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ABSTRACT: The direct reductive N-arylation of nitromethane 
by organophosphorus-catalyzed reductive C–N coupling with 
arylboronic acid derivatives is reported. This method operates 
by the action of a small ring organophosphorus-based catalyst 
(1,2,2,3,4,4-hexamethylphosphetane P-oxide) together with a 
mild terminal reductant hydrosilane to drive the selective in-
stallation of the methylamino group to (hetero)aromatic bo-
ronic acids and esters. This method also provides for a unified 
synthetic approach to isotopically-labeled N-methylanilines 
from various stable isotopologues of nitromethane (i.e. 
CD3NO2, CH315NO2 and 13CH3NO2), revealing this easy-to-han-
dle compound as a versatile precursor for the direct installa-
tion of the methylamino group.  

Nitromethane (H3C–NO2) is an industrially important com-
modity chemical, primarily used as a solvent, stabilizer, and 
fuel additive.1 Also, H3C–NO2 is a common and useful carbon 
pronucleophile in synthesis (Figure 1A, left),2-5 but it is com-
paratively less developed as an amination reagent. Recently, 
Jiao and coworkers reported H3C–NO2 as a precursor to “H2N–

X” equivalents by reductive Nef-like decomposition,6 but an al-
ternative reductive N-functionalization of H3C–NO2 that retains 
the “H3C–N” substructure would trace a role for this inexpen-
sive and easily-handled liquid as a potential surrogate for me-
thylamine—a gaseous List 1 controlled precursor7—especially 
in catalytic coupling chemistry (Figure 1A, right).8-11 At present, 
reductive N-functionalization of H3C–NO2 is limited to two iso-
lated examples: Niggemann has reported reductive N-benzyla-
tion of nitromethane mediated by stoichiometric B2pin2 in the 
presence of excess BnZnBr, 12  and Suarez-Pantiga and Sanz 
have reported a triphenylphosphine-mediated reductive N-
phenylation of nitromethane catalyzed by an oxomolyb-
denum(VI) compound under microwave irradiation.13 We re-
port here a general catalytic method for the methylamination 
of arylboronic acids and esters with H3C–NO2 by reductive C–N 
coupling driven by PIII/PV=O redox cycling (Figure 1B). These 
results expand the scope of reductive C–N coupling, generalize 
the use of H3C–NO2 as a methylamine surrogate in reductive 
cross coupling, and provide a unique pathway for introducing 
stable isotopes (15N, 13C, 2H) widely-used for metabolic trac-
ing.14   

Prior work has established PIII/PV=O catalysis15-17 as a viable 
approach to reductive N-functionalization of nitroarene (Ar–
NO2) substrates,18-20 but the translation of this technique to re-
ductive N-functionalization of H3C–NO2 requires that the de-
sired C–N coupling sequence (Figure 1B) outcompete numer-
ous unproductive but well-known decomposition pathways, 

both for H3C–NO2 (e.g. Nef reaction) and potential deoxygena-
tion intermediates (e.g. tautomerization of H3C–NO→H2C=NOH 
and H3C–N:→H2C=NH, inter alia). In principle, the base-free  

Figure 1. A) Uses of nitromethane in organic synthesis. B) Re-
action sequence leading to formation of N-methylanilines via 
PIII/PV=O-catalyzed reductive C–N coupling of nitromethane 
with boronic acids (esters); C) Electronic challenge presented 
by high frontier orbital gap of H3C–NO2. FMO=frontier molecu-
lar orbital. 

 
conditions of the PIII/PV=O catalyzed nitro functionalization, 
which depends on a rate-limiting (3+1) cheletropic addition of 
phosphine and nitro substrate, might suppress these processes. 
However, the nitro moiety of H3C–NO2 is inherently less reac-
tive than Ar–NO2 as cycloaddition partner due to a larger local 
frontier orbital energy gap (ΔΔE= 1.0 eV, Figure 1C),21 resulting 
in less favorable pairwise orbital interactions that therefore 
impose a stringent demand of the biphilic character of the 
phosphetane catalyst. 

Investigation of the reductive N-functionalization of H3C–
NO2 was initiated with these considerations in mind. Empirical 
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observations (Table 1) indicate that a catalytic system compris-
ing the organophosphorus O-atom transfer catalyst 1•[O] 22 
and a terminal hydrosilane reductant indeed successfully 
achieve a methylamination of arylboronic acids by PIII/PV=O- 

 
Table 1. Discovery and Control Experiments for Organophos-
phorus-Catalyzed N-methylaniline Synthesis.a 

 
Entry silane R3P=O Yield (%)b 

1c PhSiH3 1•[O] 35 

2 PhSiH3 1•[O] 95 (90)d 

3 PhSiH3 1 94 

4 PhSiH3 None 0 

5 None 1•[O] 0 

6e PMHS 1•[O] 85 

a Unless otherwise noted, reactions were carried out with 1•[O] 
(10 mol %), phenylsilane (0.5 mmol, 2.0 equiv), 4-fluoro-
phenylboronic acid (0.25 mmol) and nitromethane (0.75 mmol, 
3.0 equiv) in CPME (0.5 mL) at 120 °C for 18 h. b Yields were 
determined by 19F NMR integration with the aid of an internal 
standard. c 1.0 equiv of 2 was used. d Isolated yield. e 24 h reac-
tion time.  

 
catalyzed intermolecular C–N coupling. With 4-fluorophenyl-
boronic acid (3) as a representative substrate, the reductive 
functionalization of 1.0 equiv of commercial reagent grade 
H3C–NO2 (2) by 10 mol% of 1•[O] and 2 equiv of PhSiH3 gave a 
promising  35% yield of N-methyl-4-fluoroaniline (4) (Table 1, 
entry 1), but simply increasing equivalencies of inexpensive 
H3C–NO2 (3.0 equiv, entry 2) resulted in excellent yield of 4 (95% 
NMR yield, 90% isolated yield). A high yield was similarly ob-
tained with phosphetane 1 as a precatalyst (entry 3)—con-
sistent with PIII/PV=O redox cycling—but omission of either the 
precatalyst 1•[O] or phenylsilane failed to provide methylami-
nation product 4 (entries 4-5). Inexpensive and bench-stable 
polymethylhydrosiloxane (PMHS) is also a viable terminal re-
ductant for the reaction, albeit with somewhat lower efficiency 
(85%, entry 6). In situ spectral monitoring of the reductive C−N 
coupling showed that isotopically enriched nitromethane-d3 (δ 
4.32 ppm) is cleanly converted to the product N-(methyl-d3)-4-
bromoaniline (δ 2.79 ppm), and no side products or long-lived 
intermediates were observed (Figure S2). The relatively high 
concentration of the PIII catalyst resting state 1 presumably 
drives the methylamination forward along the productive reac-
tion pathway in preference to possible side pathways, includ-
ing the favorable isomerization of nitrosomethane to for-
maldoxime.23,24 

As depicted in Figure 2A, the PIII/PV=O-catalyzed methylami-
nation method shows excellent functional group tolerance, sev-
eral facets of which provide for chemoselectivities that comple-
ment transition-metal catalyzed C–N coupling methods. For ex-
ample, halogen substituents are well-tolerated (5a, 8-10, 16) 
in the PIII/PV=O-catalyzed methylamination and intermolecular 
C–N coupling occurs exclusively at the boronic acid position. 
Also, the orthogonal reactivity to the nitro group with respect 
to other nitrogen-containing functional groups permits selec-
tive aryl methylamination even in the presence of free -NH2 

groups (16) without explicit protection. Carbonyl functionali-
ties such esters (13) and ketones (17, 19) that might be sus-
ceptible to acylation or condensation reaction with H3C–NH2  

Figure 2. Synthetic scope of PIII/PV=O-catalyzed C–N coupling 
of nitromethane and arylboronic acids. See SI for full experi-
mental details and conditions. Yields are reported for material 
obtained following purification and isolation. 
 
are retained when H3C–NO2 is used as a surrogate. Further-
more, substrates with other functional groups including ben-
zyloxy (7), tetrahydropyranyl ether (14), thiomethyl (15), and 
trifluoromethyl (18) groups all yielded the corresponding N-
methylaniline products in good yields. The method is also ap-
plicable to compounds with known bioactive core structures, 
such as derivatives of celecoxib (18), estrone (19), and Pitts-
burgh compound B25 (20).  

The ability to use of H3C–NO2 as a simple synthetic precursor 
for the MeHN– group presents the opportunity for the prepara-
tion of diverse stable-isotope labeled products—useful tools in 
both laboratory26  and pharmaceutical27  research—through a 
unified synthetic strategy. As illustrated in Figure 2B, a suite of 
isotopically labeled N-methylaniline products 5b-5d are acces-
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sible with programmed labeling as dictated by the initial iso-
topic composition of the nitromethane isotopologue (viz. 2H3C–
NO2 (2b), H313C–NO2 (2c), H3C–15NO2 (2d)). The relative ease 
with which the isotopologues of nitromethane are accessed 
make this an attractive approach to potentially valuable stable 
isotope labeled compounds. 

Initial attempts to directly transfer the foregoing PIII/PV=O-
catalyzed conditions to methylamination of 3-quinolylboronic 
acid resulted in a disappointing 19% yield of the target com-
pound 21 (Figure 3A, yield in parenthesis). Studies showed 
that protodeboronation of the heteroarylboronic acid was a 
primary pathway limiting the productive C–N coupling in this 
case.28 Correspondingly, PIII/PV=O-catalyzed methylamination 
of 3-quinolylboronic acid 1,3-propanediolate ester showed a 
significant improvement in C–N coupling yield (93%), in line 
with the relative stability of boronic esters to protodeborona-
tion as compared to their parent boronic acids.28 This phenom-
enon is general; B-heteroaryl-1,3,2-dioxaborinanes including a 
variety of five- and six-membered heterocyclic derivatives, 
such as isoquinoline (22), indazole (23) pyridine (24, 27), thi-
ophene (25) and pyrimidine (26), were successfully trans-
formed to the corresponding N-methylamine derivatives with 
improved yields relative to their arylboronic acid congeners. B-
Aryl-1,3,2-dioxaborinanes containing electron-donating  

Figure 3. Synthetic scope of PIII/PV=O-catalyzed C–N coupling 
of nitromethane and (hetero)arylboronic esters.  See SI for full 
experimental details and conditions. Yields are reported for 
material obtained following purification and isolation. a Yields 
for reactions with boronic acids were determined by 1H NMR 
with dibromomethane as the internal standard.  
 

(28) or electron-withdrawing group (29) transform smoothly 
to the desired products, showing the generality of utilizing 
boronate esters for methylamination reactions. Other common 
boronate ester residues such as a neopentyl glycol ester (e.g. 
Ar-Bnep 30, Figure 3B) and pinacol esters (e.g. Ar-Bpin 31-33, 
Figure 3C) gave similar efficiency in this methylamination pro-
cess. Notably, subjection of benzene-1,4-diboronic acid 
bispinacol ester to the standard reaction conditions afforded 
single methylamination product 31 with excellent yield; evi-
dently the second (pinacolato)boryl moiety becomes electron-
ically deactivated for amination following an initial reductive 
C−N coupling. 

Competition experiments evidence a differential reactivity of 
H3C–NO2 as compared to Ar–NO2 substrates in PIII/PV=O-
catalyzed reductive C–N coupling. As illustrated in Figure 4A, 
an equimolar mixture of four componenets—namely H3C–NO2 

(2), 4-NC-C6H4–NO2 (34), 3,5-(F3C)2-C6H3–Bpin (35) and 4-
H3CO-C6H4–B(OH)2 (36)—was subjected to standard reductive 
C–N coupling conditions catalyzed by 1•[O] in a one pot man-
ner. In the event, only two of the possible four products—spe-
cifically methylaniline 29 and diarylamine 37—were observed 
in greater than 5% yield. Consistent with the FMO rationale in 
Figure 1,15i this observation implies that nitroarene 34 reacts 
more quickly than nitromethane 2 via (3+1) cheletropic addi-
tion with 1, and goes on to couple selectively with the more re-
active boronic acid partner 36. In a subsequent event, H3C–NO2 
then reacts to give 29 by methylamination of the more inert bo-
ronic ester 35, proceeding without diminished yield for these 
reaction partners.29 This kinetically-controlled chemoselectiv-
ity was further demonstrated by the modular synthesis of N,N’-
difunctionalized phenylenediamine (Figure 4B, 42). The three-
component coupling of H3C–NO2, Ph–B(OH)2 (40), and 4-nitro-
phenylboronic ester (41) produced 42 via sequential amina-
tion reactions with almost complete suppression of undesired 
methylaminated product (6). 
 

 
Figure 4. A) Reaction of a four component mixture illustrating 
differential reactivity of H3CNO2 vs ArNO2 and ArB(OH)2 vs 
ArB(OR)2. (B) Selective three-component coupling via sequen-
tial C–N coupling reactions.  
 

A synthesis of the anxiolytic triflubazam30 (45, Figure 5) con-
textualizes the reductive C–N coupling of nitromethane within 
the growing portfolio of PIII/PV-catalyzed methods promoted 
by phosphetane catalyst 1•[O]. Specifically, PIII/PV-catalyzed 
reductive C–N coupling of phenylboronic acid and 4,4,5,5-tet-
ramethyl-2-(2-nitro-5-(trifluoromethyl)phenyl)-1,3,2-diox-
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aborolane (43), followed in situ by PIII/PV-catalyzed ami-
dation15h,31 with mono-ethyl malonate gives diarylamide 44 in 
a one-pot sequence. Subsequent PIII/PV-catalyzed methylami-
nation by C–N coupling with H3C–NO2 installs the MeHN– moi-
ety and induces intramolecular cyclization to close the diaze-
pinedione ring, furnishing the medicinal target 45 in an overall 
51% yield for the two-pot, three-step, all-PIII/PV-catalyzed se-
quence. 

 

 
Figure 5. Two-pot, three step synthesis of triflubazam by an 
all-PIII/PV-catalyzed sequence. Reaction conditions: (a) 43 (1.0 
equiv), PhB(OH)2 (1.1 equiv), Ph2SiH2 (4.0 equiv), 1•[O] (30 
mol%), CPME, 120 °C ; then add monoethyl malonate (1.2 
equiv), diethylbromomalonate (1.5 equiv), 40 °C; (b) 44 (1.0 
equiv), H3C–NO2 (3.0 equiv), Ph2SiH2 (3.0 equiv), 1•[O] (15 
mol%), CPME, 120 °C.  
 

In summary, we have demonstrated that nitromethane is an 
inexpensive and easy-to-handle synthetic equivalent for instal-
lation of the MeHN– fragment via PIII/PV=O catalysis. Readily-
available boronic acids and esters are selectively methylami-
nated in the presence of various functional groups and het-
eroaromatics. The method serves as a robust complementary 
tactic to transition metal catalyzed C–N coupling techniques re-
lying on the use of MeNH2 or related surrogates. With respect 
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