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The benzofuran framework is ubiquitously present in many 

natural products, biologically active compounds, and 
functionalized materials.

1
 Among them, the 2,3-disubstituted 

benzofuran scaffold, often containing one or more hydroxy 

groups, has attracted considerable attention. To construct 2,3-

disubstituted benzofurans, a number of synthetic methods have 

been developed.
2
 However, direct approaches to obtain 2,3-

disubstituted benzofurans possessing hydroxy groups are still 
limited,

3
 and efficient synthetic methods from readily available 

compounds are highly desired.  

We have developed hydroxyterphenylphosphines 1 (Figure 1) 

and applied them to Pd-catalyzed site-selective cross couplings.
4
 

In the reactions of dihalogenated phenols or anilines, the catalyst 

derived from Pd and 1 binds with the substrate via metal 
phenoxides or anilides, and site-selectively accelerates oxidative 

addition of the 2-halo group to Pd. We have also reported 

benzofuran synthesis from readily available 2-chlorophenols and 

terminal alkynes using the Pd‒1b catalyst via hydroxy-directed 

ortho-Sonogashira coupling and subsequent cyclization (Scheme 

1a).
5
 This catalytic system enabled the use of 2-chlorophenols, 

which are less reactive but more readily available than 2-bromo 

or 2-iodophenols. During this study, we observed the formation 

of a small amount (~5% yield) of 2,3-disubstituted benzofuran 3 

bearing 2-hydroxyphenyl moiety at the C-3 position as a 

byproduct (Scheme 1b), presumably via Sonogashira coupling 

followed by an oxypalladation/reductive elimination sequence. 
This type of sequence, which is known as Cacchi cyclization, is a 

powerful method to afford 2,3-disubstituted benzofurans; Pd-

catalyzed annulations of 2-alkynylphenol with aryl iodides or 

bromides have been previously reported.
6 

One-pot synthesis of 

2,3-diarylated benzofurans from 2-iodophenol, terminal alkyne, 

and aryl iodide has been also conducted.
7
 Therefore, we expected 

that the Pd‒1b catalyst would enable one-pot synthesis of 2,3-

disubstituted benzofurans from readily available 2-chlorophenols 
and terminal alkynes via hydroxy-directed ortho-Sonogashira 

coupling and oxypalladation/reductive elimination (Scheme 1c). 

Herein, we report the one-pot synthesis of 2,3-disubstituted 

benzofurans possessing a hydroxyphenyl group from 2-

chlorophenols using the Pd‒1b catalyst. 

 

Figure 1. Hydroxyterphenylphosphines 1. 
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2,3-Disubstituted benzofurans possessing 2-hydroxyphenyl moiety at the C-3 position were 

synthesized from readily available 2-chlorophenols and terminal alkynes by hydroxy-directed 

ortho-Sonogashira coupling and subsequent oxypalladation/reductive elimination, using Pd-

dihydroxyterphenylphosphine catalyst. The catalyst accelerates not only the Sonogashira 

coupling but also the introduction of 2-hydroxyphenyl group at the C-3 position of benzofuran. 

2009 Elsevier Ltd. All rights reserved. 
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Scheme 1. (a) Pd‒1b-catalyzed benzofuran synthesis from 

chlorophenols (previous work). (b) Proposed mechanism of the 
formation of byproduct 3. (c) 2,3-Disubstituted benzofuran 

synthesis from 2-chlorophenols (this work). 

 

First, the reaction conditions were optimized using 4-

ethynylanisole and 2-chlorophenol 2 (2 equiv) and as model 

substrates, t-BuOLi as base, and toluene as solvent (Table 1). 

When the reaction was conducted with 2 mol% of the catalyst 
derived from PdCl2(CH3CN)2 and 1b, the desired C-3-arylated 

benzofuran 3a was obtained in 23% yield, along with 31% of C-

3-protonated benzofuran 4a and <16% of 2-alkynylphenol 5a 

(Entry 1). When 4 mol% of the catalyst was used, the yield of 3a 

was increased and that of 5a was decreased (Entry 2). When 6 

mol% of the catalyst was used, 64% yield of 3a was obtained and 
formation of 4a was suppressed (Entry 3). Reaction using 8 

mol% of the catalyst gave 3a in slightly lower yield (Entry 4). 

Use of other Pd sources resulted in moderate yield of the product 

(Entries 5 and 6). Thus, 6 mol% was identified as the optimum 

loading amount for the catalyst. Then, various solvents were 

screened using 6 mol% of the catalyst. For xylenes and 

mesitylene, the yield of 3a was decreased and that of 4a was 

increased (Entries 7 and 8). Use of heptane also resulted in 

similar yields (Entry 9). When THF was used, only a small 

amount of 3a was obtained (Entry 10). On the other hand, 

reaction using 1,4-dioxane proceeded smoothly to give 60% yield 

of 3a along with only 5% of 4a (Entry 11). 1,2-Dimethoxyethane 
solvent gave 3a in moderate yield (Entry 12), whereas DMF was 

not effective for the reaction (Entry 13). While both toluene and 

1,4-dioxane gave almost the same yields of 3a, smaller amounts 

of byproducts formed in 1,4-dioxane enabled easier purification 

of 3a. Therefore, we decided to use 1,4-dioxane as the solvent for 

screening various ligands. Reaction with 
dihydroxyterphenylphosphine 1c, bearing a diphenylphosphino 

group afforded 3a in moderate yield (Entry 14). Use of 

monohydroxyterphenylphosphine 1a resulted in low yield of 3a 

(Entry 15). When XPhos was used,
8
 small amounts of 3a and 4a 

were obtained (Entry 16). Other ligands, including the hydroxy-

group-containing ligand 6 and bidentate ligands, were found to 
be ineffective (Entries 17-22). Reaction using 2-bromophenol 

instead of 2 also proceeded smoothly to afford 3a in 69% yield 

with 16% of 4a (Entry 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 1. Optimization of reaction conditions. 

 

Entry Pd source (x mol%) Ligand (2x mol%) Solvent Yield (%)
a
 

3a 4a 5a 

1 PdCl2(CH3CN)2 (2) 1b·HBF4 (4) toluene 23 31 <16 

2 PdCl2(CH3CN)2 (4) 1b·HBF4 (8) toluene 41 30 <4 

3 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) toluene 64 13 2 

4 PdCl2(CH3CN)2 (8) 1b·HBF4 (16) toluene 56 10 2 

5 Pd(OAc)2 (6) 1b·HBF4 (12) toluene 51 22 4 

6 Pd2(dba)3 (3) 1b·HBF4 (12) toluene 49 25 3 

7
b
 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) xylenes 46 22 2 

8
b
 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) mesitylene 31 38 n.d.

c
 

9 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) heptane 38 37 n.d.
c
 

10 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) THF <12 46 n.d.
c
 

11 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) 1,4-dioxane 60 5 n.d.
c
 

12 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) 1,2-dimethoxyethane 44 7 n.d.
c
 

13 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) DMF <4 18 n.d.
c
 

14 PdCl2(CH3CN)2 (6) 1c (12) 1,4-dioxane 37 4 n.d.
c
 

15 PdCl2(CH3CN)2 (6) 1a·HBF4 (12) 1,4-dioxane 17 3 trace 

16 PdCl2(CH3CN)2 (6) XPhos (12) 1,4-dioxane <6 9 trace 

17 PdCl2(CH3CN)2 (6) Cy-JohnPhos (12) 1,4-dioxane trace n.d.
c
 trace 

18 PdCl2(CH3CN)2 (6) 6 (12) 1,4-dioxane trace 7 n.d.
c
 

19 PdCl2(CH3CN)2 (6) PCy3 (12) 1,4-dioxane trace n.d.
c
 trace 

20 PdCl2(CH3CN)2 (6) (t-Bu)3P·HBF4 (12) 1,4-dioxane trace 10 n.d.
c
 

21 PdCl2(CH3CN)2 (6) 2,2’-bipyridyl (12) 1,4-dioxane n.d.
c
 n.d.

c
 n.d.

c
 

22 PdCl2(CH3CN)2 (6) Xantphos (12) 1,4-dioxane n.d.
c
 n.d.

c
 n.d.

c
 

23
d
 PdCl2(CH3CN)2 (6) 1b·HBF4 (12) 1,4-dioxane 69 16 n.d.

c
 

a
Isolated yield. 

b
120 °C. 

c
Not detected. 

d
2-Bromophenol was 

used instead of 2. 

 

 

With the optimized conditions in hand, reactions using various 

2-chlorophenols and terminal alkynes were studied (Table 2). 
Both aromatic and aliphatic alkynes gave the corresponding 2,3-

disubstituted benzofurans 3a-e in good yields. When 2-

chlorophenol bearing electron donating groups were employed, 

the reaction proceeded smoothly, and the desired products 3f-i 

were obtained in good yield. In addition, 2-chloro-4-fluorophenol 

afforded 3j and 3k in moderate-to-good yield. It is noteworthy 
that 2,4-dichlorophenol selectively gave 3l in good yield, 

indicating that oxidative addition of 2,4-dichlorophenol to Pd(0) 

occurs selectively at the 2-chloro group. On the other hand, 

reaction with 2,3-dichlorophenol did not afford the C-3-arylated 

3m at all and only the C-3-protonated benzofuran 4m was 

obtained. We assume that oxypalladation did not proceed after 

Sonogashira coupling due to the steric hindrance of the 

remaining 3-chloro group of the intermediate alkynylphenol. 

 

 

 

 

 

 

Table 2. Substrate scope study. 
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To further broaden the substrate scope of the protocol, we 
examined the use of two different chloroarenes for introducing 3-

substituents different from those on the benzene ring of the 

benzofuran core (Table 3). After the Sonogashira coupling of 2-

chloro-5-methylphenol and 2 equiv of 4-ethynylanisole for 1 h, 

1.5 equiv of 2 was added via syringe, and the mixture was 

refluxed for 24 h. The desired reaction proceeded smoothly, and 

7 was obtained in good yield along with 15% of C-3-protonated 

4f. In this case, formation of the byproduct 3f was not observed. 

When dodec-1-yne was employed instead of 4-ethynylanisole, 

the desired product 8 was also obtained in good yield. Use of 2-

chloro-4-fluorophenol instead of 2-chloro-5-methylphenol 

afforded 9 in moderate yield. On the other hand, use of 4-

chlorotoluene instead of 2 to introduce 4-tolyl group at the C-3 

position of benzofuran was not successful, and only 9% of the 

desired product 10 was obtained, suggesting that the 2-hydroxy 

group of 2 is essential for affording 2,3-disubstituted benzofurans 

in good yield. 

 
Table 3. Use of two different chloroarenes. 

 
a
1.0 equiv of 4-ethynylanisole was used.  

 

We assume that the reaction proceeds as shown in Scheme 2, 

and that high reactivity and ortho-selectivity induced by the 

Pd‒1b catalyst can be explained by complex formation between 
the catalyst and the substrate.

5
 Hydroxy groups of 1b and 2-

chlorophenol are deprotonated by t-BuOLi to generate lithium 

phenoxides, which form heteroaggregates A in which the 2-

chloro group is located close to Pd. Therefore, oxidative addition 

of 2-chlorophenol to Pd(0) is accelerated to give intermediate B. 

The reaction with an alkyne affords intermediate C and then 
alkynylphenol D, which coordinates to B in the second catalytic 

cycle. Resulting intermediate E undergoes oxypalladation to give 

3-benzofuranylpalladium intermediate F. Subsequently, the 

desired 2,3-disubstituted benzofuran is formed by reductive 

elimination. 

 



  

 
Scheme 2. Proposed reaction pathways. 

In summary, 2,3-disubstituted benzofurans, bearing hydroxy 

group on the phenyl substituent at the C-3-position, were 

successfully prepared from readily available 2-chlorophenols and 

terminal alkynes using the catalyst derived from Pd and 1b. 
Complex formation between the catalyst and 2-chlorophenols is 

the key to the success of both Sonogashira coupling and the 

subsequent Cacchi cyclization. 
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Highlights 

 

 One-pot synthesis of 2,3-disubstituted 

benzofurans has been achieved. 

 Readily available chlorophenols can be 

used as substrates. 

 Only the Pd‒DHTP catalyst can catalyze 

the desired reaction. 

 2-Hydroxyphenyl group can be introduced 

at C3 of benzofurans. 

 Two different chlorophenols can be used. 
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