPr)N2], by subjecting 2 to excess KC8 in the 
presence of N2 have been inconclusive at this point.  
Such stoichiometric reactions are continuing.  

 

Scheme 3. Proposal for the formation of N(SiMe3)3; 

the intermediate 4 has been confirmed computation-

ally.
14

 

In conclusion, the results of this study broaden the 
scope of potential catalyst systems for dinitrogen activa-
tion by including an iminophosphorane-based ligand 
system that generates a mononuclear cobalt complex, 
which has been shown to be extremely effective in the 
homogenous catalytic functionalization of molecular 
nitrogen to generate N(SiMe3)3.  One possible rationale 
for the efficacy of this system may be that the imino-
phosphorane ligand framework is sufficiently bulky and 
only mildly basic, both of which allow the catalyst to 
survive under the strongly reducing conditions of this 
process. What is also important is that we provide an-
other example of a weakly bound terminal N2 moiety 
that can participate in processes that result in functional-
ization of N2.

8c More mechanistic studies are in progress 
as well as iterative ligand designs to examine the de-
pendence of turnover numbers to structural changes and 
probe the equilibrium between analogues of 2 and 3.  
Future work will also explore more atom-economic 
ways to generate silyl radicals, for example photochemi-
cal cleavage of disilanes and photo-induced demetalla-
tion of M(SiR3)2 type species.16 
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