Received: 13 November 2013

Revised: 6 February 2014

(wileyonlinelibrary.com) DOI 10.1002/aoc.3149

Study on the anti-sulfur-poisoning characteristics of platinum-acetylide-phosphine complexes as catalysts for hydrosilylation reactions

Accepted: 25 February 2014

Jiayun Li, Congbai Niu, Jiajian Peng*, Yuan Deng, Guodong Zhang, Ying Bai, Chao Ma, Wenjun Xiao and Guoqiao Lai

A series of platinum-acetylide-phosphine complexes were synthesized and their anti-sulfur-poisoning characteristics investigated. In comparison with Speier's and Karstedt's catalysts, the platinum-acetylide-phosphine complexes exhibited both higher catalytic activity and selectivity for the β -adduct for the hydrosilylation reactions under the same conditions. Furthermore, the complexes also exhibited a strong ability to resist to sulfur-poisoning. This indicated that the alkyne ligands containing the silyl group had a strong impact on the hydrosilylation reaction. Copyright © 2014 John Wiley & Sons, Ltd.

Additional supporting information may be found in the online version of this article at the publisher's web-site.

Keywords: platinum-acetylide-phosphine complexes; anti-sulfur poisoning; hydrosilylation

Introduction

A number of organosilicon monomers and polymers containing functional groups have been synthesized via hydrosilylation reactions. Hydrosilylation of C=C is one of the most important Si-C bond formation reactions and commercial reactions. Various transition metal catalysts have been successively researched and applied to the hydrosilylation reaction. In 1947, H₂PtCl₆.6H₂O/isopropanol (Speier's catalyst) was first found to be effective in the hydrosilylation of alkenes and alkynes with silanes.^[1-3] Thereafter, Pt(0)-divinyltetramethyldisiloxane complex (Karstedt's catalyst), by virtue of its higher activity, gradually replaced Speier's catalyst.^[4–8] For hydrosilylation of alkenes and alkynes with silanes Karstedt's catalyst is the most active catalyst in current use. However, sulfur compounds are still a poison for the platinum catalyst, and significantly decreased the catalytic activity of platinum catalysts for hydrosilylation processes. Usually, low catalytic activity of Karstedt's catalyst or Speier's catalyst was observed, owing to the raw material with trace amounts of sulfur, nitrogen and other elements in practical application, in particular sulfur element. Several of compounds, e.g. aluminum acetylacetonate, iron chelate complexes, as well as polyhydrosiloxane coat, have been reported to serve as antisulfur-poisoning agents of Pt catalyst.^[9,10] Hence the development of new catalysts for the hydrosilylation reaction along with a strong ability to resist sulfur poisoning is an ongoing challenge. For example, trans-Pt(PPh₃)₂[C \equiv CC₆H₆(OH)]₂ has shown stable and high activity for addition-cross-linking curable; however, the reaction time was too long and still not satisfactory.[11-14] On the other hand, Soeda^[11] found that $trans-Pt(PPh_3)_2[C \equiv CC_6H_5]_2$ showed catalytic activity of hydrosilylation in the presence of a small amount of poisonous sulfur. In this paper, a series of novel platinum-acetylide-phosphine complexes was synthesized, and tolerance to sulfur poisoning was investigated by catalytic

hydrosilylation of styrene with triethoxysilane as a model reaction (Scheme 1). $^{[15-19]}$

Experimental

General Information

All chemicals were purchased from Aldrich and were used as received. All synthesis procedures were carried out under argon using standard Schlenk and vacuum-line techniques. Solvents for synthesis were dried and degassed by standard methods before use.

Gas chromatography: Trace DSQ GC column DB-5 $30 \text{ m} \times 2.5 \text{ mm} \times 0.25 \text{ mm}$, split 50:1, flow 1 mL min⁻¹ constant flow, inlet temperature 260°C, column temperature 50°C (hold 1 min) then $15^{\circ}\text{C} \text{ min}^{-1}$ up to 260°C (hold 10 min).

¹H, ¹³C, ²⁹Si and ³¹P NMR spectra were measured using a Bruker Avance 400 MHz spectrometer operating at 400.13, 100.62, 79.49 and 161.97 MHz, respectively, using TMS as an internal standard and CDCl₃ as solvent. ³¹P NMR chemical shifts are relative to 85% H_3PO_4 external standard.

Elemental analyses were performed on a Vario EL-III elemental analyzer, and IR spectra were recorded on a Nicolet 5700 instrument. GC-MS was tested with a Trace DSQ GC-MS column.

Speier's catalyst and Karstedt's catalyst were prepared by literature methods. $\ensuremath{^{[20]}}$

^{*} Correspondence to: Jiajian Peng, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, People's Republic of China. E-mail: jjpeng@ hznu.edu.cn

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, People's Republic of China

R1: OEt, Et

Scheme 1. Hydrosilylation of alkenes with triethoxysilane or triethylsilane. R¹: OEt, Et.

General Procedure for Synthesis of Platinum–Acetylide– Phosphine Complexes (Scheme 2)

Synthesis of trans-Pt(PPh_3)_2Cl_2 , trans-Pt[PPh_2Si(CH_3)_3]_2Cl_2 and trans-Pt(PPh_3)_2(—C=CPh)_2

trans-Pt(PPh₃)₂Cl₂ (**1a**) was prepared by literature methods.^[20]

trans-Pt[PPh₂Si(CH₃)₃]₂Cl₂ (**2a**): an excess of PPh₂Si(CH₃)₃ (2.5 mmol) was added to a boiling solution of CH₃OH (60 ml). K₂PtCl₄ (1 mmol) was added in water and the mixture was stirred at 60°C for 2 h. The solid was obtained by filtration and washed with water, CH₃OH and ethyl ether, respectively. The product was dried *in vacuo* to obtain **2a** in 87% yield (flavescent solid). ¹H NMR δ (ppm): 0.33 (s, 18H, Si(CH₃)₃), 7.10–7.58 (m, 20H, PPh₂).¹³C NMR δ (ppm): 0.10 (Si(CH₃)₃), 127.41 (t, $J_{C-P} = 6$ Hz, meta), 129.40 (m, *ortho*), 132.10 (*para*), 135.13 (m, *ipso*) (PPh₃). ²⁹Si NMR δ (ppm): 6.70. ³¹P NMR δ (ppm): 31.60 ($J_{P-Pt} = 2618$ Hz). Anal. Calcd for **2a** (C₃₀H₃₈Cl₂P₂PtSi₂): C, 46.03; H, 4.89. Found: C, 46.01; H, 4.88.

trans-Pt(PPh₃)₂(—C \equiv CPh)₂ (**3a**) (flavescent solid, 74 % yield) was prepared by literature methods. The spectroscopic data (¹H NMR, ¹³C NMR, ³¹P NMR and IR) and elemental analysis data of the prepared compound **3a** were in agreement with the assigned structures and with those found in the literature (Fig. 1).^[21]

trans-Pt(PPh₃)₂[—C \equiv CC(CH₃)₂OH]₂ (**4a**) (yield 89%) was prepared by literature methods. Spectroscopic data (¹H NMR, ¹³C NMR, ³¹P NMR and IR) and elemental analysis data of the prepared compound **4a** were in agreement with the assigned structures and with those found in the literature.^[21]

trans-Pt(PPh₃)₂[—C \equiv C(C₆H₁₀)OH]₂ (**5a**) (yield 91%) was prepared by literature methods. Spectroscopic data (¹H NMR,

R:CH₃; CH₂CH₃; CH(CH₃)₂; Ph

R:CH₃; CH₂CH₃; CH(CH₃)₂; Ph

Scheme 2. Synthesis of trans-Pt(PPh_3)₂(—C \equiv C—SiR₃)₂ and trans-Pt[PPh₂Si (CH₃)₃] ₂(—C \equiv C-SiR₃)₂.

¹³C NMR, ³¹P NMR and IR) and elemental analysis data of the prepared compound **5a** were in agreement with the assigned structures and with those found in the literature.^[21]

Applied Organometallic Chemistry

Synthesis of trans-Pt(PPh₃)₂($-C \equiv C - SiR_3$)₂ and trans-Pt[PPh₂Si(CH₃)₃] ₂($-C \equiv C - SiR_3$)₂, $R = -CH_3$, $-C_2H_5$, $-CH(CH_3)_2$, -Ph

Synthesis of trans-Pt(PPh_3)₂($-C \equiv C - SiR_3$)₂ $R = -CH_3$, $-C_2H_5$, $-CH(CH_3)_2$, -Ph. A mixture of trans-Pt (PPh_3)₂Cl₂ (1 mmol) and CH \equiv CSiR₃ (2.2 mmol) in diethylamine/THF (10 mmol/20 ml) was allowed to react in the presence of Cul (5 mg) at 80°C for 6 h. Evaporation of the solvent

and purification of the residue by chromatography on alumina eluting with hexane–benzene (1:1) afforded the product. Recrystallization from *n*-hexane gave product *trans*-Pt(PPh₃)₂ ($-C \equiv C = SiR_3$)₂.

Complex **1b**: *trans*-Pt(PPh₃)₂ [CH \equiv CSi(CH₃)₃]₂ (flavescent solid, yield 91%), IR (KBr): 2087 cm⁻¹ ($v_{C\equiv C}$). ¹H NMR δ (ppm): 0.02 (s, 18H, Si(*CH*₃)₃), 7.35–7.58 (m, 30H, PPh₂).¹³C NMR δ (ppm): -0.90 (Si(CH₃)₃), 104.71 (C—*C* \equiv C), 115.32 (t, *J* = 16.1 Hz, Pt—*C* \equiv C), 127.61 (t, *J*_{*C*=P = 6 Hz, meta), 129.10 (m, *ortho*), 133.81 (*para*), 135.90 (m, *ipso*) (PPh₃). ²⁹Si NMR δ (ppm): 14.21. ³¹P NMR δ (ppm): 18.60 (*J*_{*P*=Pt = 1837 Hz). Anal. Calcd for **1b** (C₄₆H₄₈P₂Pt Si₂): C, 60.44; H, 5.29. Found: C, 60.42; H, 5.28.}}

Complex **2b**: *trans*-Pt(PPh₃)₂[CH=CSi(CH₂CH₃)₃]₂ (flavescent solid, yield 84%), IR (KBr): 2094 cm⁻¹ ($v_{C=C}$).¹H NMR δ (ppm): 0.64 (q, J = 12 Hz, 12H, Si(CH₂CH₃)₃), 1.04 (t, J = 12 Hz, 18H, Si(CH₂CH₃)₃), 7.30–7.72 (m, 30H, PPh₂). ¹³C NMR δ (ppm): 4.50 (Si (CH₂CH₃)₃), 7.51 (Si (CH₂CH₃)₃), 105.20 (C—C=C), 121.51 (t, J = 16.1 Hz, Pt—C=C), 127.92 (t, $J_{C-P} = 6$ Hz, *meta*), 131.94 (m, *ortho*), 132.10 (*para*), 135.23 (m, *ipso*) (PPh₃). ²⁹Si NMR δ (ppm): 16.10. ³¹P NMR δ (ppm): 19.00 ($J_{P-Pt} = 1858$ Hz). Anal. Calcd for **2b** (C₅₂H₆₀P₂Pt Si₂): C, 62.57; H, 6.06. Found: C, 62.55; H, 6.05.

Complex **3b**: spectroscopic data (¹H NMR, ¹³C NMR, ²⁹Si NMR, ³¹P NMR and IR) and elemental analysis data of the prepared compound **3b** were in agreement with the assigned structures and with those found in the literature.^[21] Complex **4b**: *trans*-Pt(PPh₃)₂ (CH=CSiPh₃)₂ (flavescent solid, yield 79%), IR (KBr): 2108 cm⁻¹ ($v_{C=C}$).¹H NMR δ (ppm): 6.98–7.71 (m, 60H, PPh₂, Si (Ph)₃). ¹³C NMR δ (ppm): 102.11 (C—C=C), 112.51 (t, *J*=15 Hz, Pt—C=C), 127.72 (t, *J*_C—_P=6 Hz, *meta*), 131.92 (m, *ortho*), 134.71 (*para*), 135.52 (m, *ipso*) (PPh₃), 129.73 (t, *J*=6 Hz, *meta*), 132.14 (m, *ortho*), 134.91 (*para*), 136.11 (m, *ipso*) (SiPh₃). ²⁹Si NMR δ (ppm): -15.20. ³¹P NMR δ (ppm): 19.20 (*J*_{P—Pt}=1818 Hz). Anal. Calcd for **4b** (C₇₆H₆₀P₂Pt Si₂): C, 70.95; H, 4.70. Found: C, 70.97; H, 4.70.

Synthesis of trans-Pt[PPh₂Si(CH₃)₃] $_{2}$ (\equiv C—C—SiR₃)₂, R=—CH₃, —C₂H₃, —CH(CH₃)₂, —Ph. A mixture of trans-Pt[PPh₂Si(CH₃)₃] $_{2}$ Cl₂ (1 mmol) and CH \equiv CSiR₃ (R=—CH₃, —C₂H₅, —CH(CH₃)₂, —Ph) (2.2 mmol) in diethylamine/THF was allowed to react in the presence of Cul (5 mg) at 80°C for 6 h. Evaporation of the solvent and purification of the residue by chromatography on alumina eluting with hexane/benzene (1:1) afforded the product. Recrystallization from *n*-hexane gave product *trans*-Pt[PPh₂Si(CH₃)₃] $_{2}$ (—C \equiv C—SiR₃)₂.

Complex **5b**: *trans*-Pt[PPh₂Si(CH₃)₃]₂[CH \equiv CSi(CH₃)₃]₂ (flavescent solid, yield 84%), IR (KBr): 2033 cm⁻¹ (v_{C \equiv C}). ¹H NMR δ (ppm): 0.02 (s, 18H, Si(*CH*₃)₃), 0.12 (s, 18H, Si(*CH*₃)₃), 7.10–7.76 (m, 20H, PPh₂).¹³C NMR δ (ppm): 1.40 (Si(*CH*₃)₃), 1.90 (Si(*CH*₃)₃), 102.91 (C—*C* \equiv C),

Figure 1. Molecular structure of **3a** drawn with 30% probability displacement ellipsoids.

118.62 (t, J = 15 Hz, Pt—C=C), 128.40 (t, $J_{C-P} = 8$ Hz, meta), 129.81 (m, ortho), 131.80 (para), 132.01 (m, ipso) (PPh₃). ²⁹Si NMR δ (ppm): 6.90, 14.21. ³¹P NMR δ (ppm): 31.60 ($J_{P-Pt} = 2898$ Hz). Anal. Calcd for **5b** ($C_{40}H_{56}P_2$ Pt Si₄): C, 53.01; H, 6.23. Found: C 52.99; H 6.21.

Complex **6b**: *trans*-Pt[PPh₂Si(CH₃)₃]₂[CH=CSi(CH₂CH₃)₃]₂ (flavescent solid, yield 81%), IR (KBr): 2073 cm⁻¹ ($v_{C=C}$). ¹H NMR δ (ppm): 0.01 (s, 18H, Si(CH₃)₃), 0.54 (q, J = 12 Hz, 12H, Si(CH₂CH₃)₃), 0.93 (t, J = 12 Hz, 18H, Si(CH₂CH₃)₃), 6.90–7.73 (m, 20H, PPh₂).¹³C NMR δ (ppm): 0.10 (Si(CH₃)₃), 4.60 (Si (CH₂CH₃)₃), 7.51 (Si (CH₂CH₃)₃), 110.31 (C—C=C), 125.22 (t, J = 15 Hz, Pt—C=C), 127.31 (t, $J_{C=P} = 8$ Hz, *meta*), 129.5 (m, *ortho*), 131.13 (*para*), 132.11 (m, *ipso*) (PPh₃). ²⁹Si NMR δ (ppm): 7.10, 16.50. ³¹P NMR (CDCl₃, 162 MHz) δ (ppm): 31.60 ($J_{P=Pt} = 2818$ Hz). Anal. Calcd for **6b** (C₄₆H₆₈P₂Pt Si₄): C 55.78; H 6.92. Found: C 55.80; H 6.92.

Complex **7b**: *trans*-Pt[PPh₂Si(CH₃)₃]₂[CH≡CSi(CH(CH₃)₂)₃]₂ (flavescent solid, yield 83%), IR (KBr): 2068 cm⁻¹ ($v_{C=C}$). ¹H NMR δ (ppm): 0.01 (s, 18H, Si(CH₃)₃), 0.35 (septet, J=7.3 Hz, 6H, CH(CH₃)₂), 0.61 (d, J=7.3 Hz, 36H, CH(CH₃)₂), 7.08–7.81 (m, 20H, PPh₂). ¹³C NMR δ (ppm): -0.03 (Si(CH₃)₃), 10.90 (CH(CH₃)₂), 18.41 (CH(CH₃)₂), 94.92 (C—C≡C), 124.13 (t, J=15 Hz, Pt—C≡C), 127.31 (t, J_{C-P} =8 Hz, *meta*), 129.92 (m, *ortho*), 131.84 (*para*), 132.41 (m, *ipso*) (PPh₃). ²⁹Si NMR δ (ppm): 6.80, 18.10. ³¹P NMR δ (ppm): 30.60 (J_{P-Pt} =2834 Hz). Anal. Calcd for **7b** (C₅₂H₈₀P₂Pt Si₄): C, 58.12; H, 7.50. Found: C 58.10; H 7.51.

Complex **8b**: *trans*-Pt[PPh₂Si(CH₃)₃]₂(CH=CSiPh₃)₂ (flavescent solid, yield 73%), IR (KBr): 2127 cm⁻¹ ($v_{C=C}$). ¹H NMR δ (ppm): 0.08 (s, 18H, Si(*CH*₃)₃), 6.90–8.02 (m, 50H, PPh₂, Si (*Ph*)₃).¹³C NMR δ (ppm): 1.00 (Si(CH₃)₃), 102.51 (C—*C*=C), 118.82 (t, *J* = 15 Hz, Pt—*C*=C), 127.81 (t, *J*_C—*P* = 6 Hz, meta) , 130.10 (m, *ortho*), 132.01 (*para*), 134.73 (m, *ipso*) (PPh₃), 129.11 (t, *J* = 6 Hz, *meta*), 131.31 (m, *ortho*), 132.22 (*para*), 134.93 (m, *ipso*) (SiPh₃). ²⁹Si NMR δ (ppm): 7.10, -15.60. ³¹P NMR δ (ppm): 31.80 (*J*_{P—Pt} = 2818 Hz). Anal. Calcd for **8b** (C₇₀H₆₈P₂Pt Si₄): C 65.75; H 5.36. Found: C 65.73; H 5.37.

Hydrosilylation

Typical hydrosilylation reaction procedures were as follows. A given amount of the alkene and silane was added to a 10 ml round-bottomed flask equipped with a magnetic stirrer and a given amount of catalyst was added. This mixture was heated to the appropriate temperature and the hydrosilylation reaction was allowed to proceed with constant stirring for 2 h. At the end of the reaction, the conversion of alkene and the selectivity were determined by GC. All data in the tables are the average values of three experiments.

Hydrosilylation of styrene with triethoxysilane: β -Adduct [triethoxy (phenylethyl)silane] and α -adduct [triethoxy(1-phenylethyl)silane]. Spectroscopic data (¹H NMR) and elemental analysis data of the prepared compounds were in agreement with the assigned structures and with those found in the literature.^[22]

Hydrosilylation of o-methylstyrene with triethoxysilane

β-Adduct [triethoxy(o-methylphenylethyl)silane]: ¹H NMR δ (ppm): 1.05 (t, J=8.5 Hz, 2H, Si—CH₂), 1.37 (t, J=7.0 Hz, 9H, CH₃), 2.42 (s, 3H, CH₃), 2.77 (t, J=8.5 Hz, 2H, CH₂), 3.87 (q, J=7.0 Hz, 6H, O—CH₂), 7.08–7.35 (m, 4H, Ph). ¹³C NMR δ (ppm): 142.77 (*ipso*, CH₂CH₂Ph), 135.32 (*ipso*), 130.11 (*ortho*), 128.06 (*meta*), 126.11 (*meta*), 125.82 (*para*) (CH₃Ph), 58.40 (OCH₂CH₃), 26.34 (CH₂CH₂Ph), 19.07 (CH₃Ph), 18.36 (OCH₂CH₃), 11.53 (SiCH₂). ²⁹Si NMR δ (ppm): -46.09. MS (EI) *m/z* (%): 283 (M⁺, 16), 282 (100). Anal. Calcd for [triethoxy(o-methylphenylethyl)silane] (C₁₅H₂₆O₃Si): C 63.78; H 9.28; O 16.99. Found: C 63.75; H 9.27; O 17.00. IR (KBr): 449, 632, 764, 784, 969, 1015, 1415, 2766, 2930 cm⁻¹.

Hydrosilylation of m-methylstyrene with triethoxysilane

β-Adduct [triethoxy(*m*-methylphenylethyl)silane]: ¹H NMR δ (ppm): 1.10 (t, *J* = 8.5 Hz, 2H, Si—CH₂), 1.36 (t, *J* = 7.0 Hz, 9H, CH₃), 2.43 (s, 3H, CH₃), 2.79 (t, *J* = 8.5 Hz, 2H, CH₂), 3.94 (q, *J* = 7.0 Hz, 6H, O—CH₂), 7.15–7.22 (m, 4H, Ph). ¹³C NMR δ (ppm): 144.60 (*ipso*, CH₂CH₂*Ph*), 137.59 (*ipso*), 128.65 (*ortho*), 128.27 (*meta*), 126.38 (*ortho*), 124.91 (*para*) (CH₃*Ph*), 58.33 (OCH₂CH₃), 28.99 (CH₂CH₂Ph), 21.32 (CH₃Ph), 18.34 (OCH₂CH₃), 12.85 (SiCH₂). ²⁹Si NMR δ (ppm): -46.24. MS (El) *m/z* (%): 283 (M⁺, 15), 282 (100). Anal. Calcd for [triethoxy(*m*-methylphenylethyl)silane] (C₁₅H₂₆O₃Si): C 63.78; H 9.28; O 16.99. Found: C 63.77; H 9.28; O 16.98. IR (KBr): 457, 637, 715, 743, 767, 971, 1017, 1417, 2810, 3042 cm⁻¹.

Hydrosilylation of p-methylstyrene with triethoxysilane

β-Adduct [triethoxy(*p*-methylphenylethyl)silane]: ¹H NMR δ (ppm): 1.03 (t, *J* = 8.5 Hz, 2H, Si—CH₂), 1.28 (t, *J* = 7.0 Hz, 9H, CH₃), 2.31 (s, 3H, CH₃), 2.70 (t, *J* = 8.5 Hz, 2H, CH₂), 3.87 (q, *J* = 7.0 Hz, 6H, O—CH₂), 7.07–7.11 (m, 4H, Ph). ¹³C NMR δ (ppm): 141.66 (*ipso*, CH₂CH₂*Ph*), 134.97 (*ipso*), 129.02 (*ortho*), 127.82 (*meta*) (*Ph*), 58.80 (OCH₂CH₃), 28.53 (CH₂CH₂Ph), 20.96 (CH₃Ph), 18.12 (OCH₂CH₃), 12.08 (SiCH₂). ²⁹Si NMR δ (ppm): -45.96. MS (El) *m/z* (%): 283 (M⁺, 16), 282 (100). Anal. Calcd for [triethoxy(*p*-methylphenethyl)silane] (C₁₅H₂₆O₃Si): C 63.78; H 9.28; O 16.99. Found: C 63.79; H 9.27; O 16.99. IR (KBr): 453, 631, 767, 857, 971, 1019, 1411, 2768, 3231 cm⁻¹.

Hydrosilylation of p-methoxystyrene with triethoxysilane

β-Adduct [triethoxy(*p*-methoxyphenylethyl)silane]: ¹H NMR δ (ppm): 1.02 (t, *J* = 8.5 Hz, 2H, Si—CH₂), 1.24 (t, *J* = 7.0 Hz, 9H, CH₃), 2.70 (t, *J* = 8.5 Hz, 2H, CH₂), 3.70 (s, 3H, O—CH₃), 3.79 (q, *J* = 7.0 Hz, 6H, O—CH₂), 6.95–7.26 (m, 4H, Ph). ¹³C NMR δ (ppm): 157.79 (*ipso*, CH₂CH₂*Ph*), 136.57 (*ipso*), 128.58 (*meta*), 113.65 (*ortho*) (CH₃OPh), 58.21 (OCH₂CH₃), 54.84(OCH₃), 28.05 (CH₂CH₂Ph), 18.23 (OCH₂CH₃), 12.92 (SiCH₂). ²⁹Si NMR (CDCI₃) δ (ppm): -46.29. MS (EI) *m/z* (%): 299 (M⁺, 22), 298 (100). Anal. Calcd for [triethoxy(*p*-methoxyphenylethyl)silane] (C₁₅H₂₆O₄Si): C 60.37; H 8.78; O 21.44. Found: C 60.35; H 8.78; O 21.45. IR (KBr): 467, 637, 781, 857, 964, 1085, 1483, 2884, 3222 cm⁻¹.

Hydrosilylation of p-fluorostyrene with triethoxysilane

β-Adduct [triethoxy(*p*-fluorophenylethyl)silane]: ¹H NMR δ (ppm): 1.01 (t, *J* = 8.5 Hz, 2H, Si—CH₂), 1.21 (t, *J* = 7.0 Hz, 9H, CH₃), 2.70 (t, *J* = 8.5 Hz, 2H, CH₂), 3.78 (q, *J* = 7.0 Hz, 6H, O—CH₂), 6.84–7.24 (m, 4H, Ph). ¹³C NMR δ (ppm): 162.36 (s, ¹*J*_{C—F} = 241 Hz, *para*), 139.65 (d, ⁴*J*_{C—F} = 3.0 Hz, *ipso*), 129.04 (d, ³*J*_{C—F} = 6.0 Hz, *ortho*), 114.72 (d, ²*J*_{C—F} = 21 Hz, *meta*) (FPh), 58.29 (OCH₂CH₃), 28.15 (CH₂CH₂Ph), 18.17 (OCH₂CH₃), 12.76 (SiCH₂). ²⁹Si NMR δ (ppm): -46.55. MS (EI) *m/z* (%): 287 (M⁺, 20), 286 (100). Anal. Calcd for [triethoxy(*p*-fluorophenylethyl)silane] (C₁₄H₂₃FO₃Si): C 58.71; H 8.09; O 16.76. Found: C 58.83; H 8.08; O 16.77. IR (KBr): 449, 467, 638, 783, 859, 974, 1089, 1485, 2993, 3429 cm⁻¹.

Hydrosilylation of 1-hexene with triethoxysilane: β -Adduct [triethoxy(hexyl)silane]. Spectroscopic data (¹H NMR ¹³C NMR and ²⁹Si NMR) and elemental analysis data of the prepared compound were in agreement with the assigned structures and with those found in the literature.^[22]

Hydrosilylation of 1-dodecene with triethoxysilane: β -Adduct [triethoxy(dodecyl)silane]. Spectroscopic data (¹H NMR ¹³C NMR and ²⁹Si NMR) and elemental analysis data of the prepared compound were in agreement with the assigned structures and with those found in the literature.^[22]

Hydrosilylation reaction of styrene with triethylsilane: β -Adduct [triethyl(phenylethyl)silane]. Spectroscopic data (¹H NMR ¹³C NMR and ²⁹Si NMR) and elemental analysis data of the prepared compound were in agreement with the assigned structures and with those found in the literature.^[22]

Study of the Anti-Sulfur-Poisoning Characteristics of the Synthesized Platinum-Acetylide-Phosphine Complexes

A given amount of the alkene, silane and benzothiazole as sulfur poisoning was added to a 10 ml round-bottomed flask equipped with a magnetic stirrer and a given amount of catalyst was then added. This mixture was heated to the appropriate temperature and the hydrosilylation reaction was allowed to proceed with constant stirring for 2 h. At the end of the reaction, the conversion of alkene and the selectivity was determined by GC.

X-Ray Structure Determinations of Complexes 3a

Colorless single crystals of the compounds (dimensions, **3a**: $0.35 \times 0.31 \times 0.30$ mm) were produced by slow evaporation of the solvents from solutions in hexane–dichloromethane mixtures at 25°C. Diffraction data were collected at room temperature by the φ -scan and ω -scan technique on a Smart Apex Duo diffractometer with graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (SHELXTL-PLUS)^[23] and subsequently difference Fourier synthesis, and were then refined by full-matrix least squares on F^2 (SHELXL-97).^[24] Absorption correction types were carried out using a multi-scan method. All non-hydrogen atoms were refined anisotropically, while hydrogen atoms were placed in geometrically idealized positions. Crystal data and details of the structures are given in Table 1.

Results and Discussion

Platinum acetylide complexes such as **3a** are readily prepared in high yields from the reaction of phenylacetylene with *trans*-(PPh₃P)₂PtCl₂.^[25-29] Complexes **4a** and **5a** are also

Table 1. Crystal data, data collection, and structure refinement details						
	3a·2CHCl ₃					
Empirical formula	$C_{54}H_{42}CI_6P_2Pt$					
Formula weight	1160.61					
Crystal system	Triclinic					
space group	P-1					
Unit cell dimensions						
a (Å)	8.2677(5)					
b (Å)	12.0185(7)					
c (Å)	12.9515(8)					
α (°)	83.0290(10)					
β (°)	84.5930(10)					
γ (°)	82.4900(10)					
Volume (Å ³)	1262.44(13)					
Z, calculated density	1, 1.527 Mg m $^{-3}$					
Abs. coeff. (mm^{-1})	3.195					
F(000)	576					
Reflections collected/unique	14 845/4368 [<i>R</i> (int) = 0.0206]					
Goodness-of-fit on F^2	1.123					
Final R indices $[l > 2\sigma(l)]$	$R_1 = 0.0253, wR_2 = 0.0783$					
R indices (all data)	$R_1 = 0.0321$, $wR_2 = 0.1135$					

prepared in high yields.^[25-29] In this paper, trans-platinum acetylide complexes (1b-4b) were synthesized as shown in Scheme 2. trans-Pt[PPh₂Si(CH₃)₃]₂Cl₂ 2a was synthesized from K₂PtCl₄ and PPh₂Si(CH₃)₃. A series of novel platinum-acetylidephosphine complexes 5b-8b was synthesized. The appropriate alkyne-containing silyl group was added to a degassing and a dehydrating solution of trans-Pt[PPh₂Si(CH₃)₃]₂Cl₂ in Et₂NH–THF. A catalytic amount of Cul was added and the mixture was stirred at 80°C for 6 h. After work-up, the trans-(PPh₃)₂Pt(C \equiv CSiR₃)₂ complexes, 5b-8b, were all isolated as stable solids in good yield. Infrared spectroscopy is a useful tool to confirm the chemical modifications proposed. The bands present in the diffuse-reflection infrared Fourier transform spectra of **1b** at 2087 cm⁻¹, **2b** at $2094 \text{ cm}^{-1} \dots$ and **8b** at 2127 cm^{-1} are assigned to the presence of carbon-carbon triple bonds.^[30-33] The structure of complex 3a was determined by X-ray analysis (Figs. 1 and 2) and all of the platinum acetylide complexes were also characterized by

Figure 2. Molecular structure of 3b drawn with 30% probability displacement ellipsoids.

NMR spectroscopy. All of the prepared complexes showed ¹H NMR, ¹³C NMR, ³¹P NMR and ²⁹Si NMR spectroscopic data in accordance with the proposed structures. Elemental analysis data and theoretical values for the platinum complexes **1a-8b** were also found to be in accordance. These results were obtained after the synthesis of a series of platinum acetylide complexes.

The platinum complexes prepared were tested in the hydrosilylation reaction of styrene with triethoxysilane as model reaction, and the results are listed in Table 2. At the same time, benzothiazole was added to the reaction mixtures to check the ability to resist sulfur poisoning of these prepared platinum acetylide complexes. The hydrosilylation reaction was performed by Speier's catalyst or Karstedt's catalyst with no sulfur compound, and showed a high level of conversion, but only a low level of β -adduct selectivity was obtained. The hydrosilylation reaction was examined using trans-Pt(PPh₃)₂Cl₂ or trans-Pt[PPh₂Si(CH₃)₃] ₂Cl₂ as a catalyst under similar conditions; this showed a high level of conversion and β -adduct selectivity was obtained. No β -adduct was detected for Pd (PPh₃)₂Cl₂ catalyst. The role of PPh₃ or (CH₃)₃SiPPh₂ ligand was thought to improve the selectivity of the $\beta\text{-adduct.}^{[34]}$ However, Speier's catalyst or Karstedt's catalyst was inactive under hydrosilylation reaction conditions when a small amount of benzothiazole was added. A similar situation occurred when trans-Pt(PPh₃)₂Cl₂ or trans-Pt[PPh₂Si(CH₃)₃]₂Cl₂catalyst was used (Table 2, entries 1-11). Although a low level of catalytic activity and selectivity of β-adduct was observed in the hydrosilylation reaction of the styrene with triethoxysilane catalyzed with trans-Pt(PPh₃)₂($-C \equiv CPh$)₂ (**3a**), **3a** exhibited tolerance to sulfur poisoning. trans-Pt(PPh₃)₂[-C=CC(CH₃)₂OH]₂ (4a) and trans-Pt(PPh₃)₂[--C \equiv C(C₆H₁₀)OH]₂ (**5a**) showed the same results as trans-Pt(PPh₃)₂(—C \equiv CPh)₂ (**3a**).

This prompted us to prepare a series of platinum acetylide complexes (1b-8b). In comparison with 3a, when the hydrosilylation reaction was undertaken using a series of platinum-acetylidephosphine complexes (1b-8b) as catalysts, both higher catalytic activity and selectivity for the β-adduct were exhibited. Although the catalytic activities of platinum-acetylide-phosphine complexes (1b-4b; 5b-8b) catalysts slightly decreased with increasing steric hindrances of the alkyne-containing silyl group, the selectivity of the β -adduct clearly increased. This demonstrated that the attached substituents of alkyne containing silyl group had a significant impact on the catalytic process, especially on the selectivity of the β -adduct. However, in comparison with **1b**, when the hydrosilylation reaction was undertaken by 5b as the catalysts, the conversion of styrene decreased slightly, while the selectivities were constant. This demonstrated that the attached substituents of phosphine ligands had less impact on the catalytic process. At the same time, platinum-acetylide-phosphine complexes showed a strong ability to resist sulfur poisoning. Therefore, it can also be assumed that the alkyne ligands containing a silyl group offered a strong ability to resist sulfur poisoning and had a strong impact on the hydrosilylation reaction.

Although the conversion of styrene increased with increasing amounts of **4b** used, the selectivities were constant (Table 1, entries 35, 38 and 39). When the hydrosilylation reaction was undertaken using **4b** in the presence of trace amounts of poisonous sulfur, both the conversion of styrene and the selectivities were constant. Along with the amounts of sulfur poisoning increasing, the conversions of styrene decreased, while the selectivities remained constant.

 Table 2. Results of the hydrosilylation reaction of styrene with triethoxysilane

				Selectivity (%)			
Entry	/ Catalyst (mol %)	S poison (mol %)	Conversion (%)	β	α	By- product ^a	
1	Karstedt's 0.025	_	99.8	60.1	38.7	1.2	
2	Karstedt's 0.025	0.02	_	_	_	_	
3	Karstedt's 0.05	_	99.9	59.9	38.8	1.3	
4	Karstedt's 0.05	0.02	—	_	—	—	
5	Speier 0.05	_	85.7	65.6	34.1	0.3	
6	Speier 0.05	0.02	—	_	—	—	
7	$Pd(PPh_3)_2Cl_2$	—	4.74%	_	—	100	
8	1a 0.05	_	95.4	82.9	13.7	3.4	
9	1a 0.05	0.02	—	_	—	—	
10	2a 0.05	—	94.7	83.8	13.1	3.1	
11	2a 0.05	0.02	—			—	
12	3a 0.05	—	64.7	74.7	12.9	12.4	
13	3a 0.05	0.1	59.7	75.1	12.5	12.4	
14	4a 0.05	_	41.7	65.7	19.9	14.4	
15	4a 0.05	0.1	35.2	65.8	20.0	14.2	
16	5a 0.05	—	33.9	61.2	28.4	10.4	
17	5a 0.05	0.1	28.4	61.3	28.3	10.4	
18	1b 0.05	—	92.1	91.2	6.0	2.8	
19	1b 0.05	0.1	85.4	91.3	5.8	2.9	
20	2b 0.05	—	91.4	91.8	5.1	3.1	
21	2b 0.05	0.1	84.9	92.0	5.0	3.0	
22	3b 0.05	—	90.9	93.4	3.3	3.3	
23	3b 0.05	0.1	84.1	93.5	3.2	3.3	
24	5b 0.05	—	90.7	91.9	5.7	2.4	
25	5b 0.05	0.1	84.8	92.1	5.6	2.3	
26	6b 0.05	—	90.1	91.9	5.1	3.0	
27	6b 0.05	0.1	83.2	92.3	4.9	2.8	
28	7b 0.05	—	89.9	93.6	3.3	3.1	
29	7b 0.05	0.1	82.7	93.7	3.2	3.1	
30	8b 0.05	—	89.8	95.1	1.2	3.7	
31	8b 0.05	0.1	81.5	95.3	1.1	3.6	
32	4b 0.05	—	90.2	94.8	1.3	3.9	
33	4b 0.05	0.02	90.2	94.8	1.3	3.9	
34	4b 0.05	0.05	90.1	94.7	1.3	4.0	
35	4b 0.05	0.1	82.9	95.0	1.2	3.8	
36	4b 0.05	0.2	71.9	95.2	1.1	3.7	
37	4b 0.05	0.5	59.8	95.5	0.9	3.6	
38	4b 0.025	0.1	78.2	95.2	1.1	3.7	
39	4b 0.1	0.1	91.2	94.7	1.2	4.1	

Reaction conditions: styrene 4.0 mmol; triethoxysilane 4.4 mmol; 90°C; 2 h. Analyzed by GC-MS; S poison: benzothiazole; by-product:

ethylbenzene; no unsaturated adduct. **1a**: trans-Pt(PPh₃)₂Cl₂ **2a**: trans-Pt [PPh₂Si(CH₃)₃] ₂Cl₂ **3a**: trans-Pt(PPh₃)₂(C \equiv CPh)₂

4a: *trans*-Pt(PPh₃)₂[−C≡CC(CH₃)₂OH]₂

5a: $trans-Pt(PPh_3)_2[-C \equiv C(C_6H_{10})OH]_2$

1b: *trans*-Pt(PPh₃)₂(C=CSiMe₃)₂

2b: *trans*-Pt(PPh₃)₂(C=CSiEt₃)₂

3b: *trans*-Pt(PPh₃)₂{C=CSi[CH(CH₃)₂]₃}₂

4b: *trans*-Pt(PPh₃)₂(C=CSiPh₃)₂

5b: trans-Pt[PPh₂Si(CH₃)₃]₂[CH=CSi (CH₃)₃]₂

6b: *trans*-Pt[PPh₂Si(CH₃)₃]₂[CH=CSi (CH₂CH₃)₃]₂

7b: *trans*-Pt[PPh₂Si(CH₃)₃]₂[CH=CSi (CH(CH₃)₂)₃]₂

8b: *trans*-Pt[PPh₂Si(CH₃)₃]₂(CH≡CSi Ph₃)₂

Table 3. Results of the hydrosilylation reaction of aliphatic alkenes with triethoxysilane

					Selectivity (%)				
Entry	Alkene	S poison (mol%)	Silane	Conv.	β	α	Unsaturated	1-Ethylbenzene	
1	2-Methylstyrene	_	Triethoxysilane	92.4	95.2	1.4	_	3.4	
2		0.1		85.3	95.4	1.3	—	3.3	
3	3-Methylstyrene	_		91.4	94.7	1.5	—	3.8	
4		0.1		83.7	94.9	1.5	—	3.6	
5	4-Methylstyrene	—		89.4	96.1	1.2	—	2.7	
6		0.1		82.5	96.1	1.3	—	2.6	
7	4-Methoxystyrene	—		93.4	95.4	1.5	—	3.1	
8		0.1		86.1	95.6	1.6	—	2.8	
9	4-Fluorostyrene	—		92.1	94.3	1.2	—	4.5	
10		0.1		84.1	94.6	1.3	—	4.1	
11	1-Hexene	_		95.9	97.4	_	—	2.6	
12		0.1		88.7	97.5	_	—	2.5	
13	1-Dodecene	—		91.4	98.1	—	—	1.9	
14		0.1		84.7	98.0	_	—	2.0	
15	Styrene	_	Triethylsilane	93.1	84.8	1.3	10.0	3.9	
16		0.1		86.4	85.1	1.2	10.3	3.4	
Pastion conditions: alkana 40 mmal: silana 44 mmal: S naisan: hanzathiazala									

Reaction conditions: alkene 40 mmol; silane 44 mmol; S poison: benzothiazole.

Catalyst: trans-Pt(PPh₃)₂(C=CSiPh₃)₂ (4b) 0.05% based on styrene; 90°C, 5 h.

When other alkenes such as 1-hexene, 1-dodecene, 4methoxystyrene 4-fluorostyrene, 2-methylstyrene, 3-methylstyrene and 4-methylstyrene were used as one of the substrates, high levels of conversion and selectivity were obtained when using **4b** as catalyst (Table 3). At the same time, **4b** did not lose its catalytic activity in the presence of trace amounts of poisonous sulfur. Also, when triethylsilane replaced triethoxysilane as hydrogen donor, the unsaturated adduct triethyl (styryl) silane was found.

Conclusion

In summary, a series of platinum acetylide complexes were synthesized. In comparison with Speier's catalyst, Karstedt's catalyst and **3a**, when the hydrosilylation reaction was undertaken using a series of platinum–acetylide–phosphine (**1b–8b**) as the catalysts, both higher catalytic activity and selectivity for the β -adduct were obtained. At the same time, the platinum–acetylide–phosphine complexes (**1b–8b**) did not lose their catalytic activities in the presence of small amount of poisonous sulfur. It can therefore also be assumed that alkyne ligands containing the silyl group played an important role in the hydrosilylation reaction. The platinum–acetylide–phosphine complexes (**1b–8b**) exhibited a strong ability to resist sulfur poisoning. Also, alkyne ligands containing a silyl group had a strong impact on the hydrosilylation reaction.

Acknowledgments

We are grateful to the Natural Science Foundation of China (21203049) and the Educational Commission of Zhejiang Province of China (Y201327588) for financial support.

References

[1] J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79, 574.

- [2] C. Grish, Y. L. Peter, Organometallics 1987, 6, 191.
- [3] B. G. Guillaume, J. M. Schumers, B. D. Guillaume, I. Markó, J. Org. Chem. 2008, 73, 4190.
- [4] L. N. Lewis, N. Lewis, J. Am. Chem. Soc. 1986, 108, 7228.
- [5] I. Markó, S. Stérin, O. Buisine, G. Mignani, P. Branlard, B. Tinant, J. P. Declercq, *Science* 2002, 298, 204.
- [6] O. Buisine, G. Berthon-Gelloz, J. F. Brière, S. Stérin, G. Mignani, P. Branlard, B. Tinant, J. P. Declercq, I. E. Markó, *Chem. Commun.* 2005, 5, 3856.
- [7] J. W. Sprengers, M. J. Mars, M. A. Duin, K. J. Cavell, C. J. Elsevier, J. Organomet. Chem. 2003, 679, 149.
- [8] B. D. Guillaume, B. G. Guillaume, T. Bernard, I. E. Markó, Organometallics 2006, 25, 1881.
- [9] Y. Yoshikawa, K. Yamamoto, K. M. Tanaka, EP Patent 604.104, 1994.
- [10] C. A. Hoag, S. W. Wilson, US Patent 5346723, 1994.
- [11] H. Soeda, M. Tsugita, US Patent 5382974, 1995.
- [12] A. Fehn, F. Achenbach, EP Patent 994159, 2000.
- [13] A. Fehn, F. Achenbach, S. Dietl, DE Patent 19837855, 2000.
- [14] J. Li, J. Peng, Y. Deng, C. Ma, G. Zhang, Y. Bai, G. Lai, Appl. Organomet. Chem. 2012, 26, 461.
- [15] X.-X. Guo, J.-H. Xie, G.-H. Hou, W.-J. Shi, L.-X. Wang, Q.-L. Zhou, *Tetrahedron: Asymmetry* **2004**, *15*, 2231.
- [16] K. Takaki, K. Sonoda, T. Kousaka, G. Koshoji, T. Shishido, K. Takehira, *Tetrahedron Lett.* **2001**, 42, 9211.
- [17] G. Liu, M.-Z. Cai, J. Mol. Catal. A Chem. 2006, 258, 257.
- [18] T. Hayashi, *Catal. Today* **2000**, *62*, 3.
- [19] I. Weber, G. B. Jones, *Tetrahedron Lett.* **2001**, *42*, 6983.
- [20] T. Okano, M. Iwahara, H. Konish, J. Kiji, J. Organomet. Chem. 1988, 346, 267.
- [21] K. Campbell, R. McDonald, M. J. Ferguson, R. R. Tykwinski, J. Organomet. Chem. 2003, 683, 379.
- [22] J. Li, J. Peng, G. Zhang, Y. Bai, G. Lai, X. Li, New J. Chem. 2010, 34, 1330.
- [23] Siemens, Stereochemical Workstation Operation Manual, Release 3.4, Siemens Analytical X-ray Instruments, Madison, WI, 1989.
- [24] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [25] M. Ravera, R. D. Amato, A. Guerri, J. Organomet. Chem. 2005, 690, 2376.
- [26] F. Q. Bai, X. Zhou, B. H. Xia, T. Liu, J. P. Zhang, H. X. Zhang, J. Organomet. Chem. 2009, 694, 1848.
- [27] N. M. Shavaleev, H. Adams, J. Best, J. A. Weinstein, J. Organomet. Chem. 2007, 692, 921.
- [28] L. H. Cheuk, W. Y. Wong, J. Organomet. Chem. 2006, 691, 395.

- [29] C. Tedeschi, C. Saccavini, L. Maurette, M. Soleilhavoup, R. Chauvin, J. Organomet. Chem. 2003, 670, 151.
- [30] U. Belluco, R. Bertani, R. A. Michelin, M. Mozzon, J. Organomet. Chem. 2000, 600, 37.
- [31] N. Ohshiro, F. Takei, K. Onitsuka, S. Takahashi, J. Organomet. Chem. 1998, 569, 195.
- [32] J. Lewis, P. R. Raithby, W. Y. Wong, J. Organomet. Chem. **1998**, 556, 219.
- [33] S. L. James, M. Younus, P. R. Raithby, J. Lewis, J. Organomet. Chem. 1997, 543, 233.
- [34] J. R. Berenguer, E. Lalinde, M. T. Moreno, Coord. Chem. Rev. 2010, 254, 832.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher's web-site.