Tetrahedron 65 (2009) 4877-4889

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Studies on highly regio- and stereoselective selenohydroxylation reaction of 1,2-allenyl phosphine oxides with PhSeCl

Guangke He^a, Hao Guo^b, Rong Qian^c, Yinlong Guo^c, Chunling Fu^{a,*}, Shengming Ma^{a,b,*}

^a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, PR China ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, PR China ^c Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, PR China

ARTICLE INFO

Article history: Received 6 December 2008 Received in revised form 4 April 2009 Accepted 7 April 2009 Available online 16 April 2009

ABSTRACT

The selenohydroxylation of readily available 1,2-allenyl phosphine oxides with PhSeCl in MeCN/H₂O afforded 3-hydroxy-2-phenylselanyl-1(E)-alkenyl diphenyl phosphine oxides in good yields with very high regio- and stereoselectivities including the high efficiency of the axial chirality transfer. The E-stereoselectivity is believed to be determined by the neighboring group participation effect of the diphenyl phosphine oxide functionality.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Phosphorous-containing compounds show important biological activity.¹ In addition to the biological potential, this type of compounds also plays an important role in organic synthesis.² On the other hand, 1-alkenyl selenides are important organic intermediates,^{3a,b} particularly in synthesizing carbonyl compounds^{3c,d} and stereoselective preparation of functionalized alkenes.^{3e,f} Thus, development of new methods for the highly selective synthesis of 2-phosphoryl-1-alkenyl selenides is highly desired.

Recently, we have developed the halohydroxylation of 1,2allenyl sulfides,^{4,5} selenides,⁶ sulfoxides,⁷ sulfones,⁸ phosphine oxides,⁹ and 3-aryl-1,2-allenes.¹⁰ In all the cases, the halogen atom has been introduced to the center carbon atom of the allene moiety while the hydroxyl group is connected to the 3-position of the starting allenes referring to the carbon atom connected to the heteroatom. The stereoselectivity depends on the nature of the functional group: for sulfides and selenides the *Z*-products were formed^{4–6} while for other cases *E*-products were produced.^{7–9} Recently, we also studied the selenolactonization of 2,3-allenoic acids¹¹ and 2,3-allenoates.^{12,13} Similarly, the reaction of 1,2-allenylic phosphonates, phosphinates, phosphoric acids with RSeCl and RSeBr was also reported to afford 4-selenyl-2,5-dihydro-1,2-oxaphosphole 2-oxides.^{14–20} Furthermore, the selenohydroxylation of 1,2-allenylic sulfoxides with PhSeCl has been reported by this group.²¹ Due to the similarity between the phosphine oxides and sulfoxides or sulfones, we show interest in the selenohydroxylation

* Corresponding authors. E-mail addresses: fud@zju.edu.cn (C. Fu), masm@mail.sioc.ac.cn (S. Ma). of 1,2-allenylic phosphine oxides. Herein, we wish to report the realization of selenohydroxylation of 1,2-allenyl diphenyl phosphine oxides affording (E)-3-hydroxy-2-phenylselanyl alkenyl diphenyl phosphine oxides with high regio- and stereoselectivity.

2. Results and discussion

After some screening, it is observed that the reaction of **1a** with 1.5 equiv of PhSeCl in CH_2Cl_2 at rt afforded the expected product *E*-**2a** as the only stereoisomer in 41% yield (entry 1, Table 1). The reaction in CH_3NO_2 afforded *E*-**2a** in 62% yield (entry 2, Table 1). The solvent effect is obvious: the yields for the reaction in toluene, ethyl acetate, and MeCN are much higher (entries 3–5, Table 1). Since the formed hydroxyl group may have something to do with the water present in the reaction media, H₂O was added as the cosolvent to MeCN and the yields were improved to 96% (entries 6–10, Table 1). With 1.2 equiv of PhSeCl, the yield is lower (entry 10, Table 1). No reaction was observed in aqueous acetone while the reaction in aqueous THF, EtOH, or DMF afforded the product *E*-**2a** in 82–90% yields (entries 12–14, Table 1).

With the optimized reaction conditions in hand (entry 7, Table 1), the scope of this selenohydroxylation reaction was demonstrated (Table 2). The reaction is very general: for 3-mono-substituted diphenyl phosphine oxide, the yield is good (entries 2 and 3, Table 2); the reaction of 3,3-disubstituted substituted (entries 4–6, Table 2), 1-monosubstituted (entries 7 and 8, Table 2), 1,3-disubstituted (entries 9 and 10, Table 2), and fully substituted (entry 11, Table 2) 1,2-allenyl diphenyl phosphine oxides all worked smoothly and cleanly to afford the corresponding *E*-selenohydroxylation products. The regio- and stereochemical outcome was further established by the X-ray diffraction study of *E*-**2b** (Fig. 1).²²

^{0040-4020/\$ –} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.04.023

Table 1

Selenohydroxylation of 1-phenylocta-1,2-dienyl diphenyl phosphine oxide (1a) w	/ith
PhSeCl ^a	

Entry	Solvent	<i>T</i> (h)	Yield of E-2a ^b
1	CH ₂ Cl ₂	3.5	41
2	CH ₃ NO ₂	1.2	62
3	Toluene	30.2	75
4	Ethyl acetate	30.4	82
5	MeCN	12	82
6	MeCN/H ₂ O=40/1	0.65	92
7	MeCN/H ₂ O=20/1	0.25	96
8	MeCN/H ₂ O=10/1	0.6	87
9	MeCN/H ₂ O=5/1	12	80
10 ^c	MeCN/H ₂ O=20/1	0.6	84
11	Acetone/H ₂ O=20/1	44.5	0 ^d
12	THF/H2O=20/1	16	90
13	EtOH/H ₂ O=20/1	28	82
14	DMF/H ₂ O=20/1	17	85

^a The reaction was carried out using 0.2 mmol of **1a**, 0.3 mmol of PhSeCl, and 4.0 mL of organic solvent.

^b NMR yield based on **1a** using CH₂Br₂ as the internal standard.

^c PhSeCl (1.2 equiv) was used.

^d Compound **1a** (91%) was recovered.

However, in the case of $R^1 = R^2 = H$, $R^3 = alkyl$ group (except for methyl group), the reaction is not clean, i.e., 3-chloro-2-phenyl-selanyl-1(*Z*)-alkenyl diphenyl phosphine oxides were formed as the by-product (entries 12–16, Table 2). In addition, it is interesting to

Table 2

Selenohydroxylation of differently substituted 1,2-propadienyl diphenyl phosphine oxides ${\bf 1}$ with PhSeCla

Entry	R ¹	R ²	R ³	T (min)	Isolated yield of E- 2 (%)
1	Ph	Н	<i>n</i> -C ₅ H ₁₁ (1a)	14	91 (2a)
2	Н	Н	Me (1b)	12	82 (2b)
3	Н	Н	Ph (1c)	28	85 (2c)
4	Н	Me	Me (1d)	19	89 (2d)
5	Н	n-Pr	<i>n</i> -Pr (1e)	18	80 (2e)
6	Н	$(CH_{2})_{5}$	(1f)	10	84 (2f)
7	$n-C_4H_9$	Н	H (1g)	16	67 (2g)
8	Ph	Н	H (1h)	14	80 (2h)
9	Et	Н	Me (1i)	10	90 (2i)
10	Ph	Н	Et (1j)	5	88 (2 j)
11	$n-C_4H_9$	Me	Me (1k)	10	65 (2k)
12	Н	Н	<i>i</i> -Pr (11)	20	76 (2l) ^b
13	Н	Н	H (1m)	16	13 (2m) ^c
14	Н	Н	Et (1n)	20	82.5 (2n) ^d
15	Н	Н	<i>n</i> -C ₆ H ₁₃ (10)	30	64 (20) ^e
16	Н	Н	Bn (1p)	15	64 (2p) ^f

 a The reaction was carried out using 0.3 mmol of **1a**, 0.45 mmol of PhSeCl, 6.0 mL of MeCN, and 0.3 mL of H₂O.

^b The reaction also afforded 3-chloro-4-methyl-2-phenylselanyl-1(Z)-pentenyl diphenyl phosphine oxide (Z-**31**) in 7% isolated yield.

^c The reaction also afforded 3-chloro-2-phenylselanyl-1(*Z*)-propenyl diphenyl phosphine oxide (*Z*-**3m**) in 61.5% isolated yield.

^d The reaction also afforded 3-chloro-4,-2-phenylselanyl-1(Z)-pentenyl diphenyl phosphine oxide (Z-**3n**) in 6% isolated yield.

^e The reaction also afforded 3-chloro-2-phenylselanyl-1(Z)-nonenyl diphenyl phosphine oxide (*Z*-**3o**) in 6% isolated yield.

^f The reaction also afforded 3-chloro-4-phenyl-2-phenylselanyl-1(Z)-butenyl diphenyl phosphine oxide (Z-**3p**) in 14% isolated yield.

Figure 1. ORTEP representation of E-2b.

observe that the stereochemistry for the formation of the chlorides 3l-p is different from that for the selenohydroxylation product *E*-2.

In order to further confirm this difference, *E*-**30** was prepared from the sequential tosylation²³ and chlorination²⁴ of *E*-**20** (Scheme 1). It is still not clear why the formed allylic chloride is in *Z*-configuration. After further screening, it was observed that when reaction of **1** was conducted in MeCN/H₂O (2:1) at 70 °C, the yield of *E*-**21** and the ratio of *E*-**21**/*Z*-**31** is much higher (compare entries 1–6, Table 3).

Some typical results of selenohydroxylation of 3-monosubstituted or the simple allenyl phosphine oxides under this new set of reaction conditions are summarized in Table 4.

As optically active 1,2-allenyl phosphine oxides are easily available from the corresponding optically active propargylic alcohols,^{25,26} we also investigated the possibility of synthesizing optically active selenohydroxylation product by means of the present method. The experimental results showed that the axial chirality in allenyl phosphine oxides could be transferred to the central chirality of the products with high efficiency (Scheme 2). The absolute configuration of the products was determined by X-ray diffraction analysis of S-(E)-**2b** by using the selenium atom in the molecule as a reference (Fig. 2).²⁷

In order to study the reaction mechanism, we carried out this selenohydroxylation reaction of **1h** using water and ¹⁸O-labeled water. The normal product *E*-**2h** and the ¹⁸O-labeled product *E*-**2h*** were isolated and studied by ESI-MS technique

Table 3

 $Selenohydroxylation \ of \ 4-methylpenta-1, 2-dienyl \ diphenyl \ phosphine \ oxide \ (11) \ with \ PhSeCl$

Entry	Solvent (MeCN/H ₂ O)	Temp (°C)	<i>T</i> (h)	Yield of <i>E-2l (%)^a</i>	Ratio of <i>E-21/Z-31^b</i>
1	20/1	rt	0.50	64	90/10
2	10/1	rt	0.37	76	91/9
3	5/1	rt	0.60	84	94/6
4	2/1	rt	13.4	89	97/3
5	1/1	rt	65.7	77	98/2
6	2/1	70	0.57	82	97/3

^a NMR yield based on **11** using CH₂Br₂ as the internal standard.

^b The ratio of *E*-**21**/*Z*-**31** was determined by ¹H NMR analysis of the crude product.

(Figs. 3 and 4). The ESI-MS/MS spectra showed that the $[M+H]^+$ ion of *E*-**2h** at *m*/*z*=491 fragmented to yield the daughter ion at *m*/*z*=473 (Fig. 3c). While that of *E*-**2h*** at *m*/*z*=493 displayed the same fragmentation chemistry to yield the corresponding daughter ion at *m*/*z*=475 (Fig. 4c). These results indicated that ¹⁸O atom was bound to phosphorous, and the oxygen atom of the hydroxyl group comes from the phosphine oxide functionality in the starting allene. Similarly, the reactions of **1c** and **1e** with PhSeCl in the presence of H₂¹⁸O were also conducted with the results being summarized in Scheme 3 (for the MS spectra, see Supplementary data).

Based on these results, a possible mechanism was proposed⁹ (Scheme 4). In the first step, the selenium intermediate **5** is afforded by the reaction of the relatively electron-rich carbon–carbon double bond with PhSe⁺. Subsequently, a five–membered cyclic intermediate **6** is formed via neighboring group participation of the oxygen atom of the diphenyl phosphine oxide functionality, which is similar with what was observed in the iodohydroxylation of allenylic sulfoxides^{7b} and phosphine oxides⁹ or the bromohydroxy lation of allenylic sulfones.^{8a} Finally, the H₂¹⁸O molecule attacks at the positively charged phosphorous atom to cleave the P–O bond, which forms the final product *E*-**2**^{*} (Scheme 4). Of course, it is difficult to exclude other possibilities since the ¹⁸O incorporation is still low (69.5%) for *E*-**2e**^{*}.

This reaction mechanism may also be used to explain the chirality transfer observed in Scheme 2 (Scheme 5).

Table 4

Selenohydroxylation of differently 3-monosubstituted 1,2-allenyl diphenyl phosphine oxides with PhSeCl

			01 E-2 (%)		
1	<i>i</i> -Pr	34	82 (2l)	97/3	
2 ^b	Н	540	52.5 (2m)	79/21	
3	Et	21	78 (2n)	>99/1	
4 ^b	n-C ₆ H ₁₃	70	74 (2o)	98/2	
5	Bn	105	77 (2p)	96.5/3.5	
					-

 a The ratio of *E*-**2**/*Z*-**3** was determined by ^{1}H NMR analysis of the crude product. b The ratio of MeCN/H₂O in the solvent was 1/1.

3. Conclusions

In conclusion, we have established an effective and practical method to synthesize 3-hydroxy-2-phenylselanyl-1(*E*)-alkenyl diphenyl phosphine oxides with high regio- and stereoselectivity and observed the neighboring group participation effect of the diphenylphosphinyl group by ESI-MS using $H_2^{18}O$ as the probe. Due to the presence of carbon–carbon double bond, carbon–selenium bond, and the hydroxyl group, this reaction will be useful in organic synthesis. Further studies in this area including the factors determining the stereoselectivity for the formation of *Z*-**30** are currently being carried out in our laboratory.

4. Experimental

4.1. Starting materials

Known compounds **1b–d**, **1f**, **1h**, **1i**, and **1n** were prepared according to the known procedures.²⁸ New compounds **1e**, **1g**, **1j**, **1k**, and **1p** were also prepared according to this procedure.²⁸ Due to

Figure 2. ORTEP representation of S-E-2b.

Figure 3. (a) ESI-MS spectrum for *E*-**2h**, (b) ESI-SIM-MS spectrum for the precursor ion of *E*-**2h** at m/z=491, and (c) ESI-MS/MS spectrum for the precursor ion of *E*-**2h** at m/z=491.

Figure 4. (a) ESI-MS spectrum for *E*-**2h***, (b) ESI-SIM-MS spectrum for the precursor ion of *E*-**2h*** at m/z=493, and (c) ESI-MS/MS spectrum for the precursor ion of *E*-**2h*** at m/z=493.

the coupling between ¹³C and ³¹P, the ¹³C NMR is very complicated and the spectra are provided in Supplementary data.

4.1.1. 1-Phenylpenta-1,2-dienyl diphenyl phosphine oxide (**1***j*)

General Procedure I. To a dried three-necked round-bottom flask were added with 1-phenylpent-1-yn-3-ol (2.4336 g, 15 mmol),

Scheme 3. Reactions conducted in the presence of H₂¹⁸O.

Et₃N (2.10 mL, *d*=0.73 g/mL, 1.53 g, 15 mmol), and 40 mL of CH₂Cl₂. A solution of chlorodiphenylphosphine (2.80 mL, d=1.20 g/mL, 3.36 g, 15 mmol) in 5 mL of CH₂Cl₂ was then added dropwise at $-64 \circ C$ within 30 min. After being warmed up naturally to room temperature, the reaction was monitored by TLC (petroleum ether/ ethyl acetate=1:1). Upon complete conversion of the alcohol, the reaction was guenched with 20 mL of water. The organic layer was separated and the aqueous layer was extracted with 20×3 mL of CH₂Cl₂. The combined organic layer was washed with 20 mL of brine and dried over anhydrous Na₂SO₄. After evaporation of the solvent, chromatography on silica gel (eluent: CH₂Cl₂/ethyl acetate=10:1) of the crude product afforded **1i** (2.1617 g, 41%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.67 (m, 4H), 7.59 (d, *I*=7.6 Hz, 2H), 7.45–7.30 (m, 6H), 7.18 (t, *I*=7.4 Hz, 2H), 7.09 (t, I=7.2 Hz, 1H), 5.28 (dt, $I_1=10.8$ Hz, $I_2=6.6$ Hz, 1H), 1.85–1.71 (m, 2H), 0.74 (t, J=7.6 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 30.2; MS (EI, 70 eV) *m*/*z* (%) 345 (M⁺+1, 12.26), 344 (M⁺, 47.54), 201 (100); IR *ν* (neat, cm⁻¹) 1939, 1593, 1493, 1437, 1304, 1190, 1117. Anal. Calcd for C₂₃H₂₁OP: C, 80.21; H, 6.15. Found: C, 80.25; H, 6.19.

The following compounds were prepared according to *General Procedure I*.

4.1.2. 3-Propylhexa-1,2-dienyl diphenyl phosphine oxide (1e)

The reaction of 3-propylhex-1-yn-3-ol (2.1020 g, 15 mmol), Et₃N (2.10 mL, d=0.73 g/mL, 1.53 g, 15 mmol), and Ph₂PCl (2.80 mL, d=1.20 g/mL, 3.36 g, 15 mmol) in 45 mL of CH₂Cl₂ was conducted at

-64 °C according to *General Procedure I*. After warming up to rt, the reaction mixture was heated to reflux within 30 min and kept under reflux for 30 h to afford **1e** (1.3731 g, 28%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.78–7.65 (m, 4H), 7.50–7.37 (m, 6H), 5.81–5.70 (m, 1H), 1.84–1.64 (m, 4H), 1.30–1.12 (m, 4H), 0.77 (t, *J*=5.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 209.9, 132.8 (d, *J*_{pc}=104.3 Hz), 131.4 (d, *J*_{pc}=2.6 Hz), 131.2 (d, *J*_{pc}=9.6 Hz), 128.0 (d, *J*_{pc}=11.9 Hz), 106.2 (d, *J*_{pc}=1.4 Hz), 13.6; ³¹P NMR (121.5 MHz, CDCl₃) δ 25.8; MS (EI, 70 eV) *m/z* (%) 325 (M⁺+1, 1.45), 324 (M⁺, 3.08), 202 (100); IR *ν* (neat, cm⁻¹) 1949, 1591, 1437, 1380, 1199, 1119. HRMS calcd for C₂₁H₂₅OP: 324.1643. Found: 324.1645.

4.1.3. Hepta-1,2-dien-3-yl diphenyl phosphine oxide (1g)

The reaction of hept-2-yn-1-ol (1.6865 g, 15 mmol), Et₃N (2.10 mL, d=0.73 g/mL, 1.53 g, 15 mmol), and Ph₂PCl (2.75 mL, d=1.20 g/mL, 3.30 g, 15 mmol) in 45 mL of CH₂Cl₂ for 7.5 h afforded **1g** (2.6667 g, 60%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.63 (m, 4H), 7.52–7.46 (m, 2H), 7.45–7.38 (m, 4H), 4.67 (dt, J_1 =11.2 Hz, J_2 =3.2 Hz, 2H), 2.28–2.15 (m, 2H), 1.53–1.40 (m, 2H), 1.35–1.24 (m, 2H), 0.82 (t, J=7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 211.0 (d, J_{pc} =7.1 Hz), 131.8 (d, J_{pc} =103.9 Hz), 131.7 (d, J_{pc} =5.0 Hz), 131.6 (d, J_{pc} =5.5 Hz), 26.8 (d, J_{pc} =6.1 Hz), 22.1, 13.7; ³¹P NMR (121.5 MHz, CDCl₃) δ 29.5; MS (EI, 70 eV) m/z (%) 297 (M⁺+1, 3.53), 296 (M⁺, 12.30), 201 (100); IR ν (neat, cm⁻¹) 1937, 1590, 1483, 1466, 1438, 1379, 1310, 1193, 1118, 1102. HRMS calcd for C₁₉H₂₁OP: 296.1330. Found: 296.1331.

4.1.4. 2-Methylocta-2,3-dien-4-yl diphenyl phosphine oxide (1k)

The reaction of 2-methyloct-3-yn-2-ol (2.0734 g, 15 mmol), Et₃N (2.10 mL, d=0.73 g/mL, 1.53 g, 15 mmol), and Ph₂PCl (2.80 mL, d=1.20 g/mL, 3.36 g, 15 mmol) in 45 mL of CH₂Cl₂ for 15 h afforded **1k** (2.1277 g, 44%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.60 (m, 4H), 7.50–7.35 (m, 6H), 2.23–2.13 (m, 2H), 1.48–1.35 (m, 8H), 1.35–1.20 (m, 2H), 0.85–0.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.4 (d, J_{pc} =6.4 Hz), 132.5 (d, J_{pc} =102.6 Hz), 131.4, 131.3, 128.0 (d, J_{pc} =11.8 Hz), 98.4 (d, J_{pc} =14.6 Hz), 96.4 (d, J_{pc} =102.2 Hz), 30.4 (d, J_{pc} =6.2 Hz), 27.1 (d, J_{pc} =8.4 Hz), 22.1, 19.1 (d, J_{pc} =5.9 Hz), 13.8; ³¹P NMR (121.5 MHz, CDCl₃) δ 31.9; MS (EI, 70 eV) m/z (%) 325 (M⁺+1, 5.97), 324 (M⁺, 3.35), 282 (100); IR ν (neat, cm⁻¹) 1955, 1590, 1483, 1437, 1376, 1193, 1118. HRMS calcd for C₂₁H₂₅OP: 324.1643. Found: 324.1645.

4.1.5. 4-Phenylbuta-1,2-dienyl diphenyl phosphine oxide (**1***p*)

The reaction of 4-phenylbut-1-yn-3-ol (2.1919 g, 15 mmol), Et₃N (2.20 mL, d=0.73 g/mL, 1.61 g, 15 mmol), and Ph₂PCl (2.80 mL, d=1.20 g/mL, 3.36 g, 15 mmol) in 45 mL of CH₂Cl₂ for 12 h afforded

Scheme 4. The proposed mechanism.

Scheme 5. Rationale for the axial chirality transfer observed in Scheme 2.

1p (2.3521 g, 47%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.68–7.57 (m, 4H), 7.55–7.46 (m, 2H), 7.46–7.37 (m, 4H), 7.25–7.18 (m, 3H), 6.97–6.90 (m, 2H), 5.87–5.79 (m, 1H), 5.44 (dq, J_1 =10.8 Hz, J_2 =6.8 Hz, 1H), 3.30–3.20 (m, 2H); ³¹P NMR (121.5 MHz, CDCl₃) δ 24.5; MS (EI, 70 eV) m/z (%) 331 (M⁺+1, 8.27), 330 (M⁺, 33.90), 201 (100); IR ν (neat, cm⁻¹) 1954, 1494, 1452, 1437, 1383, 1174. HRMS calcd for C₂₂H₁₉OP: 330.1174. Found: 330.1175.

4.2. Compounds 1a, 1l, 1o, S-(+)-1j, and R-(+)-1o

These compounds were prepared according to a known procedure described as *General Procedure II.*²⁹ It should be noted that conducting the preparation of R-(+)-**10** according to *General Procedure I* led to an ee value of R-(+)-**10** at the level of 60% from the optically active propargylic alcohol (99% ee).

4.2.1. 1-Phenylocta-1,2-dienyl diphenyl phosphine oxide (1a)

General Procedure II. To a dried three-necked round-bottom flask was charged with 1-phenyloct-1-yn-3-ol (3.0038 g, 15 mmol), triethylamine (3.3 mL, *d*=0.73 g/mL, 2.41 g, 22.5 mmol), and 50 mL of THF. A solution of chlorodiphenylphosphine (4.30 mL, d=1.20 g/ mL, 5.18 g, 22.5 mmol) in 10 mL of THF was then added dropwise at -64 °C within 22 min. After being warmed up naturally to room temperature, the reaction was monitored by TLC (petroleum ether/ ethyl acetate=1:1). Upon complete conversion of the alcohol, the reaction was quenched with 20 mL of water. The organic layer was separated and the aqueous layer was extracted with 30×3 mL of Et₂O. The combined organic layer was washed with 15 mL of brine and dried over anhydrous Na₂SO₄. After evaporation of the solvent, chromatography on silica gel (eluent: petroleum ether/ethyl acetate=5:1 to 2:1) of the crude product afforded **1a** (4.1912 g, 73%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.84–7.67 (m, 4H), 7.61 (d, J=7.8 Hz, 2H), 7.54-7.35 (m, 6H), 7.31-7.10 (m, 3H), 5.30 (dt, J₁=10.5 Hz, J₂=7.1 Hz, 1H), 1.92–1.70 (m, 2H), 1.30–1.02 (m, 6H), 0.84 (t, J=7.1 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 30.1; MS (EI, 70 eV) *m/z* (%) 387 (M⁺+1, 6.83), 386 (M⁺, 25.81), 201 (100); IR *v* (neat, cm⁻¹) 1940, 1595, 1492, 1438, 1387, 1319, 1190, 1182. Anal. Calcd for C₂₆H₂₇OP: C, 80.80; H, 7.04. Found: C, 80.80; H, 7.09.

4.2.2. S-1-Phenylpenta-1,2-dienyl diphenyl phosphine oxide $(S-1j)^{25,26}$

The reaction of *S*-(–)-1-phenylpent-1-yn-3-ol (0.6390 g, 4.0 mmol, 99% ee), Et₃N (0.83 mL, *d*=0.73 g/mL, 0.61 g, 6.0 mmol), and Ph₂PCl (1.10 mL, *d*=1.20 g/mL, 1.32 g, 6.0 mmol) in 25 mL of THF for 2.0 h afforded *S*-(+)-**1j** (0.6290 g, 46%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.84–7.68 (m, 4H), 7.61 (d, *J*=7.5 Hz, 2H), 7.55–7.33 (m, 6H), 7.28–7.12 (m, 3H), 5.33 (dt, *J*₁=10.5 Hz, *J*₂=6.3 Hz, 1H), 1.93–1.75 (m, 2H), 0.79 (t, *J*=7.4 Hz, 3H); HPLC conditions: Chiralcel OD-H, hexane/*i*-PrOH=95:5, 0.7 mL/min, *n*=230 nm, *t*_R 14.8 (major), 16.3 (minor); [α]_D²⁰ +20.72 (*c* 0.74, CHCl₃).

4.2.3. 4-Methylpenta-1,2-dienyl diphenyl phosphine oxide (11)

The reaction of 4-methylpent-1-yn-3-ol (2.0619 g (contaminated with THF, purity: 95%), 20 mmol), Et₃N (4.20 mL, d=0.73 g/mL, 3.07 g, 30 mmol), and Ph₂PCl (5.50 mL, d=1.20 g/mL, 6.60 g, 30 mmol) in 55.5 mL of THF for 12 h afforded **11** (2.4698 g, 44%) as a solid. Mp 63–64 °C (Et₂O). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.70 (m, 4H), 7.55–7.41 (m, 6H), 5.91–5.84 (m, 1H), 5.24 (dt, $J_1=10.8$ Hz, $J_2=6.4$ Hz, 1H), 2.27–2.15 (m, 1H), 0.81 (d, J=6.8 Hz, 3H), 0.80 (d, $J_2=6.8$ Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 132.6 (d, $J_{pc}=105.9$ Hz), 131.3 (d, $J_{pc}=9.7$ Hz), 131.6 (d, $J_{pc}=2.7$ Hz), 131.4 (d, $J_{pc}=8.8$ Hz), 131.3 (d, $J_{pc}=9.7$ Hz), 128.2 (d, $J_{pc}=105.9$ Hz), 27.2 (d, $J_{pc}=5.2$ Hz), 22.1 (d, $J_{pc}=3.6$ Hz), 21.8 (d, $J_{pc}=2.6$ Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 24.9; MS (EI, 70 eV) m/z (%) 283 (M⁺+1, 6.22), 282 (M⁺, 25.02), 201 (100); IR ν (KBr, cm⁻¹) 1945, 1592, 1464, 1440,

1284, 1189, 1120. Anal. Calcd for $C_{18}H_{19}OP$: C, 76.58; H, 6.78. Found: C, 76.56; H, 6.74.

4.2.4. Nona-1,2-dienyl diphenyl phosphine oxide (10)

The reaction of non-1-yn-3-ol (2.1046 g, 15 mmol), Et₃N (3.20 mL, *d*=0.73 g/mL, 2.34 g, 22.5 mmol), and Ph₂PCl (4.20 mL, *d*=1.20 g/mL, 5.04 g, 22.5 mmol) in 45 mL of THF for 3.5 h afforded **10** (3.0060 g, 62%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.66 (m, 4H), 7.56–7.36 (m, 6H), 5.83–5.74 (m, 1H), 5.29–5.17 (m, 1H), 1.88–1.80 (m, 2H), 1.32–1.07 (m, 8H), 0.89–0.77 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 211.5, 132.6 (d, *J*_{pc}=105.8 Hz), 132.5 (d, *J*_{pc}=105.5 Hz), 131.6 (d, *J*_{pc}=2.6 Hz), 131.3 (d, *J*_{pc}=9.7 Hz), 128.2 (d, *J*_{pc}=3.2 Hz), 28.5, 27.1 (d, *J*_{pc}=5.3 Hz), 22.3, 13.9; ³¹P NMR (121.5 MHz, CDCl₃) δ 24.2; MS (EI, 70 eV) *m/z* (%) 325 (M⁺+1, 2.06), 324 (M⁺, 3.15), 201 (100); IR ν (neat, cm⁻¹) 1949, 1590, 1483, 1465, 1437, 1379, 1311, 1189, 1120, 1104. HRMS calcd for C₂₁H₂₅OP: 324.1643. Found: 324.1645.

4.2.5. R-Nona-1,2-dienyl diphenyl phosphine oxide (R-10)

The reaction of *R*-(+)-1-nonyn-3-ol (0.9757 g, 7.0 mmol, 99% ee), Et₃N (1.45 mL, d=0.73 g/mL, 1.06 g, 10.5 mmol), and Ph₂PCl (1.95 mL, d=1.20 g/mL, 2.34 g, 10.5 mmol) in 25 mL of THF for 3.0 h afforded *R*-(+)-**10** (1.2900 g, 57%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.81–7.66 (m, 4H), 7.56–7.36 (m, 6H), 5.83–5.74 (m, 1H), 5.29–5.17 (m, 1H), 1.94–1.80 (m, 2H), 1.32–1.07 (m, 8H), 0.85 (t, *J*=6.3 Hz, 3H); HPLC conditions: Chiralcel OD-H, hexane/*i*-PrOH=90:10, 0.7 mL/min, *n*=230 nm, *t_R* 10.1 (major), 13.1 (minor); [α]_D²⁰ –123.8 (*c* 1.21, CHCl₃).

4.3. Reaction of multi-substituted allenyl phosphine oxides with PhSeCl

4.3.1. 3-Hydroxy-1-phenyl-2-phenylselanyl-1(E)-octenyl diphenyl phosphine oxide (E-**2a**)

General Procedure III. To a solution of PhSeCl (58.1 mg, 0.3 mmol) in 3 mL of MeCN was added 0.2 mL of H₂O. Then a solution of 1a (77.7 mg, 0.2 mmol) in 1 mL of MeCN was added and the resulting mixture was stirred at room temperature for 14 min. After complete consumption of the starting material as monitored by TLC (eluent: petroleum ether/ethyl acetate=2:1), the mixture was quenched with 5 mL of H₂O, extracted with 20×3 mL of diethyl ether, washed with 5 mL of brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and flash chromatography on silica gel (petroleum ether/ethyl acetate=3:1 to 2:1) afforded E-2a (102.3 mg, 91%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.73 (m, 2H), 7.61-7.50 (m, 3H), 7.49-7.40 (m, 3H), 7.40-7.24 (m, 7H), 7.16-7.08 (m, 2H), 7.00-6.92 (m, 1H), 6.92-6.83 (m, 1H), 6.78 (d, *I*=10.8 Hz, 1H), 6.52 (d, *I*=7.6 Hz, 1H), 4.37 (t, *I*=9.8 Hz, 1H), 2.22-2.03 (m, 1H), 1.91-1.76 (m, 1H), 1.54-1.37 (m, 1H), 1.29-1.14 (m, 2H), 1.12–0.95 (m, 3H), 0.83 (t, J=7.4 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 32.4; MS (ESI) m/z (%) 561 (M⁺(⁸⁰Se)+1, 3.49), 546 $(M^{+}(^{82}Se)+1-OH, 6.10), 544 (M^{+}(^{80}Se)+1-OH, 45.35), 542$ $(M^{+}(^{78}Se)+1-OH, 16.86), 545 (M^{+}(^{82}Se)-OH, 27.33),$ 543 $(M^+(^{80}Se)-OH, 100), 541 (M^+(^{78}Se)-OH or M^+(^{77}Se)+1-OH, 100), 541 (M^+(^{78}Se)-0H or M^+(^{77}Se)+1-OH), 541 (M^+(^{78}Se)-0H or M^+(^{78}Se)+1-OH), 541 (M^+(^{78}Se)-0H or M^+(^{78}Se)+1-OH), 541 (M^+(^{78}Se)-0H or M^+(^{78}Se)+1-OH), 541 (M^+(^{78}Se)-0H or M^+(^{78}Se)+1-OH), 541 (M^+(^{78}Se)+1-OH), 561 (M^+(^{78}Se)+1-OH), 561 (M^+(^{78}Se)+1-OH), 561 (M^+($ 56.40), 540 (M⁺(⁷⁷Se)–OH or M⁺(⁷⁶Se)+1–OH, 24.42), 539 $(M^{+}(^{76}Se)-OH, 30.23)$; IR ν (neat, cm⁻¹) 3280, 1560, 1473, 1437, 1168. Anal. Calcd for C32H33O2PSe: C, 68.69; H, 5.94. Found: C, 68.67; H, 5.91.

The following compounds were prepared according to *General Procedure III*.

4.3.2. 3-Hydroxy-2-phenylselanyl-1(*E*)-butenyl diphenyl phosphine oxide (*E*-**2b**)

The reaction of **1b** (77.0 mg, 0.30 mmol) and PhSeCl (87.1 mg, 0.45 mmol) in 0.3 mL of H_2O and 6 mL of CH_3CN for 12 min afforded

E-**2b** (106.3 mg, 82%) as a solid. Mp 145–146 °C (hexane/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.27 (m, 15H), 5.98 (d, *J*=7.2 Hz, 1H), 5.59 (d, *J*=20.4 Hz, 1H), 5.05–4.92 (m, 1H), 1.55 (d, *J*=5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 136.7, 133.4 (d, *J*_{pc}=105.4 Hz), 133.1 (d, *J*_{pc}=105.1 Hz), 131.62 (d, *J*_{pc}=4.3 Hz), 131.59 (d, *J*_{pc}=4.5 Hz), 130.7 (d, *J*_{pc}=10.0 Hz), 130.6 (d, *J*_{pc}=9.8 Hz), 129.7, 129.2, 128.4 (d, *J*_{pc}=12.0 Hz), 127.5, 112.8 (d, *J*_{pc}=96.1 Hz), 69.9 (d, *J*_{pc}=6.7 Hz), 23.5; ³¹P NMR (121.5 MHz, CDCl₃) δ 23.7; MS (EI, 70 eV) *m/z* (%) 386 (M⁺(⁸²Se)+1–CH₃CHOH, 1.68), 384 (M⁺(⁸⁰Se)+1–CH₃CHOH, 2.32), 382 (M⁺(⁷⁸Se)+1–CH₃CHOH, 1.92), 380 (M⁺(⁷⁸Se)-CH₃CHOH, 4.83), 383 (M⁺(⁸⁰Se)-CH₃CHOH, 0.75), 385 (M⁺(⁷⁸Se)-CH₃CHOH, 0.78), 271 (100); IR *v* (KBr, cm⁻¹) 3300, 1591, 1566, 1477, 1436, 1360, 1273, 1172, 1119, 1104. Anal. Calcd for C₂₂H₂₁O₂PSe: C, 61.83; H, 4.95. Found: C, 61.85; H, 4.96.

4.3.3. 3-Hydroxy-3-phenyl-2-phenylselanyl-1(*E*)-propenyl diphenyl phosphine oxide (*E*-**2***c*)

The reaction of 1c (94.9 mg, 0.30 mmol) and PhSeCl (87.1 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 28 min afforded *E*-**2c** (125.5 mg, 85%) as a solid. Mp 163–164 °C (ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.23 (m, 20H), 6.33 (d, J=6.6 Hz, 1H), 6.00 (d, J=5.4 Hz, 1H), 5.80 (d, J=19.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 140.7, 136.7, 133.1 (d, J_{pc} =106.0 Hz), 133.0 (d, J_{pc}=107.0 Hz), 131.76 (d, J_{pc}=12.4 Hz), 131.72 (d, J_{pc}=12.0 Hz), 130.9 (d, J_{pc} =14.9 Hz), 130.7 (d, J_{pc} =16.1 Hz), 129.8, 129.3, 128.6 (d, (d, j_{pc} =12.0 Hz), 128.5 (d, J_{pc} =12.2 Hz), 128.2, 128.1, 127.8, 127.0, 115.6 (d, J_{pc} =96.2 Hz), 74.9 (d, J_{pc} =7.1 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 23.8; MS (ESI) m/z (%) 492 (M⁺(⁸²Se), 9.30), 491 (M⁺(⁸⁰Se)+1, 43.72), 489 (M⁺(⁷⁸Se)+1, 20.35), 476 (M⁺(⁸²Se)+1-OH, 6.98), 474 $(M^{+}(^{80}Se)+1-OH, 29.94), 472 (M^{+}(^{78}Se)+1-OH, 12.79), 470$ (M⁺(⁷⁷Se)–OH or M⁺(⁷⁶Se)+1–OH, 19.19), 475 (M⁺(⁸²Se)–OH, 26.74), 473 (M⁺(⁸⁰Se)–OH, 100), 471 (M⁺(⁷⁸Se)–OH or $M^{+}(^{77}Se)+1-OH, 51.16), 469 (M^{+}(^{76}Se)-OH, 14.83); IR \nu (KBr, cm^{-1})$ 3275, 1592, 1571, 1493, 1474, 1439, 1274, 1186, 1173, 1118. Anal. Calcd for C₂₇H₂₃O₂PSe: C, 66.26; H, 4.74. Found: C, 66.25; H, 4.77.

4.3.4. 3-Hydroxy-3-methyl-2-phenylselanyl-1(E)-butenyl diphenyl phosphine oxide (E-**2d**)

The reaction of **1d** (81.0 mg, 0.30 mmol) and PhSeCl (86.4 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 19 min afforded *E*-**2d** (118.6 mg, 89%) as a solid. Mp 103–104 °C (hexane/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J*=7.2 Hz, 2H), 7.47–7.24 (m, 13H), 7.02 (s, 1H), 5.47 (d, *J*=18.0 Hz, 1H), 1.65 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 136.9, 133.1 (d, *J*_{pc}=106.5 Hz), 131.5 (d, *J*_{pc}=2.5 Hz), 130.8 (d, *J*_{pc}=90.Hz), 129.9, 129.3, 128.9, 128.4 (d, *J*_{pc}=12.3 Hz), 113.0 (d, *J*_{pc}=96.6 Hz), 75.0 (d, *J*_{pc}=5.7 Hz), 29.8; ³¹P NMR (121.5 MHz, CDCl₃) δ 25.9; MS (ESI) *m/z* (%) 445 (M⁺(⁸²Se)+1, 21.43), 443 (M⁺(⁸⁰Se)+1 or M⁺(⁸²Se)-1, 100), 441 (M⁺(⁷⁸Se)+1 or M⁺(⁷⁶Se)+1 or M⁺(⁷⁶Se)+1 or M⁺(⁷⁷Se) or M⁺(⁷⁸Se)-1, 15.87), 444 (M⁺(⁸²Se), 24.60), 442 (M⁺(⁸⁰Se), 14.29); IR *v* (KBr, cm⁻¹) 3242, 1583, 1568, 1438, 1358, 1190, 1160, 1117, 1097. Anal. Calcd for C₂₃H₂₃O₂PSe: C, 62.59; H, 5.25. Found: C, 62.54; H, 5.31.

4.3.5. 3-Hydroxy-2-phenylselanyl-3-propyl-1(*E*)-hexenyl diphenyl phosphine oxide (*E*-**2e**)

The reaction of **1e** (97.3 mg, 0.30 mmol) and PhSeCl (85.5 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 18 min afforded *E*-**2e** (119.7 mg, 80%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J*=6.8 Hz, 2H), 7.47–7.36 (m, 7H), 7.35–7.28 (m, 6H), 6.53 (s, 1H), 5.71 (d, *J*=18.4 Hz, 1H), 1.90–1.70 (m, 4H), 1.53–1.32 (m, 4H), 0.91 (t, *J*=7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 137.2, 134.0 (d, *J*_{pc}=107.2 Hz), 131.2 (d, *J*_{pc}=2.4 Hz), 130.7 (d, *J*_{pc}=9.3 Hz), 129.9, 129.3, 128.6, 128.2 (d, *J*_{pc}=11.8 Hz), 115.8 (d, *J*_{pc}=97.4 Hz),

80.7 (d, J_{pc} =5.4 Hz), 44.4, 16.6, 14.4; ³¹P NMR (121.5 MHz, CDCl₃) δ 24.9; MS (ESI) m/z (%) 484 (M⁺(⁸²Se)+1–OH, 14.91), 482 (M⁺(⁸⁰Se)+1–OH, 58.19), 480 (M⁺(⁷⁸Se)–OH+1, 28.65), 478 (M⁺(⁷⁶Se)+1–OH or M⁺(⁷⁷Se)–OH, 46.78), 476 (M⁺(⁷⁴Se)+1–OH, 1.75), 483 (M⁺(⁸²Se)–OH, 47.37), 481 (M⁺(⁸⁰Se)–OH, 100), 479 (M⁺(⁷⁸Se)–OH or M⁺(⁷⁷Se)+1–OH, 83.63), 477 (M⁺(⁷⁶Se)–OH or M⁺(⁷⁷Se)+1–OH, 83.63), 477 (M⁺(⁷⁶Se)–OH or M⁺(⁷⁷Se)–H₂O, 39.18), 475 (M⁺(⁷⁴Se)–OH, 46.8); IR ν (neat, cm⁻¹) 3212, 1571, 1473, 1435, 1313, 1168, 1121, 1099. Anal. Calcd for C₂₇H₃₁O₂PSe: C, 65.19; H, 6.28. Found: C, 65.28; H, 6.21.

4.3.6. 3-Hydroxy-3,3-pentamethylene-2-phenylselanyl-1(E)propenyl diphenyl phosphine oxide (E-**2f**)

The reaction of 1f (93.3 mg, 0.30 mmol) and PhSeCl (87.5 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 10 min afforded E-2f (122.9 mg, 84%) as a solid. Mp 134–135 °C (hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J=7.8 Hz, 2H), 7.48–7.24 (m, 13H), 6.68 (s, 1H), 5.45 (d, J=18.3 Hz, 1H), 2.04–1.76 (m, 6H), 1.76–1.54 (m, 3H), 1.32–1.12 (m, 1H); 13 C NMR (100 MHz, CDCl₃) δ 174.6 (d, J_{pc}=2.1 Hz), 136.9, 133.3 (d, J_{pc}=107.5 Hz), 131.4 (d, J_{pc}=2.3 Hz), 130.7 (d, J_{pc}=9.8 Hz), 129.8, 129.2, 129.1, 128.3 (d, J_{pc}=12.1 Hz), 113.0 (d, J_{pc} =97.2 Hz), 76.2 (d, J_{pc} =5.4 Hz), 36.6, 25.3, 21.5; ³¹P NMR $(121.5 \text{ MHz}, \text{CDCl}_3) \delta 26.1; \text{ MS} (\text{EI}, 70 \text{ eV}) m/z (\%) 402 (\text{M}^+ (^{77}\text{Se}) - C_6\text{H}_5)$ or $M^{+}(^{78}Se) - C_6H_5 - 1$, 2.82), 401 ($M^{+}(^{76}Se) - C_6H_5$, 9.01), 386 $(M^{+}(^{82}Se)+1-C_{6}H_{10}OH, 0.77), 384 (M^{+}(^{80}Se)+1-C_{6}H_{10}OH, 4.41),$ 382 $(M^{+}(^{78}Se)+1-C_{6}H_{10}OH, 1.30), 381 (M^{+}(^{77}Se)+1-C_{6}H_{10}OH)$ or $M^+(^{78}Se) - C_6H_{10}OH$, 1.57), 380 $(M^+(^{76}Se) + 1 - C_6H_{10}OH$ or $M^{+}(^{77}Se)-C_{6}H_{10}OH$, 0.87), 385 ($M^{+}(^{82}Se)-C_{6}H_{10}OH$, 1.90), 383 $(M^{+}(^{80}Se)-C_{6}H_{10}OH, 8.00), 201 (100); IR \nu (KBr, cm^{-1}) 3182, 1561,$ 1543, 1443, 1435, 1168, 1155, 1117, 1097. Anal. Calcd for C₂₆H₂₇O₂PSe: C, 64.87; H, 5.65. Found: C, 64.87; H, 5.66.

4.3.7. 1-Hydroxy-2-phenylselanyl-2(E)-hepten-3-yl diphenyl phosphine oxide (E-**2g**)

The reaction of **1g** (88.9 mg, 0.30 mmol) and PhSeCl (86.6 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 16 min afforded *E*-**2g** (94.6 mg, 67%) as a solid. Mp 113–114 °C (hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.78–7.43 (m, 12H), 7.41–7.28 (m, 3H), 5.61 (t, *J*=7.5 Hz, 1H), 4.22 (d, *J*=7.5 Hz, 2H), 2.37–2.15 (m, 2H), 1.10–0.90 (m, 4H), 0.60 (t, *J*=6.5 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 32.9; MS (ESI) *m/z* (%) 473 (M⁺(⁸²Se)+1, 19.25), 471 (M⁺(⁸⁰Se)+1 or M⁺(⁸²Se)-1, 100), 469 (M⁺(⁷⁸Se)+1 or M⁺(⁸⁰Se)-1, 49.37), 468 (M⁺(⁷⁷Se)+1 or M⁺(⁷⁸Se), 20.08), 467 (M⁺(⁷⁶Se)+1 or M⁺(⁷⁸Se)-1, 21.76), 472 (M⁺(⁸²Se), 25.94), 470 (M⁺(⁸⁰Se), 30.13), 466 (M⁺(⁷⁶Se) or M⁺(⁷⁷Se)-1, 19.25); IR ν (KBr, cm⁻¹) 3307, 1577, 1548, 1466, 1440, 1167, 1145. Anal. Calcd for C₂₅H₂₇O₂PSe: C, 63.97; H, 5.80. Found: C, 63.98; H, 5.82.

4.3.8. 3-Hydroxy-1-phenyl-2-phenylselanyl-1(E)-propenyl diphenyl phosphine oxide (E-**2h**)

The reaction of **1h** (95.3 mg, 0.30 mmol) and PhSeCl (88.6 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 14 min afforded *E*-**2h** (117.9 mg, 80%) as a solid. Mp 138–139 °C (hexane/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.52 (m, 6H), 7.51–7.42 (m, 2H), 7.41–7.29 (m, 7H), 7.18–7.06 (m, 3H), 6.84 (d, *J*=8.0 Hz, 2H), 5.94 (br s, 1H), 4.40 (s, 2H); ³¹P NMR (121.5 MHz, CDCl₃) δ 30.5; MS (ESI) *m/z* (%) 493 (M⁺(⁸²Se)+1, 16.23), 491 (M⁺(⁸⁰Se)+1 or M⁺(⁸²Se)-1, 100), 489 (M⁺(⁷⁸Se)+1 or M⁺(⁸⁰Se)-1, 52.27), 488 (M⁺(⁷⁷Se)+1 or M⁺(⁷⁸Se), 21.75), 487 (M⁺(⁷⁶Se)+1 or M⁺(⁷⁷Se) or M⁺(⁷⁸Se)-1, 16.23), 492 (M⁺(⁸²Se), 33.44), 490 (M⁺(⁸⁰Se), 17.86); IR ν (KBr, cm⁻¹) 3325, 1576, 1558, 1474, 1440, 1160. Anal. Calcd for C₂₇H₂₃O₂PSe: C, 66.26; H, 4.74. Found: C, 66.24; H, 4.79.

4.3.9. 5-Hydroxy-4-phenylselanyl-3(E)-hexen-3-yl diphenyl phosphine oxide (E-**2i**)

The reaction of 1i (90.3 mg, 0.30 mmol) and PhSeCl (87.1 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 10 min afforded

E-**2i** (130.6 mg, 90%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.80– 7.62 (m, 4H), 7.62–7.41 (m, 8H), 7.36–7.27 (m, 3H), 6.62 (br s, 1H), 4.64–4.52 (m, 1H), 2.55–2.21 (m, 2H), 1.49 (d, *J*=6.6 Hz, 3H), 0.44 (t, *J*=7.2 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 33.7; MS (ESI) *m/z* (%) 459 (M⁺(⁸²Se)+1, 21.01), 457 (M⁺(⁸⁰Se)+1 or M⁺(⁸²Se)-1, 100), 455 (M⁺(⁷⁸Se)+1 or M⁺(⁸⁰Se)-1, 54.62), 454 (M⁺(⁷⁷Se)+1 or M⁺(⁷⁸Se), 17.65), 453 (M⁺(⁷⁶Se)+1 or M⁺(⁷⁷Se) or M⁺(⁷⁸Se)-1, 18.49), 458 (M⁺(⁸²Se), 26.89), 456 (M⁺(⁸⁰Se), 14.29), 452 (M⁺(⁷⁶Se) or M⁺(⁷⁷Se)-1, 21.01), 439 (M⁺(⁸⁰Se)-OH, 13.87); IR ν (neat, cm⁻¹) 3240, 1576, 1557, 1476, 1437, 1363, 1167, 1117. Anal. Calcd for C₂₄H₂₅O₂PSe: C, 63.30; H, 5.53. Found: C, 63.33; H, 5.57.

4.3.10. 3-Hydroxy-1-phenyl-2-phenylselanyl-1(E)-pentenyl diphenyl phosphine oxide (E-**2***j*)

The reaction of 1j (103.7 mg, 0.30 mmol) and PhSeCl (87.8 mg, 0.45 mmol) in 0.3 mL of H_2O and 6 mL of CH_3CN for 5 min afforded E-2j (137.8 mg, 88%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, J_1 =12.5 Hz, J_2 =7.4 Hz, 2H), 7.61– 7.22 (m, 13H), 7.16-7.07 (m, 2H), 7.01-6.90 (m, 1H), 6.90-6.79 (m, 1H), 6.74 (d, J=11.4 Hz, 1H), 6.51 (d, J=7.2 Hz, 1H), 4.22 (t, J=9.5 Hz, 1H), 2.22-2.01 (m, 1H), 1.98-1.82 (m, 1H), 0.80 (t, J=7.4 Hz, 3H); ³¹P NMR (121.5 MHz, CDCl₃) δ 32.3; MS (ESI) m/z(%) 504 ($M^{+}(^{82}Se)+1-OH$, 8.77), 502 ($M^{+}(^{80}Se)+1-OH$ or $M^{+}(^{82}Se)-H_{2}O$, 56.14), 500 ($M^{+}(^{78}Se)+1-OH$ or $M^{+}(^{80}Se)-H_{2}O$, 42.69), 503 (M⁺(⁸²Se)–OH, 38.60), 501 (M⁺(⁸⁰Se)–OH, 100), 499 $(M^{+}(^{78}Se)-OH \text{ or } M^{+}(^{77}Se)+1-OH, 72.81), 498 (M^{+}(^{77}Se)-OH)$ $M^{+}(^{76}Se)+1-OH$ or $M^{+}(^{78}Se)-H_2O$, 43.27). 497 or $(M^{+(76}Se)-OH \text{ or } M^{+(77}Se)-H_2O, 35.07), 495 (M^{+(74}Se)-OH,$ 2.92); IR ν (neat, cm⁻¹) 3422, 1560, 1550, 1473, 1437, 1380, 1160, 1116, 1098. Anal. Calcd for C₂₉H₂₇O₂PSe: C, 67.31; H, 5.26. Found: C, 67.27; H, 5.28.

4.3.11. 2-Hydroxy-2-methyl-3-phenylselanyl-3(E)-octen-4-yl diphenyl phosphine oxide (E-2k)

The reaction of 1k (95.5 mg, 0.30 mmol) and PhSeCl (86.2 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 10 min afforded *E*-**2k** (94.7 mg, 65%) as a liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.71– 7.61 (m, 4H), 7.56–7.49 (m, 2H), 7.48–7.40 (m, 6H), 7.34 (s, 1H), 7.30– 7.20 (m, 3H), 2.25-2.12 (m, 2H), 1.65 (s, 6H), 1.05-0.95 (m, 2H), 0.85–0.73 (m, 2H), 0.51 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1 (d, J_{pc}=4.6 Hz), 136.1 (d, J_{pc}=78.8 Hz), 133.4 (d, J_{pc}=1.9 Hz), 132.8 (d, J_{pc}=104.2 Hz), 132.1 (d, J_{pc}=10.1 Hz), 131.8 (d, J_{pc}=2.6 Hz), 129.9, 129.3, 128.3 (d, J_{pc}=12.0 Hz), 126.6, 77.2 (d, J_{pc}=4.9 Hz), 38.1 (d, J_{DC}=14.9 Hz), 31.3, 30.4, 22.5, 13.3; ³¹P NMR (121.5 MHz, CDCl₃) δ 37.3; MS (ESI) m/z (%) 484 (M⁺(⁸²Se)+1–OH, 17.58), 482 $(M^{+}(^{80}Se)+1-OH \text{ or } M^{+}(^{82}Se)-H_2O, 72.73), 483 (M^{+}(^{82}Se)-OH,$ 61.82), 481 (M⁺(⁸⁰Se)–OH, 100), 479 (M⁺(⁷⁸Se)–OH or $M^{+}(^{77}Se)+1-OH$, 91.82), 477 ($M^{+}(^{76}Se)-OH$ or $M^{+}(^{77}Se)-H_2O$, 57.58), 475 (M⁺(⁷⁴Se)–OH, 5.45); IR *v* (neat, cm⁻¹) 3209, 1576, 1534, 1476, 1437, 1354, 1186, 1164, 1116, 1095. Anal. Calcd for C₂₇H₃₁O₂PSe: C, 65.19; H, 6.28. Found: C, 65.21; H, 6.30.

4.3.12. 3-Hydroxy-4-methyl-2-phenylselanyl-1(*E*)-pentenyl diphenyl phosphine oxide (*E*-**2***l*) and 3-chloro-4-methyl-2-phenylselanyl-1(*Z*)-pentenyl diphenyl phosphine oxide (*Z*-**3***l*)

The reaction of **1l** (422.6 mg, 1.5 mmol) and PhSeCl (431.8 mg, 2.25 mmol) in 1.0 mL of H₂O and 20 mL of MeCN afforded a crude mixture, which was purified by flash chromatography on silica gel (eluent: CH₂Cl₂/ethyl acetate=40:1 to 3:1) to yield *E*-**2l** (525.5 mg, 76%) and *Z*-**3l** (less polar, 52.1 mg, 7%). *E*-**2l**/*Z*-**3l**=92:8. Compound *E*-**2l**: solid. Mp 149–150 °C (*n*-hexane/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.52 (m, 2H), 7.52–7.27 (m, 13H), 5.71 (d, *J*=7.6 Hz, 1H), 5.65 (d, *J*=20.4 Hz, 1H), 4.60 (t, *J*=7.2 Hz, 1H), 2.22–2.10 (m, 1H), 1.07 (d, *J*=6.4 Hz, 3H), 0.92 (d, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 136.8, 133.7 (d, *J*_{pc}=105.9 Hz), 133.5 (d, *J*_{pc}=105.8 Hz), 131.4, 130.6 (d, *J*_{pc}=6.5 Hz), 130.5 (d, *J*_{pc}=6.5 Hz),

129.7, 129.2, 128.32 (d, J_{pc}=12.7 Hz), 128.30 (d, J_{pc}=11.6 Hz), 127.7, 113.9 (d, J_{pc}=96.8 Hz), 78.5 (d, J_{pc}=5.3 Hz), 34.6, 19.7, 18.5; ³¹P NMR (121.5 MHz, CDCl₃) δ 22.6; MS (ESI) m/z (%) 482 (M⁺(⁸²Se)+Na+1, 5.88), 480 (M⁺(⁸⁰Se)+Na+1, 25.21), 478 (M⁺(⁷⁸Se)+Na+1, 12.61), 481 $(M^{+}({}^{82}Se)+Na, 21.85), 479 (M^{+}({}^{80}Se)+Na, 100), 477 (M^{+}({}^{78}Se)+Na or M^{+}({}^{77}Se)+Na+1, 51.68), 476 (M^{+}({}^{77}Se)+Na or M^{+}({}^{77}Se)+Na+1, 51.68), 476 (M^{+}({}^{77}Se)+Na)$ $M^{+}(^{76}Se)+Na+1$, 15.97), 475 ($M^{+}(^{76}Se)+Na$, 9.24), 459 $(M^{+}(^{82}Se)+1, 8.40), 457 (M^{+}(^{80}Se)+1, 36.13), 455 (M^{+}(^{78}Se)+1, 36.13))$ 17.23), 458 ($M^{+}(^{82}Se)$, 11.76), 456 ($M^{+}(^{80}Se)$, 3.36), 454 ($M^{+}(^{78}Se)$ or $M^+(^{77}Se)+1$, 9.66), 453 ($M^+(^{77}Se)$ or $M^+(^{76}Se)+1$, 8.40); IR ν (KBr, cm⁻¹) 3299, 1592, 1578, 1570, 1437, 1288, 1172. Anal. Calcd for C₂₄H₂₅O₂PSe: C, 63.30, H, 5.53. Found: C, 63.34; H, 5.54. Compound Z-31: liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.93–7.83 (m, 2H), 7.83– 7.73 (m, 2H), 7.60-7.43 (m, 6H), 7.43-7.23 (m, 5H), 7.10 (dd, J₁=21.3 Hz, J₂=0.9 Hz, 1H), 4.28 (dd, J₁=3.2 Hz, J₂=0.9 Hz, 1H), 2.49-2.31 (m, 1H), 0.87 (d, *J*=6.6 Hz, 3H), 0.82 (d, *J*=6.6 Hz, 3H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3) \delta 157.0 \text{ (d, } J_{pc}=1.4 \text{ Hz}), 136.0, 134.1 \text{ (d,}$ J_{pc}=106.2 Hz), 133.1 (d, J_{pc}=105.8 Hz), 131.7 (d, J_{pc}=2.8 Hz), 131.6 (d, J_{pc}=2.7 Hz), 131.3 (d, J_{pc}=10.1 Hz), 130.8 (d, J_{pc}=9.5 Hz), 129.4, 129.1, 128.6 (d, J_{pc} =12.5 Hz), 128.4 (d, J_{pc} =12.2 Hz), 126.9, 123.5 (d, J_{pc} =105.9 Hz), 70.3 (d, J_{pc} =14.3 Hz), 32.7, 20.7, 15.3; ³¹P NMR (121.5 MHz, CDCl₃) δ 21.5; MS (ESI) m/z (%) 479 (M⁺(⁸²Se³⁷Cl)+1, 4.20), 477 $(M^{+}({}^{82}Se^{35}Cl)+1 \text{ or } M^{+}({}^{80}Se^{37}Cl)+1, 39.50), 475$ $(M^+(^{80}Se^{35}Cl)+1 \text{ or } M^+(^{78}Se^{37}Cl)+1, 100), 471 (M^+(^{77}Se^{35}Cl) \text{ or }$ $M^{+}(^{76}Se^{35}Cl)+1$ or $M^{+}(^{74}Se^{37}Cl)+1$, 13.45), 478 ($M^{+}(^{82}Se^{37}Cl)$, 10.08), 476 (M⁺(⁸²Se³⁵Cl) or M⁺(⁸⁰Se³⁷Cl), 25.21), 474 (M⁺(⁸⁰Se³⁵Cl) or $M^{+}(^{78}Se^{37}Cl)$, 15.13), 473 ($M^{+}(^{77}Se^{37}Cl)$ or $M^{+}(^{78}Se^{35}Cl)+1$ or $M^{+}({}^{76}Se^{37}Cl)+1$, 43.70), 472 ($M^{+}({}^{76}Se^{37}Cl)$ or $M^{+}({}^{78}Se^{35}Cl)$, 12.61); IR ν (neat, cm⁻¹) 3056, 2967, 2929, 2871, 1560, 1476, 1437, 1195. Anal. Calcd for C₂₄H₂₄ClOPSe: C, 60.84; H, 5.11; Cl, 7.48. Found: C. 60.86; H, 5.13; Cl, 7.31.

4.3.13. 3-Hydroxy-2-phenylselanyl-1(*E*)-propenyl diphenyl phosphine oxide (*E*-**2m**) and 3-chloro-2-phenylselanyl-1(*Z*)-propenyl diphenyl phosphine oxide (*Z*-**3m**)

The reaction of **1m** (71.8 mg, 0.3 mmol) and PhSeCl (86.6 mg, 0.45 mmol) in 0.3 mL of H₂O and 6.0 mL of MeCN afforded E-2m (15.7 mg, 13%) and Z-3m (less polar, 79.4 mg, 61.5%). E-2m/Z-**3m**=17.5:82.5. Compound *E*-**2m**: solid. Mp 136.7–137.6 °C (petroleum/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.31 (m, 15H), 6.11 (t, *J*=7.2 Hz, 1H), 5.79 (d, *J*=21.0 Hz, 1H), 4.52 (d, *J*=5.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 136.4, 132.9 (d, J_{pc} =106.1 Hz), 131.8 (d, J_{pc}=3.1 Hz), 130.7 (d, J_{pc}=10.4 Hz), 129.8, 129.4, 128.5 (d, J_{pc} =12.1 Hz), 127.3, 114.6 (d, J_{pc} =95.8 Hz), 64.3 (d, J_{pc} =6.8 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 25.1; MS (ESI) *m*/*z* (%) 417 (M⁺(⁸²Se)+1, 19.83), 415 ($M^{+}({}^{80}Se)+1$ or $M^{+}({}^{82}Se)-1$, 100), 413 ($M^{+}({}^{78}Se)+1$ or $\mathsf{M}^+({}^{80}\text{Se})-1,\, 6.47),\, 416\,(\mathsf{M}^+({}^{82}\text{Se}),\, 18.53),\, 414\,(\mathsf{M}^+({}^{80}\text{Se}),\, 14.22),\, 412$ $(M^+(^{78}Se) \text{ or } M^+(^{77}Se)+1, 17.24), 411 (M^+(^{77}Se) \text{ or } M^+(^{78}Se)-1 \text{ or } M^+(^{76}Se)+1, 15.52), 410 (M^+(^{76}Se) \text{ or } M^+(^{77}Se)-1, 14.66); IR \nu$ (KBr, cm⁻¹) 3231, 1567, 1439, 1279, 1169, 1121, 1105, 1076. Anal. Calcd for C₂₁H₁₉O₂PSe: C, 61.03; H, 4.63. Found: C, 61.11; H, 4.55. Compound Z-**3m**: liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.74 (m, 4H), 7.60– 7.42 (m, 8H), 7.40–7.24 (m, 3H), 7.02 (dt, *J*₁=21.0 Hz, *J*₂=1.7 Hz, 1H), 4.06 (t, J=1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 152.6 (d, J_{pc} =2.0 Hz), 136.7, 133.2 (d, J_{pc} =106.0 Hz), 131.8 (d, J_{pc} =2.9 Hz), 131.1 (d, J_{pc} =9.3 Hz), 129.4, 129.3, 128.6 (d, J_{pc} =12.0 Hz), 125.8, 121.2 (d, J_{pc} =105.1 Hz), 48.7 (d, J_{pc} =16.4 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 22.1; MS (ESI) m/z (%) 437 (M⁺(⁸²Se³⁷Cl)+1, 5.88), 436 $(M^{+}(^{82}Se^{37}Cl), 7.56), 435 (M^{+}(^{82}Se^{35}Cl)+1 \text{ or } M^{+}(^{80}Se^{37}Cl)+1,$ (M⁺(⁸⁰Se³⁵Cl)+1 or M⁺(⁷⁸Se³⁷Cl)+1, 45.38), 430 (M⁺(⁸⁰Se³⁷Cl), 18.49), 433 (M⁺(⁸⁰Se³⁵Cl)+1 or M⁺(⁷⁸Se³⁷Cl)+1, 100), 431 (M⁺(⁷⁷Se³⁷Cl) or M⁺(⁷⁸Se³⁵Cl)+1 or M⁺(⁷⁶Se³⁷Cl)+1, 45.38), 430 (M⁺(⁷⁶Se³⁷Cl)) or $M^+(^{78}Se^{35}Cl)$, 18.49), 429 ($M^+(^{77}Se^{35}Cl)$ or $M^+(^{76}Se^{35}Cl)+1$ or $M^{+}(^{74}Se^{37}Cl)+1$, 16.81); IR ν (neat, cm⁻¹) 3054, 1589, 1560, 1475, 1437, 1261, 1183, 1118. Anal. Calcd for C₂₁H₁₈ClOPSe: C, 58.42; H, 4.20; Cl, 8.21. Found: C, 58.31; H, 4.25; Cl, 8.08.

4.3.14. 3-Hydroxy-2-phenylselanyl-1(*E*)-pentenyl diphenyl phosphine oxide (*E*-**2***n*) and 3-chloro-2-phenylselanyl-1(*Z*)-pentenyl diphenyl phosphine oxide (*Z*-**3***n*)

The reaction of 1n (321.0 mg, 1.2 mmol) and PhSeCl (345.3 mg, 1.8 mmol) in 0.9 mL of H₂O and 18.0 mL of MeCN afforded E-2n (436.1 mg, 82.5%) and Z-3n (less polar, 33.9 mg, 6%). E-2n/Z-**3n**=93:7. Compound *E*-**2n**: solid. Mp 146.5–147.5 °C (hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.31 (m, 15H), 5.71 (d, *J*=9.0 Hz, 1H), 5.64 (d, *J*=20.1 Hz, 1H), 4.67–4.51 (m, 1H), 2.00–1.80 (m, 2H), 1.01 (t, J=7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 136.7, 133.5 (d, J_{pc}=106.4 Hz), 133.2 (d, J_{pc}=105.8 Hz), 131.6, 130.7 (d, J_{pc} =8.6 Hz), 130.6 (d, J_{pc} =9.8 Hz), 129.7, 129.3, 128.4 (d, J_{pc} =11.9 Hz), 127.6, 113.3 (d, J_{pc} =96.9 Hz), 75.4 (d, J_{pc} =5.3 Hz), 30.6, 10.7; ³¹P NMR (121.5 MHz, CDCl₃) δ 23.6; MS (ESI) m/z (%) 468 $(M^{+}(^{82}Se)+Na+1, 4.17), 466 (M^{+}(^{80}Se)+Na+1, 20.00), 464$ $(M^{+}(^{78}Se)+Na+1, 7.08), 467 (M^{+}(^{82}Se)+Na, 20.00),$ 465 (M⁺(⁸⁰Se)+Na, 100), 463 (M⁺(⁷⁸Se)+Na or M⁺(⁷⁷Se)+Na+1, 50.83), 462 (M⁺(⁷⁷Se)+Na or M⁺(⁷⁶Se)+Na+1, 18.75), 461 (M⁺(⁷⁶Se)+Na, 18.33), 445 $(M^{+}(^{82}Se)+1, 10.00)$, 443 $(M^{+}(^{80}Se)+1, 41.67)$, 441 $(M^+(^{78}Se)+1, 25.42), 439 (M^+(^{77}Se) \text{ or } M^+(^{76}Se)+1, 6.67), 444 (M^+(^{82}Se), 14.58), 442 (M^+(^{80}Se), 4.58), 440 (M^+(^{78}Se) \text{ or } M^+(^{78}Se))$ $M^{+}(^{77}Se)+1$, 6.25); IR ν (KBr, cm⁻¹) 3342, 3072, 3049, 1605, 1584, 1568, 1435, 1302, 1274, 1173, 1117, 1098. Anal. Calcd for C₂₃H₂₃O₂PSe: C, 62.59; H, 5.25. Found: C, 62.61; H, 5.26. Compound Z-3n: liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.94–7.83 (m, 2H), 7.83– 7.72 (m, 2H), 7.58-7.44 (m, 6H), 7.44-7.24 (m, 5H), 7.12 (d, *I*=21.0 Hz, 1H), 4.25 (dd, *I*₁=8.0 Hz, *I*₂=3.5 Hz, 1H), 2.14–2.01 (m, 1H), 1.90–1.73 (m, 1H), 0.87 (t, *J*=7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 135.9, 134.0 (d, J_{pc} =105.9 Hz), 133.2 (d, J_{pc} =106.0 Hz), 131.7 (d, J_{pc} =2.8 Hz), 131.6 (d, J_{pc} =2.7 Hz), 131.4 (d, J_{pc}=9.5 Hz), 130.9 (d, J_{pc}=9.5 Hz), 129.5, 129.1, 128.6 (d, J_{pc}=11.6 Hz), 128.5 (d, J_{pc} =12.2 Hz), 127.1, 123.1 (d, J_{pc} =105.2 Hz), 65.4 (d, J_{DC} =14.0 Hz), 31.7, 10.5; ³¹P NMR (121.5 MHz, CDCl₃) δ 21.6; MS (ESI) \dot{m}/z (%) 465 (M⁺(⁸²Se³⁷Cl)+1, 6.03), 464 (M⁺(⁸²Se³⁷Cl), 11.21), 463 $(M^{+}(^{82}Se^{35}Cl)+1 \text{ or } M^{+}(^{80}Se^{37}Cl)+1, 44.83), 462 (M^{+}(^{82}Se^{35}Cl) \text{ or } M^{+}(^{82}Se^{35}Cl))$ $M^{+}(^{80}Se^{37}Cl)$, 25.86), 461 ($M^{+}(^{80}Se^{35}Cl)$ +1 or $M^{+}(^{78}Se^{37}Cl)$ +1, 100), 459 (M⁺(⁷⁷Se³⁷Cl) or M⁺(⁷⁸Se³⁵Cl)+1 or M⁺(⁷⁶Se³⁷Cl)+1, 50.86), 458 (M⁺(⁷⁶Se³⁷Cl) or M⁺(⁷⁸Se³⁵Cl) or M⁺(⁷⁷Se³⁵Cl)+1, 16.81), 457 $(M^{+}(^{77}Se^{35}Cl) \text{ or } M^{+}(^{76}Se^{35}Cl)+1 \text{ or } M^{+}(^{74}Se^{37}Cl)+1, 15.95); IR \nu$ (neat, cm⁻¹) 3055, 1567, 1476, 1458, 1437, 1381, 1306, 1194, 1118. HRMS calcd for C₂₃H₂₂ClNaOPSe⁺ (M+Na)⁺: 483.0162. Found: 483.0139.

4.3.15. 3-Hydroxy-2-phenylselanyl-1(*E*)-nonenyl diphenyl phosphine oxide (*E*-**20**) and 3-chloro-2-phenylselanyl-1(*Z*)-nonenyl diphenyl phosphine oxide (*Z*-**30**)

The reaction of 10 (649.3 mg, 2.0 mmol) and PhSeCl (575.4 mg, 3.0 mmol) in 1.5 mL of H₂O and 30 mL of CH₃CN for 30 min afforded E-20 (642.2 mg, 64%) and Z-30 (less polar, 61.2 mg, 6%). E-20/Z-**30**=91:9. Compound E-20: solid. Mp 104–105 °C (hexane/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.43 (m, 8H), 7.42–7.31 (m, 7H), 5.75 (br s, 1H), 5.64 (d, J=20.0 Hz, 1H), 4.70–4.58 (m, 1H), 1.95-1.75 (m, 2H), 1.60-1.48 (m, 1H), 1.41-1.17 (m, 7H), 0.85 (t, J=7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 136.7, 133.6 (d, J_{pc}=105.1 Hz), 133.3 (d, J_{pc}=107.6 Hz), 131.6, 130.8 (d, J_{pc}=10.0 Hz), 130.7 (d, J_{pc}=9.1 Hz), 129.8, 129.3, 128.5 (d, J_{pc}=12.3 Hz), 127.7, 113.4 (d, *J*_{pc}=97.0 Hz), 74.3 (d, *J*_{pc}=6.2 Hz), 37.4, 31.7, 28.9, 26.1, 22.5, 14.0; ³¹P NMR (121.5 MHz, CDCl₃) δ 23.3; MS (ESI) m/z (%) 501 $(M^{+}(^{82}Se)+1, 13.45), 499 (M^{+}(^{80}Se)+1 \text{ or } M^{+}(^{82}Se)-1, 68.13), 497$ (M⁺(⁷⁸Se)+1 or M⁺(⁸⁰Se)-1, 31.87), 500 (M⁺(⁸²Se), 26.32), 498 $(M^+({}^{80}Se), 10.23), 496 (M^+({}^{78}Se) \text{ or } M^+({}^{77}Se)+1, 10.06), 495 (M^+({}^{77}Se) \text{ or } M^+({}^{76}Se)+1 \text{ or } M^+({}^{78}Se)-1, 8.48), 484$ $(M^{+}(^{82}Se)+1-OH, 15.20), 482 (M^{+}(^{80}Se)+1-OH \text{ or } M^{+}(^{82}Se)-H_{2}O,$ 65.79), 480 (M⁺(⁷⁸Se)+1–OH or M⁺(⁸⁰Se)–H₂O, 32.16), 483 $(M^{+}(^{82}Se)-OH, 53.22), 481 (M^{+}(^{80}Se)-OH, 100),$ 479 (M⁺(⁷⁸Se)–OH or M⁺(⁷⁷Se)+1–OH, 70.76), 478 (M⁺(⁷⁷Se)–OH or $M^{+}(^{76}Se)+1-OH$ or $M^{+}(^{78}Se)-H_2O$, 27.19), 477 ($M^{+}(^{76}Se)-OH$ or

 $M^{+}(^{77}Se) - H_2O$, 23.10); IR ν (KBr, cm⁻¹) 3330, 1590, 1560, 1437, 1187, 1118. Anal. Calcd for C₂₇H₃₁O₂PSe: C, 65.19; H, 6.28. Found: C, 65.21; H, 6.19. Compound Z-**30**: liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.93– 7.73 (m, 4H), 7.58-7.23 (m, 11H), 7.11 (d, J=21.0 Hz, 1H), 4.29 (dd, J₁=9.0 Hz, J₂=3.3 Hz, 1H), 2.08–1.96 (m, 1H), 1.82–1.66 (m, 1H), 1.47–1.32 (m, 1H), 1.31–1.02 (m, 7H), 0.85 (t, *J*=6.9 Hz, 3H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3) \delta 158.5 \text{ (d, } J_{pc}=1.3 \text{ Hz}\text{)}, 136.0, 133.9 \text{ (d,}$ J_{pc}=106.1 Hz), 133.1 (d, J_{pc}=105.8 Hz), 131.7 (d, J_{pc}=2.6 Hz), 131.6 (d, J_{pc}=2.9 Hz), 131.3 (d, J_{pc}=9.9 Hz), 130.9 (d, J_{pc}=9.7 Hz), 129.4, 129.1, 128.6 (d, J_{pc} =9.7 Hz), 128.5 (d, J_{pc} =10.4 Hz), 127.0, 122.5 (d, J_{pc}=105.5 Hz), 63.9 (d, J_{pc}=14.9 Hz), 38.6 (d, J_{pc}=1.6 Hz), 31.4, 28.2, 26.1, 22.4, 14.0; ³¹P NMR (121.5 MHz, CDCl₃) δ 21.7; MS (ESI) m/z (%) 556 (M⁺(⁸⁰Se³⁵Cl)+K⁺ or M⁺(⁷⁸Se³⁷Cl)+K⁺, 3.35), 535 (M⁺(⁸⁰Se³⁵ Cl)+NH⁺ or M⁺(⁷⁸Se³⁷Cl)+NH⁺, 8.37), 533 (M⁺(⁷⁷Se³⁷Cl) or $M^{+}(^{78}Se^{35}Cl) + NH_{4}^{+}$ or $M^{+}(^{76}Se^{37}Cl) + NH_{4}^{+}$, 16.74), 521 ($M^{+}(^{82}Se^{37}Cl) + NH_{4}^{+}$, 16.74) Cl)+1, 4.60), 519 (M⁺(⁸²Se³⁵Cl)+1 or M⁺(⁸⁰Se³⁷Cl)+1, 53.56), 517 $(M^{+}(^{80}Se^{35}Cl)+1 \text{ or } M^{+}(^{78}Se^{37}Cl)+1, 100), 515 (M^{+}(^{77}Se^{37}Cl) \text{ or } M^{+}(^{77}Se^{37}Cl))$ $M^{+}(^{78}Se^{35}Cl)+1$ or $M^{+}(^{76}Se^{37}Cl)+1$, 50.21), 513 ($M^{+}(^{77}Se^{35}Cl)$ or $M^{+}(^{76}Se^{35}Cl)+1$ or $M^{+}(^{74}Se^{37}Cl)+1$, 14.23), 520 ($M^{+}(^{82}Se^{37}Cl)$, 13.81), 518 (M⁺(⁸²Se³⁵Cl) or M⁺(⁸⁰Se³⁷Cl), 15.06), 516 (M⁺(⁸⁰Se³⁵Cl) or $M^{+}(^{78}Se^{37}Cl)$, 18.41), 514 ($M^{+}(^{76}Se^{37}Cl)$ or $M^{+}(^{78}Se^{35}Cl)$, 16.32); IR v (neat, cm⁻¹) 3055, 1567, 1476, 1437, 1196, 1118, 1104. Anal. Calcd for C₂₇H₃₀ClOPSe: C, 62.86; H, 5.86. Found: C, 62.88; H, 5.77.

4.3.16. 3-Hydroxy-4-phenyl-2-phenylselanyl-1(*E*)-butenyl diphenyl phosphine oxide (*E*-**2p**) and 3-chloro-4-phenyl-2-phenylselanyl-1(*Z*)-butenyl diphenyl phosphine oxide (*Z*-**3p**)

The reaction of **1p** (200.2 mg, 0.60 mmol) and PhSeCl (172.2 mg, 0.90 mmol) in 0.6 mL of H₂O and 12 mL of CH₃CN for 15 min afforded E-2p (196.4 mg, 64%) and Z-3p (less polar, 43.5 mg, 14%). E-2p/Z-3p=82:18. Compound E-2p: solid. Mp 177-178 °C (ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.65–7.36 (m, 15H), 7.35–7.17 (m, 5H), 5.71 (d, J=19.8 Hz, 1H), 5.52 (d, J=8.1 Hz, 1H), 5.15-5.04 (m, 1H), 3.31–3.14 (m, 2H); ³¹P NMR (121.5 MHz, CDCl₃) δ 23.3; MS (ESI) m/z (%) 507 (M⁺(⁸²Se)+1, 23.03), 505 (M⁺(⁸⁰Se)+1 or M⁺(⁸²Se)-1, 100), 503 ($M^{+}(^{78}Se)+1$ or $M^{+}(^{80}Se)-1$, 50.91), 506 ($M^{+}(^{82}Se)$, 28.48), 504 (M⁺(⁸⁰Se), 15.15), 502 (M⁺(⁷⁸Se) or M⁺(⁷⁷Se)+1, 20.00), 501 (M⁺(⁷⁷Se) or M⁺(⁷⁶Se)+1 or M⁺(⁷⁸Se)-1, 16.36); IR ν (KBr, cm⁻¹) 3209, 1564, 1496, 1437, 1306, 1177, 1119. Anal. Calcd for C₂₈H₂₅O₂PSe: C, 66.80; H, 5.01. Found: C, 66.86; H, 5.01. Compound Z-3p: liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.79 (m, 2H), 7.75– 7.64 (m, 2H), 7.58-7.41 (m, 8H), 7.41-7.35 (m, 1H), 7.35-7.27 (m, 2H), 7.22-7.15 (m, 3H), 7.07 (d, J=20.7 Hz, 1H), 6.90-6.82 (m, 2H), 4.56 (dd, *J*₁=8.7 Hz, *J*₂=3.9 Hz, 1H), 3.41 (dd, *J*₁=14.7 Hz, *J*₂=3.9 Hz, 1H), 2.92 (dd, J₁=14.4 Hz, J₂=8.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 156.9 (d, J_{pc}=1.3 Hz), 136.4, 136.2, 133.7 (d, J_{pc}=106.1 Hz), 133.0 (d, J_{pc} =105.2 Hz), 131.8 (d, J_{pc} =2.7 Hz), 131.7 (d, J_{pc} =2.8 Hz), 131.3, 131.2, 130.9 (d, $J_{pc}=9.6$ Hz), 129.7, 129.3, 129.2, 128.6 (d, J_{pc} =11.8 Hz), 128.5 (d, J_{pc} =12.4 Hz), 128.2, 126.9 (d, J_{pc} =2.3 Hz), 123.4 (d, J_{pc} =104.9 Hz), 64.0 (d, J_{pc} =14.0 Hz), 44.2 (d, J_{pc} =1.3 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 21.9; MS (ESI) m/z (%) 539 $(M^+(^{77}Se^{37}CI)+NH_4^+ \text{ or } M^+(^{78}Se^{35}CI)+NH_4^+ \text{ or } M^+(^{76}Se^{37}CI)+NH_4^+, 10.88),$ 527 (M⁺(⁸²Se³⁷Cl)+1, 8.37), 525 (M⁺(⁸²Se³⁵Cl)+1 or M⁺(⁸⁰Se³⁷Cl)+1, 34.31), 523 (M⁺(⁸⁰Se³⁵Cl)+1 or M⁺(⁷⁸Se³⁷Cl)+1, 100), 521 (M⁺(⁷⁷Se³⁷Cl)) or $M^{+}(^{78}Se^{35}Cl)+1$ or $M^{+}(^{76}Se^{37}Cl)+1$, 31.80), 519 ($M^{+}(^{77}Se^{35}Cl)$ or $M^{+}({}^{76}Se^{35}Cl)+1$ or $M^{+}({}^{74}Se^{37}Cl)+1$, 11.30), 526 ($M^{+}({}^{82}Se^{37}Cl)$, 6.69), 524 (M⁺(⁸²Se³⁵Cl) or M⁺(⁸⁰Se³⁷Cl), 22.18), 522 (M⁺(⁸⁰Se³⁵Cl) or $M^{+}(^{78}Se^{37}Cl)$, 16.74), 520 ($M^{+}(^{76}Se^{37}Cl)$ or $M^{+}(^{78}Se^{35}Cl)$, 8.37); IR ν (neat, cm⁻¹) 3056, 1565, 1495, 1476, 1437, 1307, 1195, 1118. HRMS calcd for C₂₈H₂₅ClOPSe⁺ (M⁺+H): 523.0480. Found: 523.0491.

4.3.17. Synthesis of 3-chloro-2-phenylselanyl-1(E)-nonenyl diphenyl phosphine oxide (E-**30**)

4.3.17.1. 3-Tosyloxy-2-phenylselanyl-1(E)-nonenyl diphenyl phosphine oxide (E-**40**).²³ To a solution of E-**20** (152.7 mg, 0.31 mmol),

p-TsCl (235.0 mg, 1.24 mmol) in 1.0 mL of anhydrous CH₂Cl₂ was added dropwise 4-dimethylaminopyridine (225.5 mg, 1.86 mmol) in 1.0 mL of anhydrous CH₂Cl₂ under the atmosphere of N₂. Then the resulting mixture was refluxed at 50 °C for 2.5 h. After evaporation, purification by flash chromatography on silica gel (petroleum ether/ethyl acetate=3:1 to 2:1) afforded E-40 (172.2 mg, 86%) as a solid. Mp 130–131 °C (*n*-hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J*=8.4 Hz, 2H), 7.58–7.29 (m, 15H), 7.17 (d, *I*=8.1 Hz, 2H), 6.66 (dd, *I*₁=8.4 Hz, *I*₂=4.2 Hz, 1H), 5.47 (d, *I*=19.8 Hz, 1H), 2.37 (s, 3H), 2.01–1.86 (m, 1H), 1.80–1.66 (m, 1H), 1.31–0.93 (m, 8H), 0.81 (t, *J*=6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 144.4, 137.1, 133.7 (d, J_{pc} =104.1 Hz), 133.6 (d, J_{pc} =105.4 Hz), 133.1, 131.6 (d, $J_{pc}=2.7$ Hz), 131.5 (d, $J_{pc}=2.8$ Hz), 130.9 (d, J_{pc}=9.5 Hz), 130.5 (d, J_{pc}=9.6 Hz), 129.8, 129.45, 129.41, 128.49, 128.47 (d, J_{pc} =14.9 Hz), 128.43 (d, J_{pc} =14.3 Hz), 126.9, 115.8 (d, J_{pc}=93.9 Hz), 80.6 (d, J_{pc}=6.3 Hz), 36.3, 31.5, 28.5, 24.8, 22.3, 21.6, 14.0; ³¹P NMR (121.5 MHz, CDCl₃) δ 20.8; MS (ESI) m/z (%) 694 51.08), 689 $(M^{+}(^{78}Se)+K \text{ or } M^{+}(^{77}Se)+K+1, 32.37)$, 688 $(M^+(^{77}Se)+K \text{ or } M^+(^{76}Se)+K+1, 9.35), 687 (M^+(^{76}Se)+K, 8.63), 678$ $(M^{+}(^{82}Se)+Na+1, 10.07), 676 (M^{+}(^{80}Se)+Na+1, 34.17), 674$ $(M^+(^{78}Se)+Na+1, 19.78), 677 (M^+(^{82}Se)+Na, 28.78), 675$ (M⁺(⁸⁰Se)+Na, 100), 673 (M⁺(⁷⁸Se)+Na or M⁺(⁷⁷Se)+Na+1, 50.36), 672 (M⁺(⁷⁷Se)+Na or M⁺(⁷⁶Se)+Na+1, 24.10), 671 (M⁺(⁷⁶Se)+Na, 17.63), 655 ($M^{+}(^{82}Se)$ +1, 25.90), 653 ($M^{+}(^{80}Se)$ +1, 87.77), 651 $(M^{+}(^{78}Se)+1, 41.01), 650 (M^{+}(^{78}Se) \text{ or } M^{+}(^{77}Se)+1, 20.86), 649$ $(M^{+}(^{77}Se) \text{ or } M^{+}(^{76}Se)+1, 8.63), 654 (M^{+}(^{82}Se), 26.62), 652$ (M⁺(⁸⁰Se), 15.11); IR *v* (KBr, cm⁻¹) 3060, 1595, 1572, 1440, 1361, 1311, 1283, 1190, 1175, 1118. Anal. Calcd for C₃₄H₃₇O₄PSSe: C, 62.67; H, 5.72. Found: C, 62.74; H, 5.75.

4.3.17.2. 3-Chloro-2-phenylselanyl-1(E)-nonenyl diphenyl phosphine oxide (E-30).²⁴ To a solution of tosylate E-40 (80.4 mg, 0.15 mmol) in 1.5 mL of anhydrous DMF was added anhydrous LiCl (53.7 mg, 1.20 mmol) at the atmosphere of N_2 . Then the resulting mixture was stirred at 50 °C for 29 h and guenched with 5 mL of water. The agueous layer was extracted with 20×3 mL of Et₂O. The combined organic layer was washed with 5 mL of H₂O, 5 mL of 5% diluted aqueous HCl and 5 mL of saturated brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, chromatography on silica gel (eluent: petroleum ether/ethyl acetate=3:1) of the crude product afforded *E*-**3o** (38.1 mg, 60%) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.56 (m, 2H), 7.56-7.31 (m, 13H), 6.24-6.15 (m, 1H), 5.70 (d, J=19.8 Hz, 1H), 2.10-1.94 (m, 2H), 1.57-1.41 (m, 1H), 1.37-1.12 (m, 7H), $0.86(t, J=6.9 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{NMR}(75 \text{ MHz}, \text{CDCl}_3) \delta 164.5, 137.0, 133.6(d, d))$ J_{pc}=105.2 Hz), 133.5 (d, J_{pc}=105.5 Hz), 131.7 (d, J_{pc}=2.7 Hz), 131.6 (d, J_{pc} =2.8 Hz), 130.7 (d, J_{pc} =12.4 Hz), 130.6 (d, J_{pc} =11.6 Hz), 129.9, 129.4, 128.55 (d, J_{pc} =12.4 Hz), 128.46 (d, J_{pc} =12.0 Hz), 127.5, 118.5 (d, J_{pc} =93.2 Hz), 60.5 (d, J_{pc} =6.9 Hz), 39.0, 31.5, 28.6, 26.5, 22.4, 14.1; ³¹P NMR (121.5 MHz, CDCl₃) δ 20.4; MS (ESI) m/z (%) 559 (M⁺(⁸²Se³⁷Cl)+K, $\begin{array}{l} \text{Mirk}(121.5 \text{ Mir2}, \text{CDC}3) & \text{20.47}, \text{M3}(\text{E31}) \text{M12}(\$) 359 (\text{M} (326 \text{ C1}) + \text{K}, \\ 4.66), & 557 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} \text{ or } \text{M}^+(^{80}\text{Se}^{37}\text{C1}) + \text{K}, \\ 21.51), & 555 \quad (\text{M}^+(^{80}\text{Se}^{35}\text{C1}) + \text{K} \text{ or } \text{M}^+(^{78}\text{Se}^{37}\text{C1}) + \text{K}, \\ 19.55), & 551 \quad (\text{M}^+(^{78}\text{Se}^{35}\text{C1}) + \text{K} \text{ or } \text{M}^+(^{76}\text{Se}^{35}\text{C1}) + \text{K} \text{ or } \text{M}^+(^{74}\text{Se}^{37}\text{C1}) + \text{K}, \\ 6.09), & 558 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1 \text{ or } \text{M}^+(^{80}\text{Se}^{37}\text{C1}) + \text{K} + 1, \\ 5.73), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 5.73), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 5.73), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 5.73), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 556 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 566 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 566 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 566 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 566 \quad (\text{M}^+(^{82}\text{Se}^{35}\text{C1}) + \text{K} + 1, \\ 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), & 10.53), &$ $(M^{+}(^{80}Se^{35}Cl)+K+1)$ or $M^{+}(^{78}Se^{37}Cl)+K+1$, 13.26), 554 $(M^{+}(^{77}Se^{37}Cl)+K \text{ or } M^{+}(^{78}Se^{35}Cl)+K+1 \text{ or } M^{+}(^{76}Se^{37}Cl)+K+1, 8.60),$ 552 (M⁺(⁷⁷Se³⁵Cl)+K or M⁺(⁷⁶Se³⁵Cl)+K+1 or M⁺(⁷⁴Se³⁷Cl)+K+1, 7.53), 543 $(M^{+}(^{82}Se^{37}Cl)+Na, 3.58)$, 541 $(M^{+}(^{82}Se^{35}Cl)+Na$ or $M^{+}({}^{80}Se^{37}Cl) + Na, 20.43), 539 (M^{+}({}^{80}Se^{35}Cl) + Na \text{ or } M^{+}({}^{78}Se^{37}Cl) + Na,$ 41.94), 537 $(M^{+}({}^{76}Se^{37}Cl)+Na \text{ or } M^{+}({}^{78}Se^{35}Cl)+Na, 22.58)$, 535 $(M^{+}({}^{76}Se^{35}Cl) + Na \text{ or } M^{+}({}^{74}Se^{37}Cl) + Na, 7.17), 542 (M^{+}({}^{82}Se^{35}Cl) + Na)$ Na+1 or $M^{+}(^{80}Se^{37}Cl)+Na+1$, 5.38), 540 ($M^{+}(^{80}Se^{35}Cl)+Na+1$ or M⁺(⁷⁸Se³⁷Cl)+Na+1, 11.47), 538 (M⁺(⁷⁷Se³⁷Cl)+Na or M⁺(⁷⁸Se³⁵Cl)+ Na+1 or $M^+({}^{76}Se^{37}Cl)$ +Na+1, 7.89), 536 ($M^+({}^{77}Se^{35}Cl)$ +Na or $M^{+}(^{76}Se^{35}Cl) + Na + 1 \text{ or } M^{+}(^{74}Se^{37}Cl) + Na + 1, 7.89), 521 (M^{+}(^{82}Se^{37}Cl) + 1, 7.89)$

6.45), 519 $(M^{+}(^{82}Se^{35}Cl)+1 \text{ or } M^{+}(^{80}Se^{37}Cl)+1, 41.58), 517$ $(M^+(^{80}Se^{35}Cl)+1 \text{ or } M^+(^{78}Se^{37}Cl)+1, 78.85), 515 (M^+(^{77}Se^{37}Cl) \text{ or } M^+(^{78}Se^{35}Cl)+1 \text{ or } M^+(^{76}Se^{37}Cl)+1, 32.26), 513 (M^+(^{77}Se^{35}Cl) \text{ or } M^+(^{77}Se^{35}Cl)+1)$ $M^{+}({}^{76}Se^{35}Cl)+1 \text{ or } M^{+}({}^{74}Se^{37}Cl)+1, 11.47), 520 (M^{+}({}^{82}Se^{37}Cl), 10.75),$ 14.70), 506 ($M^{+}({}^{82}Se)$ +Na-Cl, 2.15), 504 ($M^{+}({}^{80}Se)$ +Na-Cl, 10.39), $(M^{+}(^{78}Se)+Na-Cl, 6.45), 505 (M^{+}(^{82}Se)+Na-HCl, 6.45))$ 502 7.89), 503 (M⁺(⁸⁰Se)+Na-HCl, 42.29), 501 (M⁺(⁷⁸Se)+Na-HCl or $M^{+}(^{77}Se) + Na - Cl,$ $(M^+(^{77}Se)+Na-HCl$ 20.07), 500 or M⁺(⁷⁶Se)+Na-Cl, 6.45), 499 (M⁺(⁷⁶Se)+Na-HCl, 8.24), 484 $(M^+({}^{82}Se)+1-Cl, 3.58), 482 (M^+({}^{80}Se)+1-Cl, 21.51), 480$ $(M^+(^{78}Se)+1-Cl,$ $(M^{+}(^{82}Se)-Cl,$ 14.70), 483 19.00), 481 $(M^{+}(^{80}Se)-Cl, 100), 479 (M^{+}(^{78}Se)-Cl or M^{+}(^{77}Se)+1-Cl, M^{+}(^{77}Se)$ 50.18), 478 $(M^{+}(^{77}Se)-Cl \text{ or } M^{+}(^{76}Se)+1-Cl, 19.00)$, 477 $(M^{+}(^{76}Se)-Cl, 14.70); IR \nu (neat, cm^{-1}) 3057, 1585, 1574, 1466, 1437,$ 1274, 1195, 1117. Anal. Calcd for C₂₇H₃₀ClOPSe: C, 62.86; H, 5.86. Found: C, 62.85; H, 5.89.

4.3.18. Synthesis of ¹⁸O-labeled 3-hydroxy-1-phenyl-2phenylselanyl-1(E)-propenyl diphenyl phosphine oxide (E-**2h***)

The starting material **1h** was dried in vacuo over P_2O_5 for one day. MeCN was firstly heated with CaH₂ under reflux in an argon atmosphere for 24 h. Then the distilled MeCN was treated with P_2O_5 under reflux in an argon atmosphere for another 24 h. After distillation, the generated anhydrous MeCN was stored in a bottle with molecular sieves and placed in the glove box under nitrogen atmosphere. H₂¹⁸O (96%) was bought from J&K Chemical LTD. All the operation was carried out in the glove box under nitrogen atmosphere.

A solution of PhSeCl (87.1 mg, 0.45 mmol) in anhydrous CH₃CN (2.0 mL) and $H_2^{18}O$ (0.1 mL) was stirred at rt for 262 min. Then a solution of **1h** (95.1 mg, 0.30 mmol) in anhydrous CH₃CN (2.0 mL) and $H_2^{18}O$ (0.2 mL), which had been stirred at rt for 259 min, was added subsequently. Anhydrous CH₃CN (1.0 mL×2) was used to wash the container for 1h and transferred into the reaction mixture. After being stirred at rt for 10 min, the reaction mixture was directly purified with flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate=2:1) to afford 124.8 mg (84%) of E-**2h*** (94.5% of ¹⁸O incorporation) as a solid. Mp 142.5–143.3 °C (*n*hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.68–7.52 (m, 6H), 7.51-7.42 (m, 2H), 7.41-7.29 (m, 7H), 7.18-7.06 (m, 3H), 6.87-6.81 (m, 2H), 5.97 (t, *J*=7.6 Hz, 1H), 4.39 (dd, *J*₁=7.6 Hz, *J*₂=0.9 Hz, 2H); ³¹P NMR (121.5 MHz, CDCl₃) δ 30.6; MS (ESI) m/z (%) 518 $(M^{+}(^{82}Se)+Na+1, 5.02), 516 (M^{+}(^{80}Se)+Na+1, 10.60), 514$ $(M^{+}(^{78}Se)+Na+1, 7.10), 512 (M^{+}(^{77}Se)+Na \text{ or } M^{+}(^{76}Se)+Na+1,$ 8.27), 517 (M⁺(82 Se)+Na, 9.52), 515 (M⁺(80 Se)+Na, 36.16), 513 $\begin{array}{l} (M^+(^{78}Se) + Na \quad or \quad M^+(^{77}Se) + Na + 1, \quad 20.01), \quad 511 \quad (M^+(^{76}Se) + Na, \\ 8.07), \quad 495 \quad (M^+(^{82}Se) + 1, \quad 22.58), \quad 493 \quad (M^+(^{80}Se) + 1, \quad 100), \quad 491 \\ (M^+(^{78}Se) + 1, \quad 56.66), \quad 489 \quad (M^+(^{77}Se) \quad or \quad M^+(^{76}Se) + 1, \quad 20.64), \quad 494 \\ \end{array}$ $(M^+({}^{82}Se), 28.07), 492 (M^+({}^{80}Se), 18.08), 490 (M^+({}^{78}Se) or$ M⁺(⁷⁷Se)+1, 21.55); IR ν (KBr, cm⁻¹) 3431, 3055, 3022, 2926, 1577, 1560, 1474, 1439, 1388, 1311, 1252, 1138, 1116, 1088, 1064, 1021. HRMS calcd for C₂₇H₂₄O¹⁸OPSe⁺ (M⁺+1): 493.07161. Found: 493.07115.

According to the MS spectrum of this product (page S113, in Supplementary data), the relative abundances of 489.05, 490.06, 491.04, 492.06, 493.02, 494.04, 495.02 are 20.64, 21.55, 56.66, 18.08, 100, 28.07, 22.58; according to the simulated MS spectrum of *E*-**2h*** with 100% of ¹⁸O (page S112, in Supplementary data), their relative abundances should be 18.561, 20.515, 52.147, 14.585, 100, 29.099, 21.547; according to the simulated MS spectrum of *E*-**2h** (page S111, in Supplementary data) their relative abundances should be 52.134, 14.631, 100, 29.134, 21.739, 5.580, 0.837. If *x* and *y* represent the amount of *E*-**2h*** and *E*-**2h**, respectively, then

0.2064 = 0.18561x + 0.52134y

 $0.2155\,=\,0.20515x+0.14631y$

- 0.5666 = 0.52147x + 1.00000y
- 0.1808 = 0.14585x + 0.29134y
- 1.0000 = 1.00000x + 0.21739y
- 0.2807 = 0.29099x + 0.05580y

0.2258 = 0.21547x + 0.00837y

which can be written as

	0.52154
0.2155 0.20515	0.14631
0.5666 0.52147	1.00000
0.1808 = 0.14585	0.29134
1.0000 1.00000	0.21739 ^[y]
0.2807 0.29099	0.05580
0.2258 0.21547	0.00837

By using MATLAB 5.3 (by the MathWorks), we know that x=0.9873, y=0.0573. Thus, the incorporation of ¹⁸O % in the product=x/(x+y)=0.945.

The following compounds were prepared according to this procedure.

4.3.19. Synthesis of ¹⁸O-labeled 3-hydroxy-3-phenyl-2-

phenylselanyl-1(E)-propenyl diphenyl phosphine oxide (E-2c*)

The reaction of 1c (94.8 mg, 0.30 mmol) and PhSeCl (87.2 mg, 0.45 mmol) in 0.3 mL of H¹⁸O and 6 mL of anhydrous CH₃CN for 37 min afforded 126.0 mg (85%) of E-2c* (88.4% of ¹⁸O incorporation) as a solid. Mp 163.2–163.6 °C (ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.51– 7.09 (m, 20H), 6.00 (s, 1H), 5.79 (br, 1H), 5.68 (d, I=20.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) & 168.3, 140.7, 136.7, 133.0 (d, J_{pc}=105.4 Hz), 132.9 (d, J_{pc}=107.9 Hz), 131.8 (d, J_{pc}=2.5 Hz), 131.6 (d, J_{pc}=2.9 Hz), 130.8 (d, J_{pc}=14.9 Hz), 130.7 (d, J_{pc}=15.6 Hz), 129.8, 129.3, 128.5 (d, J_{pc}=11.8 Hz), 128.4 (d, J_{pc}=12.2 Hz), 128.1, 128.0, 127.8, 127.0, 115.3 (d, J_{pc}=94.3 Hz), 74.7; ³¹P NMR (121.5 MHz, CDCl₃) δ 23.9; MS (ESI) m/z (%) 515 (M⁺(⁸⁰Se)+Na, 20.60), 513 (M⁺(⁷⁸Se)+Na or M⁺(⁷⁷Se)+Na+1, 14.05), 511 (M⁺(⁷⁶Se)+Na, 11.07), 512 (M⁺(⁷⁷Se)+Na or M⁺(⁷⁶Se)+Na+1, 8.61), 495 (M⁺(⁸²Se)+1, 23.14), 493 (M⁺(⁸⁰Se)+1, 100), 491 (M⁺(⁷⁸Se)+1, 63.09), 489 (M⁺(⁷⁷Se) or M⁺(⁷⁶Se)+1, 25.10), 494 (M⁺(⁸²Se), 28.85), 492 ($M^{+}({}^{80}Se)$, 19.78), 490 ($M^{+}({}^{78}Se)$ or $M^{+}({}^{77}Se)$ +1, 22.01), 476 $(M^{+}({}^{80}Se)+1-OH, 6.07), 475 (M^{+}({}^{80}Se)-OH, 20.55), 473$ $(M^{+}(^{78}Se) - OH \text{ or } M^{+}(^{77}Se) + 1 - OH, 14.54); IR \nu (KBr, cm^{-1}) 3274, 1592,$ 1571, 1474, 1439, 1332, 1274, 1157, 1147, 1117, 1093, 1047. HRMS calcd for $C_{27}H_{24}O^{18}OPSe^+$ (M⁺+1): 493.07161. Found: 493.07085.

According to the MS spectrum of this product (page S119, in Supplementary data), the relative abundances of 488.96, 489.98, 490.93, 491.98, 492.91, 493.94, 494.93 are 25.10, 22.01, 63.09, 19.78, 100, 28.85, 23.14; according to the simulated MS spectrum of *E*-**2c*** with 100% of ¹⁸O (page S118, in Supplementary data), their relative abundances should be 18.561, 20.515, 52.147, 14.585, 100, 29.099, 21.547; according to the simulated MS spectrum of *E*-**2c** (page S117, in Supplementary data) their relative abundances should be 52.134, 14.631, 100, 29.134, 21.739, 5.580, 0.837. If *x* and *y* represent the amount of *E*-**2c*** and *E*-**2c**, respectively, then

0.2510 = 0.18561x + 0.52134y

0.6309 = 0.52147x + 1.00000y

0.1978 = 0.14585x + 0.29134y

1.0000 = 1.00000x + 0.21739y

0.2885 = 0.29099x + 0.05580y

0.2314 = 0.21547x + 0.00837y

Similarly, by using MATLAB 5.3 (by the MathWorks), we know that x=0.9759, y=0.1282. Thus incorporation of ¹⁸O % in the product=x/(x+y)=0.884.

4.3.20. Synthesis of ¹⁸O-labeled 3-hydroxy-2-phenylselanyl-3propyl-1(*E*)-hexenyl diphenyl phosphine oxide ($E-2e^*$)

The reaction of 1e (97.2 mg, 0.30 mmol) and PhSeCl (85.9 mg, 0.45 mmol) in 0.3 mL of H_2^{18} O and 6 mL of anhydrous CH₃CN for 41 min afforded 127.7 mg (85%) of E-2e* (69.5% of ¹⁸O incorporation) as a liquid. ¹H NMR (300 MHz, $CDCl_3$) δ 7.52–7.42 (m, 2H), 7.42-7.20 (m, 13H), 5.75 (br, 1H), 5.62 (d, J=18.3 Hz, 1H), 1.85-1.58 (m, 4H), 1.47–1.23 (m, 4H), 0.83 (t, J=7.2 Hz, 6H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3) \delta 172.2 \text{ (d, } J_{pc}=1.4 \text{ Hz}), 137.2, 134.0 \text{ (d,}$ J_{pc} =107.4 Hz), 131.2 (d, J_{pc} =2.9 Hz), 130.7 (d, J_{pc} =9.7 Hz), 129.9, 129.3, 128.6, 128.2 (d, J_{pc} =11.9 Hz), 115.7 (d, J_{pc} =98.0 Hz), 80.7 (d, $J_{\rm pc}$ =5.5 Hz), 44.4, 16.7, 14.4; ³¹P NMR (121.5 MHz, CDCl₃) δ 24.9; MS (ESI) m/z (%) 503 (M⁺(⁸²Se)+1, 19.12), 501 (M⁺(⁸⁰Se)+1, 100), 499 $(M^+(^{78}Se)+1, 86.67), 497 (M^+(^{77}Se) \text{ or } M^+(^{76}Se)+1, 37.28), 495 (M^+(^{74}Se)+1, 9.41), 502 (M^+(^{82}Se), 28.34), 500 (M^+(^{80}Se), 27.52),$ 498 (M⁺(⁷⁸Se) or M⁺(⁷⁷Se)+1, 25.25), 496 (M⁺(⁷⁶Se), 8.78), 483 $(M^+({}^{82}Se)-OH, 8.88), 481 (M^+({}^{80}Se)-OH, 13.03), 479 (M^+({}^{78}Se)-OH or M^+({}^{77}Se)+1-OH, 5.58), 482 (M^+({}^{80}Se)+1-OH, -0H, -0H, -0H)$ 3.65); IR ν (neat, cm⁻¹) 3336, 1580, 1556, 1462, 1437, 1376, 1337, 1306, 1274, 1154, 1140, 1115, 1088, 1067, 1021. HRMS calcd for C₂₇H₃₂O¹⁸OPSe⁺ (M⁺+1): 501.13421. Found: 501.13349.

According to the MS spectrum of this product (page S125, in Supplementary data), the relative abundances of 495.04, 496.06, 497.02, 498.04, 498.99, 500.03, 500.98, 502.00, 502.98 are 9.41, 8.78, 37.28, 25.25, 86.67, 27.52, 100, 28.34, 19.12; according to the simulated MS spectrum of E-**2**e^{*} with 100% of ¹⁸O (page S124, in Supplementary data), their relative abundances should be 1.755, 0.520, 18.559, 20.529, 52.158, 14.631, 100.00, 29.187, 21.571; according to the simulated MS spectrum of *E*-**2**e (page S123, in Supplementary data) their relative abundances should be 18.542, 20.514, 52.146, 14.677, 100.00, 29.222, 21.763, 5.999, 0.842. If *x* and *y* represent the amount of *E*-**2**e^{*} and *E*-**2**e, respectively, then

- 0.0941 = 0.01755x + 0.18542y
- 0.0878 = 0.00520x + 0.20514y
- 0.3728 = 0.18559x + 0.52146y

0.2525 = 0.20529x + 0.14677y

0.8667 = 0.52158x + 1.00000v

0.2752 = 0.14631x + 0.29222y

1.0000 = 1.00000x + 0.21763y

0.2834 = 0.29187x + 0.05999y

0.1912 = 0.21571x + 0.00842y

Similarly, by using MATLAB 5.3 (by the MathWorks), we know that x=0.9100, y=0.3994. Thus incorporation of ¹⁸O %=x/(x+y)=0.695.

4.4. Reaction of mono-substituted 1,2-allenyl phosphine oxides with PhSeCl

4.4.1. 3-Hydroxy-4-methyl-2-phenylselanyl-1(E)-pentenyl diphenyl phosphine oxide (E-**2l**)

Typical procedure IV. To a solution of PhSeCl (55.6 mg, 0.2 mmol) in 2 mL of MeCN and 1.5 mL of H₂O was added a solution of **11** (57.3 mg, 0.3 mmol) in 1 mL of MeCN at room temperature. Then the resulting mixture was stirred at 70 °C for 34 min. After complete consumption of the starting material as monitored by TLC (eluent: dichloromethane/ethyl acetate=10:1), the mixture was quenched with 5 mL of H₂O, extracted with 20×3 mL of diethyl ether, washed with 5 mL of brine, and dried over anhydrous Na₂SO₄. Filtration and evaporation afforded the crude product, which was analyzed by ¹H NMR study to show an *E*-**21**/*Z*-**31** ratio of 97:3. Flash chromatography on silica gel (dichloromethane/ethyl acetate=10:1, then 5:1) afforded *E*-**21** (73.8 mg, 82%) (*E*-**21**/*Z*-**31**=97:3).

4.4.2. 3-Hydroxy-2-phenylselanyl-1(*E*)-propenyl diphenyl phosphine oxide (*E*-**2m**)

The reaction of **1m** (72.5 mg, 0.30 mmol) and PhSeCl (86.4 mg, 0.45 mmol) in 3.0 mL of H₂O and 3.0 mL of CH₃CN at 70 °C for 9 h afforded *E*-**2m** (65.6 mg, 52.5%) and *Z*-**3m** (17.8 mg, 14%) (*E*-**2m**/*Z*-**3m**=79:21 by ¹H NMR analysis of the crude product).

4.4.3. 3-Hydroxy-2-phenylselanyl-1(*E*)-pentenyl diphenyl phosphine oxide (*E*-**2n**)

The reaction of **1n** (81.1 mg, 0.30 mmol) and PhSeCl (86.8 mg, 0.45 mmol) in 1.5 mL of H₂O and 3 mL of CH₃CN at 70 °C for 21 min afforded *E*-**2n** (104.6 mg, 78%) as a solid (*E*-**2n**/*Z*-**3n**>99:1 by ¹H NMR analysis of the crude product).

4.4.4. 3-Hydroxy-2-phenylselanyl-1(*E*)-nonenyl diphenyl phosphine oxide (*E*-**20**)

The reaction of **1o** (96.8 mg, 0.30 mmol) and PhSeCl (85.5 mg, 0.45 mmol) in 1.5 mL of H₂O and 3 mL of CH₃CN at 70 °C for 70 min afforded *E*-**2o** (110.6 mg, 74%) (*E*-**2o**/*Z*-**3o**=98:2 by ¹H NMR analysis of the crude product).

4.4.5. 3-Hydroxy-4-phenyl-2-phenylselanyl-1(*E*)-butenyl diphenyl phosphine oxide (*E*-**2***p*)

The reaction of **1p** (101.0 mg, 0.30 mmol) and PhSeCl (87.4 mg, 0.45 mmol) in 2.3 mL of H₂O and 2.3 mL of CH₃CN at 70 °C for 105 min afforded *E*-**2p** (118.1 mg, 77%) (*E*-**2p**/*Z*-**3p**=96.5:3.5 by ¹H NMR analysis of the crude product).

4.5. Reaction of optically active 1,2-allenyl phosphine oxides with PhSeCl

4.5.1. S-3-Hydroxy-2-phenylselanyl-1(E)-butenyl diphenyl phosphine oxide (S-**2b**)

The reaction of *S*-(+)-**1b** (76.2 mg, 0.30 mmol) and PhSeCl (86.7 mg, 0.45 mmol) in 0.3 mL of H₂O and 6 mL of CH₃CN for 12 min afforded *S*-(+)-**2b** (110.5 mg, 86%) as a solid. Mp 150–151 °C (*n*-hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.62–7.28 (m, 15H), 5.88 (d, *J*=8.4 Hz, 1H), 5.62 (d, *J*=20.1 Hz, 1H), 4.96–4.82 (m, 1H), 1.58 (d, *J*=6.6 Hz, 3H); HPLC conditions: Chiralcel AD-H, hexane/*i*-PrOH=80:20, 0.8 mL/min, *n*=230 nm, *t_R* 12.6 (major), 17.3 (minor); [α]_D²⁰ +22.5 (*c* 1.01, CHCl₃).

4.5.2. S-3-Hydroxy-1-phenyl-2-phenylselanyl-1(E)-pentenyl diphenyl phosphine oxide (S-**2***j*)

The reaction of *S*-(+)-**1***j* (103.8 mg, 0.30 mmol, 99% ee) and PhSeCl (88.5 mg, 0.45 mmol) of in 0.3 mL of H₂O and 6 mL of CH₃CN for 8 min afforded *S*-(+)-**2***j* (146.8 mg, 94%, 99% ee) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (dd, *J*₁=12.3 Hz, *J*₂=7.2 Hz, 2H), 7.54 (dd, *J*₁=17.1 Hz, *J*₂=6.9 Hz, 3H), 7.48–7.22 (m, 10H), 7.16–7.07 (m, 2H), 7.00–6.90 (m, 1H), 6.89–6.80 (m, 1H), 6.75 (d, *J*=11.4 Hz, 1H), 6.52 (d, *J*=6.9 Hz, 1H), 4.24 (t, *J*=9.8 Hz, 1H), 2.22–2.05 (m, 1H), 1.98–1.83 (m, 1H), 0.80 (t, *J*=7.2 Hz, 3H); HPLC conditions: Chiralcel AD-H, hexane/*i*-PrOH=90:10, 0.7 mL/min, *n*=230 nm, *t*_R=25.7; $[\alpha]_{D}^{20}$ +103.1 (*c* 0.96, CHCl₃).

4.5.3. R-3-Hydroxy-2-phenylselanyl-1(E)-nonenyl diphenyl phosphine oxide (R-**20**)

The reaction of *R*-(–)-**10** (97.6 mg, 0.30 mmol, 97% ee) and PhSeCl (86.9 mg, 0.45 mmol) in 1.5 mL of H₂O and 3 mL of CH₃CN at 70 °C for 30 min afforded *R*-(–)-**20** (118.2 mg, 79%, 97% ee) as a liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.31 (m, 15H), 5.78–5.57 (m, 2H), 4.70–4.58 (m, 1H), 1.97–1.73 (m, 2H), 1.66–1.45 (m, 1H), 1.44–1.13 (m, 7H), 0.86 (t, *J*=6.2 Hz, 3H); HPLC conditions: Chiralcel OD-H, hexane/*i*-PrOH=95:5, 0.7 mL/min, *n*=230 nm, *t*_R 11.7 (major), 13.5 (minor); [α]_D²⁰ –25.15 (*c* 1.05, CHCl₃).

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 20572093) and the Major State Basic Research Development Program (Grant No. 2009CB825300) is greatly appreciated. S.M. is a Qiu Shi Adjunct Professor at Zhejiang University. We thank Bo Lü in our research group for reproducing the results presented in entries 7 and 12 in Table 2, entry 4 in Table 4, and the second equation in Scheme 2.

Supplementary data

The ¹H, ¹³C, ³¹P spectra for all the new compounds, the MS spectra for *E*-**2h***, *E*-**2c***, and *E*-**2e***, the simulated MS spectra for *E*-**2h***, *E*-**2c***, and *E*-**2e*** and the simulated MS spectra for *E*-**2h**, *E*-**2c**, and *E*-**2e** are included in Supplementary data. This material is available free of charge via the Internet. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.04.023.

References and notes

- (a) Almquist, R. G.; Chao, W. R.; Jennings-White, C. J. Med. Chem. **1985**, 28, 1067;
 (b) Segall, Y.; Grendell, R. L.; Toia, R. F.; Casida, J. E. J. Agric. Food Chem. **1991**, 39, 380;
 (c) Seto, H.; Kuzuyama, T. Nat. Prod. Rep. **1999**, 16, 589;
 (d) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. **2004**, 104, 6177;
 (e) Ntai, I.; Manier, M. L.; Hachey, D. L.; Bachmann, B. O. Org. Lett. **2005**, 7, 2763.
- 2. (a) Zhao, C. Q.; Han, L. B.; Tanaka, M. Organometallics **2000**, *19*, 4196; (b) Zapata, A. J.; Gu, Y.; Hammond, G. B. J. Org. Chem. **2000**, 65, 227; (c) Tang, W.; Zhang, X. Chem. Rev. **2003**, *103*, 3029; (d) Rubin, M.; Markov, J.; Chuprakov, S.; Wink, D. J.; Gevorgyan, V. J. Org. Chem. **2003**, *68*, 6251; (e) Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. J. Am. Chem. Soc. **2006**, *128*, 2556; (f) Ma, S.; Guo, H.; Yu, F. J. Org. Chem. **2006**, *71*, 6634; (g) Chakravarty, M.; Kumara Swamy, K. C. J. Org. Chem. **2006**, *71*, 9128.
- (a) Sheng, S.; Liu, X.; Xu, Q.; Song, C. Synthesis 2003, 18, 2763; (b) Gusarova, N. K.; Chernysheva, N. A.; Yas'ko, S. V.; Kazantseva, T. I.; Ushakov, I. A.; Trofimov, B. A. Synthesis 2008, 17, 2743; (c) Comasseto, J. V.; Petragnani, N. J. Organomet. Chem. 1978, 152, 295; (d) Cravador, A.; Krief, A. J. Chem. Soc., Chem. Commun. 1980, 951; (e) Comasseto, J. V. J. Organomet. Chem. 1983, 253, 131; (f) Comasseto, J. V.; Ling, L. W.; Petragnani, N.; Stefani, H. A. Synthesis 1997, 373.
- 4. Ma, S.; Hao, X.; Meng, X.; Huang, X. J. Org. Chem. 2004, 69, 5720.
- 5. Ma, S.; Hao, X.; Huang, X. Org. Lett. **2003**, 5, 1217.
- 6. Ma, S.; Hao, X.; Huang, X. Chem. Commun. 2003, 1082.
- (a) Ma, S.; Wei, Q.; Wang, H. Org. Lett. 2000, 2, 3893; (b) Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817; (c) Fu, C.; Huang, X.; Chen, G.; Ma, S. Tetrahedron Lett. 2004, 45, 6063; (d) Fu, C.; Chen, G.; Deng, Y.; Huang, X.; Ma, S. Chin. J. Chem. 2004, 22, 990.

- 8. (a) Zhou, C.; Fu, C.; Ma, S. Tetrahedron 2007, 63, 7612; (b) Zhou, C.; Fu, C.; Ma, S. Angew. Chem., Int. Ed. 2007, 46, 4379.
- Guo, H.; Qian, R.; Guo, Y.; Ma, S. J. Org. Chem. 2008, 73, 7934. 9
- 10. Zhou, C.; Li, J.; Lu, B.; Fu, C.; Ma, S. Org. Lett. 2008, 10, 581.
- 11. Ma, S.; Pan, F.; Hao, X.; Huang, X. Synlett 2004, 85.
- 12. Chen, G.; Fu, C.; Ma, S. Tetrahedron **2006**, 62, 4444.
- 13. For stereoselective synthesis of 3-phenylseleno-4-oxo-2(E)-alkenoates from 2,3-allenoates and PhSeCl, see: Chen, G.; Fu, C.; Ma, S. J. Org. Chem. 2006, 71. 9877.
- 14. Angelov, C. M.; Tancheva, T. N. Zh. Obshch. Khim. 1985, 55, 53.
- 15. Mondeshka, D. M.; Tancheva, C. N.; Angelov, C. M. Phosphorus Sulfur 1987, 31, 89,
- 16. Angelov, C. M.; Christov, C. Z. Synthesis 1984, 664.
- Macomber, R. S.; Kennedy, E. R. J. Org. Chem. **1976**, *41*, 3191.
 Macomber, R. S.; Krudy, G. A.; Seff, K.; Rendón-Diazmirón, L. E. J. Org. Chem. 1983. 48. 1425.
- Macomber, R. S. J. Am. Chem. Soc. 1977, 99, 3072. 19
- 20. Enchev, D. D. Heteroat. Chem. 2005, 16, 156.
- 21. He, G.; Zhou, C.; Fu, C.; Ma, S. Tetrahedron 2007, 63, 3800.

- Crystal data of (E)-**2b**: C₂₂H₂₁O₂PSe, M=427.32, colorless, prismatic, monoclinic, space group P2(1)/n, μ(Mo Kα)=1.892 mm⁻¹, R=0.051, Rw=0.121, a=14. 284(3), b=10.241(2), c=4.735(3) Å, V=2083.0(7) Å³, T=293 K, Z=4; no. of reflections measured, total 4073; number of observations $(I > 2.00\sigma(I))$, 2410; number of variables, 237. CCDC: 702217.
- 23. Chen, K. M.; Joullie, M. M. Tetrahedron Lett. 1984, 25, 393.
- Ashby, E. C.; Deprist, R. N.; Goel, A. B.; Wenderoth, B.; Pham, T. N. J. Org. Chem. 24. 1984, 49, 3545.
- 25. Xu, D.; Li, Z.; Ma, S. Tetrahedron Lett. 2003, 44, 6343.
- 26. Koosha, K.; Berlan, J.; Capmau, M.-L.; Chodkiewicz, W. Bull. Soc. Chim. Fr. **1975**, 1291.
- 20. Koosia, K., Berlan, J., Capitad, M.-E., Choukewicz, W. Balt. Soc. Chint. Pr. **1975**, 1291. 27. Crystal data of *S*-*E*-(+)-**2b**: C₂₂H₂₁O₂PSe, *M*=427.32, colorless, prismatic, or-thorhombic, space group *P*2(1)2(1)2(1), μ (Mo K α)=1.870 mm⁻¹, *R*=0.053, *Rw*=0.105, *a*=10.978(10), *b*=18.258(16), *c*=21.023(18) Å, *V*=4213.5(6) Å³, *T*=293 K, *Z*=8; no. of reflections measured, total 8264; number of observations (*I*>2.00σ(*I*)), 3612; number of variables, 479. CCDC: 702218.
- 28. Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Schmidtel, E., Verhalber, H. D. Symbols of Netry Netro, Markes and Camarkes, Elsevier Scientific Publishing Company: New York, NY, 1981.
 Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996,
- 37. 7691.