Contents lists available at SciVerse ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Synthesis and selected immunological properties of substituted quino[3,2-b]benzo[1,4]thiazines[☆]

Małgorzata Jeleń^a, Krystian Pluta^{a,*}, Michał Zimecki^b, Beata Morak-Młodawska^a, Jolanta Artym^b, Maja Kocięba^b

^a The Medical University of Silesia, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland ^b Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland

ARTICLE INFO

Article history: Received 10 October 2012 Received in revised form 18 February 2013 Accepted 21 February 2013 Available online 1 March 2013

Keywords: Phenothiazines Azaphenothiazines Antiproliferative activity Anticancer activity Thiazine ring formation

ABSTRACT

A new type of azaphenothiazines – tetracyclic quino[3,2-b]benzo[1,4]thiazines, possessing common substituents (H, CH₃, Cl, Br, F, CF₃, SCH₃) in positions 8–10 and pharmacophoric aminoalkyl substituents in position 6, were obtained from diquinodithiin and 2,2'-dichloro-3,3'-diquinolinyl disulfide in several-step syntheses. Sixty one compounds, grouped as the 6*H*, 6-dialkylaminoalkyl, 6-acylaminoalkyl and sulfonylaminoalkyl derivatives, were tested for cytotoxicity, their effects on phytohemagglutin A (PHA)-induced proliferative response of human peripheral blood mononuclear cells (PBMC) and lipopolysac-charide (LPS)-induced tumor necrosis factor alpha (TNF- α) production by these cells. The compounds were tested for growth inhibition of leukemia L-1210 cells, colon cancer activity against these cell lines comparable to that of cisplatin. The structure–activity relationship of the compounds were discussed.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Tricyclic phenothiazines with aminoalkyl substituents at the nitrogen atom are an important class of drugs exhibiting neuroleptic, antihistaminic, antitussive and antiemetic activities [1]. Recent reports describe very promising anticancer and antibacterial activities, reversal of multidrug resistance and possibility of treatment of Alzheimer's, Creutzfeldt-Jakob's and AIDS diseases, not only for classical but also for newly synthesized phenothiazines [2-6]. The modification strategies of the parent phenothiazine structures include two approaches: a) introduction of a new substituent, mainly at the thiazine nitrogen atom at position 10, and rarely at the carbon atom in the benzene ring, and b) substitution of one or two benzene rings with homoaromatic and heteroaromatic rings. The second way enables formation of new heterocyclic ring systems: tri-, tetra- and pentacyclic azaphenothiazines containing one, two, three and even four nitrogen atoms in the aromatic rings [2,3,7–10]. Such phenothiazine structure modifications can change potency and directions of activities of the basic structures.

* Corresponding author. Tel.: +48 32 364 1606; fax: +48 32 364 1600. *E-mail address:* pluta@sum.edu.pl (K. Pluta). In continuation of our search for pharmaceutically active azaphenothiazines, we modified the phenothiazine structure with the pyridine and quinoline rings to form dipyridothiazines, quinobenzothiazines and diquinothiazines [11–15]. Some diquinothiazines exhibited promising anticancer activities against human tumor cell lines deriving from colon, breast, kidney, lung, ovary, prostate, central nervous system, melanoma and leukemia [16]. In addition, 10*H*-dipyridothiazine (10*H*-2,7-diazaphenothiazine) was found to be a universal, low-toxic immunosuppressant, inhibiting both humoral and cellular immune responses [17].

Angularly fused tetracyclic azaphenothiazines with the quinoline moiety, such as substituted quino[3,4-b]benzothiazines and 5alkylquino[3,4-b]benzothiazinium salts, were obtained in an original way from pentacyclic diquinodithiin (thioquinanthrene) and its ammonium salt *via* the dithiin ring opening – the thiazine ring closure reactions or *via* intramolecular cyclization of 1-methyl-4-(arylamino)quinolinium-3-thiolates and (o-phenylthio)enaminoquinolones. Some of these compounds exhibited anticancer and antioxidant activities [11,18–20]. Recently, we elaborated a convenient synthesis of a new type of azaphenothiazines with the quino[3,2-b]benzo[1,4]thiazines, in the reactions of isomeric pentacyclic diquinodithiin **1** or 2,2'-dichloro-3,3'-diquinolinyl disulfide

[☆] Part CXXXV in the series of Azinyl Sulfides.

^{0223-5234/\$ -} see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.ejmech.2013.02.023

(2) with substituted anilines *via* the dithiin ring opening in compound **1** and the disulfide cleavage in compound **2** followed by the thiazine ring closure processes [21].

In this study, we describe and discuss the synthesis and the structure of new 6-substituted 9-X-quino[3,2-b]benzo[1,4]thiazines (X = H, Cl and SCH₃) with three main types of pharmacophoric groups: dialkiloaminoalkyl, acylaminoalkyl and sulfonylaminoalkyl. First we evaluated cytotoxicity of these compounds against human peripheral blood mononuclear cells (PBMC). Next we investigated inhibition of phytohemagglutinin A (PHA)-induced proliferation of PBMC and regulation of lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF- α) production in human whole blood cell cultures. Selected compounds were also used for evaluation of anticancer activities against several tumor cell lines *in vitro*. The same biological activities were also studied for 6-unsubstituted 6*H*-quinobenzothiazines, possessing additional substituents in the benzene ring in positions 8–10. Altogether sixty one variously substituted quinobenzothiazines were tested.

2. Results and discussion

2.1. Chemistry

New azaphenothiazines, 6*H*-quino[3,2-b]benzo[1,4]thiazines, were obtained in a few-step syntheses. The substrates for these syntheses, pentacyclic diquinodithiin **1** and 2,2'-dichloro-3,3'-diquinolinyl disulfide (**2**), were obtained from 3,4-dihydro-2(1*H*)-quinolone with thionyl chloride in DMF [22,23]. The reactions of compounds **1** and **2** with substituted anilines and their hydrochlorides without a solvent or in monomethyl ether of diethylene glycol led to thirteen 8-, 9- and 10-substituted 6*H*-quinobenzothiazines (**3**–**5**) with the hydrogen, chlorine, bromine and fluorine atoms and the methyl, methylthio and trifluoromethyl groups (Scheme 1) [21].

Next we introduced the pharmacophoric substituents in the quinobenzothiazine system at the thiazine nitrogen atom in position 6. We selected diverse *N*,*N*-dialkylaminoalkyl, *N*-acylaminoalkyl and *N*-sulfonylaminoalkyl groups, found in pharmacoactive compounds and anticancer phenothiazines [2,3,16]. As the pattern quinobenzothiazine substrates, we chose 6*H*-quinobenzothiazines **3a**, **3c** and **3f** with the hydrogen and chlorine atoms, and the methylthio group in position 9. The *N*,*N*-dialkylaminoalkyl substituents were introduced in the *N*-alkylation reactions with hydrochlorides of acyclic and cyclic dialkylaminoalkyl chlorides in boiling dioxane in the presence of sodium hydroxide. In this way, eighteen different 6-dialkylaminoalkyl derivatives **6**–**11** were obtained in 73–83% yield (Scheme 2).

Whereas the *N*,*N*-dialkylaminoalkyl substituents were introduced at the nitrogen atom in one step *N*-alkylation, the introduction of two other pharmacophoric substituents required threestep synthesis. 6*H*-quinobenzothiazines **3a**, **3c** and **3f** were alkylated with phthalimidopropyl and phthalimidobutyl bromides in dry toluene in the presence of sodium hydride into the phthalimidoalkyl derivatives **12a**–**f**. Next, these compounds underwent reactions with hydrazine in aqueous ethanol to give six aminoalkyl derivatives **13a**–**f** (alkyl = propyl and butyl) in 70–85% yield (Scheme 3).

Aminoalkylquinobenzothiazines **13a**–**f** were transformed into the *N*-acyl derivatives. The reactions with acetic anhydride, ethyl chloroformate and 2-chloroethyl isocyanate gave six 6-acetylaminoalkylquinobenzothiazines **14a**–**f**, six 6-ethoxycarbonylaminoalkylquinobenzothiazines **15a**–**f** and six 6-chloroethylureidoalkylquinobenzothiazines **16a**–**f** (possessing a half-mustard unit) in 63–91% yield. Aminoalkylquinobenzothiazines **13** were also transformed into the *N*-sulfonyl derivatives. The reactions with methanesulfonyl and *p*-toluenesulfonyl chlorides led to the sulfonamide derivatives: six 6-methanesulfonylaminoalkyl- and six 6*p*-toluenesulfonylaminoalkylquino-benzothiazines **17a**–**f** and **18a**–**f** in 68–81% yield (Scheme 4).

The analysis of the quinobenzothiazine structures was a crucial problem, as the synthesis may run with the Smiles rearrangement or by other unknown processes and may form also 5*H*-tautomers and 5-substituted products. In the reaction with *p*-anilines, other possible isomeric product structures **19–23** were depicted in Scheme 5.

The kind of fusion of the quinoline ring with the thiazine ring. [3,2-b] or [2,3-b], was initially solved using the homonuclear NOE experiment for the *N*-methyl derivative. Irradiation of the methyl protons gave an enhancement of the only one proton signal (the H7 proton) what pointed at the [3,2-b] ring fusion. A discrimination of the isomeric products of the reactions with *m*-anilines as 8- and 10substituted quinobenzothiazines were also initially assigned basing on the coupling constants J_{ortho} and J_{meta} [21]. However, the ¹H NMR analysis did not exclude 7- and 9-substituted quinobenzothiazines as the result of the reverse Smiles rearrangement. Our supposition of the 8- and 10-substituted structures was recently confirmed by X-ray analysis of compound 4c and the benzyl derivative of 5c [24]. The structural problems of the products of the reactions with *p*-anilines were also solved using X-ray analysis of the product **14e** (the reaction with *p*-chloroaniline), possessing strong biological activities (vide infra). X-ray study confirmed the fused quinoline and thiazine system as [3,2-b], the chlorine atom in position 9 and the acetylaminobutyl substituent

Scheme 1. Synthesis if 6H-quinobenzothiazines 3-5 from diquinodithiin 1 and 2,2'-dichloro-3,3'-diquinolinyl disulfide (2).

Scheme 2. Synthesis of 6-dialkylaminoalkylquinobenzothiazines 6-11.

at the thiazine nitrogen atom in position 6 [25]. X-ray analysis excluded definitely structures **19–23** and confirmed that the *N*-alkylation reactions of 6*H*-quinobenzothiazines (**3a**, **3c** and **3f**) with dialkylaminoalkyl and phthalimidoalkyl chlorides occurred at the thiazine nitrogen atom.

2.2. Biological activities

For the biological tests, sixty one quinobenzothiazines were selected being 8–10-substituted 6H-quinobenzothiazines 3–5 and 9-substituted guinobenzothiazines 6-18 with the N,N-dialkylaminoalkyl, N-acetylaminoalkyl, N-etoxycarbonylalkyl, chloroethylureidoalkyl, *N*-methanesulfonylaminoalkyl and N-ptoluenesulfonylaminoalkyl groups in position 6. The tests included the proliferative response of human peripheral blood mononuclear cells induced by phytohemagglutinin A, the cytotoxic effect on human peripheral blood mononuclear cells and lipopolysaccharideinduced production of tumor necrosis factor α . The combined results of the tests are presented in Table 1, which lists only compounds exhibiting low cytotoxicity (less than 20% of toxicity) at 10 µg/mL. Three most promising compounds, selected on the basis of their strong antiproliferative effects, were tested for anticancer activities against leukemia L-1210 cells, epidermal carcinoma A-431 cells and colon carcinoma SV-948 cells (the results shown in Fig. 1).

The proliferation test was performed at the concentrations of 10 and 50 μ g/mL for all compounds (initially at 1 μ g/mL only for selected compounds). Only few compounds were inactive and about twenty compounds were weakly inhibitory. Thirty four compounds exhibited distinct inhibitory activities up to 50% in comparison with the control test, most of them at the concentration of 10 μ g/mL. Out of compounds **3–5**, possessing the hydrogen atom at the thiazine nitrogen atom and selected groups in the benzene ring, compound **3e**, with the fluorine atom in position 9, was found extremely active (100% inhibition at 10 μ g/mL). However, this compound was not included in Table 1 because of its cytotoxicity (see below). Other compounds with the hydrogen, chlorine, bromine and fluorine atoms, and the methyl, methylthio and trifluoromethyl groups exhibited lower activities with at most

25% inhibition at 10 µg/mL. The nature of the substituents and their location in the benzene ring (8-10) did not show strong direct influence on the activity. Compounds 6-11 with the dialkylaminoalkyl groups exhibited extremely strong activities at the concentration of 10 µg/mL, with exception of compound **11a**. There were no differences in the activities between the propylene and butylene linkages and acyclic and cyclic amino groups in compounds 6-11. N-Acylaminoalkyl- and N-sulfonylaminoalkyl derivatives 14-17 exhibited also strong activities but generally lesser than dialkylaminoalkyl derivatives 6-11. The exceptions were chloroethylureidopropyl and chloroethylureidobutyl derivatives 16b. 16c. 16e and 16f which were as strongly active as dialkyaminoalkyl derivatives 6-11. It is of interest that compounds 16a and **16d** with the same chloroethylureidoalkyl groups were much less active what is probably attributed to the weak influence of the hydrogen atom in position 9 in comparison with the chlorine atom or the methylthio group. The kind of the alkyl group (propyl or butyl) had no significant influence on the antiproliferative activity. Only compounds **18a**–**f** with the *p*-toluenesulfonylaminoalkyl groups were less active or inactive even at 50 µg/mL.

As the inhibitory effects of the compounds could be caused by their high cytotoxicity, all the compounds were tested for their effects on peripheral blood mononuclear cells. Generally, inactive and less active compounds were non-toxic. The very strongly antiproliferative compound 3e turned out to be moderately cytotoxic (50% inhibition at 10 μ g/mL). The most strongly antiproliferative dialkylaminoalkyl compounds 6-11 with over 93% inhibition at 10 µg/mL showed also strong cytotoxicity (over 82% inhibition, respectively). Only two compounds 10b and 10c exhibited low cytotoxicity at 10 µg/mL. Similarly, very strongly antiproliferative chloroethylureidoalkyl compounds (16b, 16c, 16e and 16f) and significantly antiproliferative N-acetylaminoalkyl 14, *N*-etoxycarbonylaminoalkyl **15** and *N*-methanesulfonylaminoalkyl 17 compounds did not exhibit toxic effects at the concentration of 10 ug/mL. It is worth noting that some of these compounds (14b. 14c. 14e. 14f. 15a. 15d. 17b. 17c. 17e and 17f) were non-toxic even at the concentration of 50 µg/mL. Some of the compounds, designated as NT, even enhanced survival of the tested PBMC.

Scheme 3. Synthesis of 6-aminoalkylquinobenzothiazines 13.

Scheme 4. Transformations of 6-aminoalkylquinobenzothiazines 13 into N-acyl 14-16 and N-sulfonyl 17-18 derivatives.

The inhibitory effects of the compounds on LPS-induced TNF- α production were tested at the concentration of 5 and 25 µg/mL. Twenty quinobenzothiazines of all types exhibited significant inhibition of at least 50% at 5 µg/mL. The strong suppressive effect (at least 70% inhibition) was observed for nine compounds.

The most promising compounds 14c, 16b and 16f (being strongly antiproliferative and relatively low cytotoxic) were selected for evaluation of anticancer activities against three cancer cell lines. The anticancer activity was tested at the concentrations of $0.1-50 \mu g/mL$ using cisplatin as the reference drug (Fig. 1). All these compounds exhibited the anticancer activities similar to the cisplatin activity at the concentration of $10-50 \mu g/mL$, and in some cases guinobenzothiazines were found even more active (91.8-97.0% inhibition at 10 µg/mL). Compounds 16b and 16f were also more active (96% inhibition) against colon carcinoma SV-948 cells at the concentration of 5 μ g/mL. When evaluating the anticancer effects of the compounds in vitro one has to consider high toxicity [26] and side-effects [27] of cisplatin, the reference drug, used in this study. Cisplatin showed, for example, LD50 (killing of 50% of granulocyte/macrophage progenitor cells) already at 0.9 µg/mL after 1 h of culture and that value was as low as 0.12 μ g/mL for a continuous cell culture [26].

In general, several activity patterns among the studied compounds can be described: i/ **14e**, **16b** which are strongly antiproliferative already at low dose but little inhibitory with regard to TNF- α production, ii/ **16f** with exceptional antiproliferative action at low dose and strong TNF- α inhibition and iii/ **3b**, **4c**, **5c** showing no or little inhibition of proliferation associated with strong inhibition of inducible TNF- α production. It seems, therefore, that the mechanisms of action among the studied derivatives are differential. Motohashi and co-workers found that new anticancer phenothiazines with the chloroethylureidoalkyl and acylaminoalkyl substituents and tetracyclic benzophenothiazines effectively inhibited the Con-A-induced T cell proliferation, slightly but selectively inhibited the antibody-dependent cellular cytotoxicity (ADCC) activity and enhanced the NK cell activity in non-transformed cells. The effects of these compounds on cancer cell growth and differentiation varied depending on the cell growth and differentiation stages. Only a few benzophenothiazines induced nucleosome-size DNA fragmentation. Other benzophenothiazines, classical neuroleptic phenothiazines and chloroethylureidoalkylphenothiazines did not act in this way. The last compounds were supposed to act on the cancer cells via alkylurea induced alkylation of proteins or on DNA by a particular intercalation [2,28-30]. As our quinobenzothiazines have structures close to the Motohashi's phenothiazines their cytotoxic activities probably are induced by the same mechanisms. The X-ray study of compound 14e revealed unexpectedly planar tetracyclic ring system [25], what may suggest its mechanism of the antiproliferative effect by DNA intercalation for this type of phenothiazines.

Scheme 5. Other possible structures of quinobenzothiazines.

Table 1

Activities of the compounds in selected immunological assays. The table shows: the degree of cytotoxicity against PBMC of the selected compounds – exhibiting low cytotoxicity (less than 20% of toxicity) at 10 μ g/mL or being non toxic (NT), effects on phytohemagglutin A (PHA)-induced proliferative response of human peripheral blood mononuclear cells and lipopolysaccharide-induced TNF-alpha production by these cells. The results are given in percentage inhibition as compared with appropriate DMSO controls. Positive values denote inhibition, negative stimulation.

No.	Cytotoxicity		Antiproliferative activity		TNF-α		No.	Cytotoxicity		Antiproliferative activity		TNF-α	
	10 µg/mL	50 µg/mL	10 µg/mL	50 µg/mL	5 μg/mL	25 µg/mL		10 µg/mL	50 µg/mL	10 µg/mL	50 μg/mL	5 μg/mL	25 µg/mL
3a	NT	NT	7.1	14.4	25.6	16.1	15c	NT	NT	45.4	38.8	74.9	70.1
3b	2.4	15.4	-17.9	-6.2	54.1	66.6	15d	NT	NT	73.9	83.7	0.2	12.3
3c	NT	NT	-0.3	5.7	2.0	9.6	15e	NT	NT	-0.7	-12.0	13.2	8.41
3d	NT	NT	-9.7	19.0	16.2	10.1	15f	NT	NT	44.3	27.8	50.9	33.1
3f	NT	NT	0.0	2.9	22.5	19.2	16a	8.5	NT	11.2	77.9	14.6	5.0
3g	NT	NT	24.9	61.0	51.1	-5.6	16b	15.9	89.5	98.6	100.0	9.2	72.1
4 a	NT	NT	16.3	27.1	-1.2	19.2	16c	NT	92.7	93.0	93.7	50.7	1.0
4b	NT	NT	4.3	20.6	11.2	-25.0	16d	7.9	NT	16.6	88.7	-1.8	4.3
4c	NT	21.5	21.7	0.3	72.3	48.8	16e	19.2	86.3	98.4	94.6	54.8	56.0
5a	NT	13.0	10.7	10.8	17.0	4.6	16f	4.2	95.1	94.8	92.7	73.3	47.5
5b	NT	NT	0.1	16.4	13.6	8.4	17a	NT	NT	36.6	74.6	8.1	60.6
5c	5.0	NT	2.3	13.6	74.9	-2.6	17b	NT	NT	73.4	74.4	1.2	30.5
10b	19.2	83.8	96.3	98.2	-70.5	56.7	17c	NT	NT	57.3	65.4	73.7	47.5
10c	18	91.7	93.8	92	49.2	34.6	17d	NT	NT	42.3	94.3	14.0	42.3
11a	NT	4.5	-23.5	39.8	49.1	62.4	17e	NT	NT	59.4	43.9	-7.5	24.5
14a	NT	91.9	68.7	92.4	-0.4	32.2	17f	NT	NT	53.3	62.7	72.8	13.2
14b	NT	NT	50.8	58.3	11.4	60.6	18a	NT	NT	6.6	-0.8	3.8	15.6
14c	NT	NT	72.5	68.8	71.7	64.5	18b	NT	NT	12.9	22.7	5.9	20.9
14d	NT	NT	72.7	94.3	0.0	20.2	18c	NT	NT	-5.3	-46.4	72.1	20.8
14e	NT	NT	71.2	92.6	13.2	53.4	18d	NT	NT	3.3	2.4	15.8	12.5
14f	NT	7.9	54.7	42.0	46.8	60.4	18e	NT	NT	13.2	19.8	20.7	-12.7
15a	NT	NT	69.7	88.4	7.7	14.1	18f	NT	NT	-5.0	-34.7	70.4	37.5
15b	NT	NT	45.0	60.4	10.3	31.7							

3. Conclusion

We report here a few step synthesis of sixty novel tetracyclic 9substituted 6-aminoalkylquinobenzothiazines. The kind of the aminoalkyl substituent at the thiazine nitrogen atom such as dialkylaminoalkyl, acylaminoalkyl, sulfonylaminoalkyl, played a crucial role in the antiproliferative and anticancer activities. The additional substituent in the benzene ring (for example the chlorine and fluorine atoms and the methylthio group) enhanced the activities in comparison with the hydrogen atom. The 9-fluoroquinobenzothiazine ring system was a significant pharmacophoric unit, as compound 3e without any aminoalkyl groups at the thiazine nitrogen atom, exhibited strong antiproliferative activity. The most active compounds 14e, 16b and 16f possessed the acetylaminobutyl, chlororoethylureidopropyl and chlororoethylureidobutyl groups and exhibited activities comparable to that of cisplatin. A combination of the guinobenzothiazine system and two kinds of substituents (the aminoalkyl at the thiazine nitrogen atom and some simple groups in the benzene ring) is a useful starting point for further study to found more potent anticancer agents and their mechanism of action.

4. Experimental

4.1. General techniques

Melting points were determined in open capillary tubes on a Boetius melting point apparatus and were uncorrected. The NMR spectra were recorded on Bruker DRX and Bruker Fourier 300 spectrometers (¹H at 500 MHz, ¹³C at 125 and 75 MHz) in CDCl₃ or DMSO- d_6 . Fast Atom Bombardment (FAB MS) mass spectra were run on a Finnigan MAT 95 spectrometer at 70 eV.

4.2. Chemistry

4.2.1. Synthesis of substrates 1, 2 and 6H-quinobenzothiazines 3–5 Diquino-1,4-dithiin 1 and 2,2'-dichloro-3,3'-diquinolinyl disulfide (2) were obtained according to the described procedures. 8– 10-Substituted 6*H*-quinobenzothiazines 3a-g, 4a-c and 5a-c were obtained as in the described synthesis from dithiin 1 and disulfide 2 with *p*- and *m*-substituted anilines [21].

4.2.2. Synthesis of 9-substituted 6-dialkylaminoalkylquinobenzothiazines 6–11

A mixture of 6*H*-quinobenzothiazine **3a** (0.13 g, 0.5 mmol) [or 9chloro-6*H*-quinobenzothiazine **3c** (0.14 g, 0.5 mmol) or 9methylthio-6*H*-quinobenzothiazine **3f** (0.15 g, 0.5 mmol)], sodium hydroxide (0.30 g, 7.5 mmol) and hydrochloride of dialkylaminoalkyl chloride (1.5 mmol, 2-diethylaminoethyl – 0.26 g, 3dimethylaminopropyl – 0.24 g, 3-dimethylamino-2-methylpropyl – 0.26 g, 2-(1-pyrrolidyl)ethyl – 0.26 g, 2-(1-piperidyl)ethyl – 0.28 g, 2-(1-methyl-2-piperydinyl)ethyl – 0.30 g) in dry dioxane (5 mL) was refluxed for 3 h. After cooling the reaction mixture was poured into water (25 mL) and extracted with chloroform (3 × 10 mL). The combined extracts were washed with water to pH = 7 and dried over Na₂SO₄. Chloroform was evaporated *in vacuo* and the residue was purified by column chromatography (Al₂O₃, CHCl₃) to give compounds **6–11**.

4.2.2.1. 6-(2-Diethylaminoethyl)quinobenzothiazine (**6a**). (0.13 g, 74%), an oil. ¹H NMR (CDCl₃) δ : 1.17 (t, 6H, 2CH₃), 2.73 (m, 4H, 2CH₂), 2.95 (t, 2H, CH₂), 4.23 (m, 2H, NCH₂), 6.89 (t, 1H, H-9), 7.03 (2d, 2H, H-7, H-10), 7.14 (t, 1H, H-8), 7.23 (t, 1H, H-2), 7.46 (m, 2H, H-1, H-3), 7.54 (s, 1H, H-12), 7.67 (d, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 12.14, 44.60, 47.82, 48.48, 112.09, 115.56, 118.32, 119.86, 122.49, 124.07, 126.09, 126.67, 127.25, 127.68, 128.98, 131.29, 141.44, 145.78, 151.77. FAB MS *m/z*: 350 (M + 1, 100), 277 [M +1 - NH(C₂H₅)₂, 58], 250 [M + 1 - C₂H₄N(C₂H₂)₂, 50]. Anal. calcd. for C₂₁H₂₃N₃S: C 72.17, H 6.63, N 12.02, S 9.17. Found: C 72.01, H 6.75, N 11.87, S 9.01.

4.2.2.2. 6-(2-Diethylaminoethyl)-9-chloroquinobenzothiazine (**6b**). (0.15 g, 78%), m.p. 74–75 °C. ¹H NMR (CDCl₃) δ : 1.17 (t, 6H, 2CH₃), 2.74 (m, 4H, 2CH₂), 2.94 (t, 2H, CH₂), 4.31 (m, 2H, NCH₂), 6.97 (d, 1H, H-7), 7.03 (d, 1H, H-10), 7.10 (dd, 1H, H-8), 7.25 (t, 1H, H-2), 7.48 (t, 1H, H-3), 7.49 (d, 1H, H-1), 7.57 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB

Fig. 1. The anticancer activities of selected compounds at concentrations of $0.1-50 \mu g/mL$. A-431, L-1210 and SW-948 cell lines were used in the study. The results are presented as the mean optical density \pm SE (*p < 0.001, #p < 0.05).

MS m/z: 384 (M + 1, 82), 311 [M + 1 - NH(C₂H₅)₂, 100], 284 [(M + 1 - C₂H₄N(C₂H₂)₂, 30]. Anal. calcd. for C₂₁H₂₂ClN₃S: C 65.70, H 5.78, N 10.94. Found: C 65.48, H 5.71, N 10.78.

4.2.2.3. 6-(2-Diethylaminoethyl)-9-methylthioquinobenzothiazine (**6c**). (0.16 g, 81%), m.p. 48–49 °C. ¹H NMR (CDCl₃) δ : 1.18 (t, 6H, 2CH₃), 2.44 (s, 3H, CH₃), 2.75 (m, 4H, 2CH₂), 2.95 (m, 2H, CH₂), 4.32 (m, 2H, NCH₂), 6.98 (m, 2H, H-7, H-10), 7.07 (d, 1H, H-8), 7.23 (t, 1H, H-2), 7.46 (m, 2H, H-1, H-3), 7.55 (s, 1H, H-12), 7.66 (d, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 12.13, 17.10, 44.64, 47.81, 48.55, 115.95, 117.86, 120.81, 124.11, 125.76, 125.97, 126.10, 127.22, 127.24, 129.09, 131.45, 131.55, 139.38, 145.78, 151.55. FAB MS *m*/*z*: 396 (M + 1, 100), 380 (M + 1 - CH₃), 323 (M + 1 - N(C₂H₅)₂, 90), 310 [M + 1 - CH₂N(C₂H₅)₂, 15], 296 [M + 1 - C₂H₄N(C₂H₅)₂, 30]. Anal. calcd. for C₂₂H₂₅N₃S₂: C 66.80, H 6.37, N 10.62. Found: C 66.62, H 6.39, N 10.38.

4.2.2.4. 6-(3-Dimethylaminopropyl)quinobenzothiazine (7a). (0.13 g, 78%), m.p. 65–66 °C. ¹H NMR (CDCl₃) δ : 2.08 (m, 2H, CH₂), 2.30 (s, 6H, 2CH₃), 2.49 (m, 2H, CH₂), 4.26 (t, 2H, NCH₂), 6.96 (t, 1H, H-9), 6.89 (d, 1H, H-7), 7.07 (d, 1H, H-10), 7.15 (t, 1H, H-8), 7.24 (t, 1H, H-2), 7.48 (t, 1H, H-3), 7.49 (d, 1H, H-1), 7.59 (s, 1H, H-12) 7.69 (d, 1H, H-4). ¹³C NMR (125 MHz, CDCl₃) δ : 24.38, 43.93, 45.51, 57.43, 115.77, 118.70, 120.36, 122.56, 124.09, 126.03, 126.14, 126.81, 127.33, 127.69, 129.01, 131.58, 141.50, 145.79, 152.38. FAB MS *m*/*z*: 336 (M + 1, 100), 291 [M + 1 - NH(CH₃)₂, 52], 250 [M + 1 - C₃H₆NH(CH₃)₂, 28]. Anal. calcd. for C₂₀H₂₁N₃S: C 71.61, H 6.61, N 12.53. Found: C 71.40, H 6.69, N 12.28.

4.2.2.5. 6-(3-Dimethylaminopropyl)-9-chloroquinobenzothiazine (**7b**). (0.15 g, 81%), an oil. ¹H NMR (CDCl₃) δ : 2.09 (m, 2H, CH₂), 2.36 (s, 6H, 2CH₃), 2.57 (m, 2H, CH₂), 4.25 (t, 2H, CH₂), 6.82 (d, 1H, H-7), 7.06 (d, 1H, H-10), 7.11 (dd, 1H, H-8), 7.27 (t, 1H, H-2), 7.50 (t, 1H, H-3), 7.51 (s, 1H, H-1), 7.61 (s, 1H, H-12), 7.69 (d, 1H, H-4). FAB MS *m/z*: 370 (M + 1, 100), 325 [M + 1 - NH(CH₃)₂, 51], 298 [M + 1 - C₂H₄NH(CH₃)₂, 20], 284 [M + 1 - C₃H₆NH(CH₃)₂, 18]. Anal. calcd. for C₂₀H₂₀ClN₃S: C 64.94, H 5.45, N 11.36. Found: C 64.81, H 5.40, N 11.08.

4.2.2.6. 6-(3-Dimethylaminopropyl)-9-methylthioquinobenzothiazine (**7c**). (0.15 g, 79%), m.p. 55–56 °C. ¹H NMR (CDCl₃) δ : 2.18 (m, 2H, CH₂), 2.45 (s, 9H, 3CH₃), 2.72 (m, 2H, CH₂), 4.27 (m, 2H, NCH₂), 6.90 (d, 1H, H-7), 7.02 (d, 1H, H-10), 7.08 (d, 1H, H-8), 7.25 (t, 1H, H-2), 7.49 (t, 1H, H-3), 7.50 (s, 1H, H-1), 7.61 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS *m/z*: 382 (M + 1, 100), 337 [M - N(CH₃)₂, 95], 309 [M - C₂H₄N(CH₃)₂, 35], 296 [M + 1 - C₃H₆N(CH₃)₂, 35]. Anal. calcd. for C₂₁H₂₃N₃S₂: C 66.11, H 6.08, N 11.01. Found: C 66.00, H 6.011, N 10.87.

4.2.2.7. 6-(3-Dimethylamino-2-methylpropyl)quinobenzothiazine (**8a**). (0.13 g, 74%), an oil. ¹H NMR (CDCl₃) δ : 0.99 (t, 3H, CH₃), 2.20 (m, 1H, CH₂), 2.26 (s, 6H, 2CH₃), 2.27 (m, 1H, CH), 2.35 (m, 1H, CH₂), 4.35 (m, 2H, NCH₂), 6.95 (t, 1H, H-9), 7.07 (d, 1H, H-7), 7.14 (d, 1H, H-10), 7.19 (t, 1H, H-8), 7.27 (t, 1H, H-2), 7.50 (t, 1H, H-3), 7.53 (d, 1H, H-1), 7.68 (s, 1H, H-12), 7.73 (d, 1H, H-4). FAB MS *m*/*z*: 350 (M + 1, 100), 305 [M + 1 - NH(CH₃)₂, 62], 363 [M + 1 - C₃H₇N(CH₃)₂, 36], 250 [M + 1 - C₄H₈N(CH₃)₂, 24]. Anal. calcd. for C₂₀H₂₁N₃S: C 71.61, H 6.61, N 12.53. Found: C 71.35, H 6.71, N 12.31.

4.2.2.8. 6-(3-Dimethylamino-2-methylpropyl)-9-chloroquinobenzothiazine (**8b**). (0.15 g, 78%), an oil. ¹H NMR (CDCl₃) δ : 0.98 (d, 3H, CH₃), 2.20 (m, 1H, CH₂), 2.26 (s, 6H, 2CH₃), 2.28 (m, 1H, CH), 2.33 (m, 1H, CH₂), 4.35 (m, 2H, NCH₂), 6.98 (d, 1H, H-7), 7.13 (d, 1H, H-10), 7.14 (dd, 1H, H-8), 7.26 (t, 1H, H-2), 7.52 (t, 1H, H-3), 7.54 (d, 1H, H-1), 7.68 (s, 1H, H-12), 7.72 (d, 1H, H-4). FAB MS *m/z*: 384 (M + 1, 100), 339 [M + 1 - NH(CH₃)₂, 78], 297 [M + 1 - C₃H₇N(CH₃)₂, 35], 284 $[M+1-C_4H_8N(CH_3)_2,22].$ Anal. calcd. for $C_{21}H_{22}CIN_3S;$ C 65.70, H 5.78, N 10.94. Found: C 65.41, H 5.70, N 10.71.

4.2.2.9. 6-(3-Dimethylamino-2-methylpropyl)-9-methylthioquinobenzothiazine (**8c**). (0.15 g, 76%), an oil. ¹H NMR (CDCl₃) δ : 1.02 (d, 3H, CH₃), 2.30 (s, 6H, 2CH₃), 2.46 (s, 3H, CH₃), 4.31 (m, 5H, 2CH₂, CH), 7.04 (d, 1H, H-7), 7.07 (d, 1H, H-10), 7.10 (d, 1H, H-8), 7.26 (t, 1H, H-2), 7.52 (t, 1H, H-3), 7.53 (d, 1H, H-1), 7.68 (s, 1H, H-12), 7.70 (d, 1H, H-4). FAB MS *m*/*z*: 396 (M + 1, 95), 351 (M - N(CH₃)₂, 100), 309 [M - C₃H₇N(CH₃)₂, 60], 296 [M + 1 - C₄H₈N(CH₃)₂, 30]. Anal. calcd. for C₂₂H₂₅N₃S₂: C 66.80, H 6.37, N 10.62. Found: C 66.65, H 6.32, N 10.35.

4.2.2.10. 6-(1-Pyrrolidylethyl)quinobenzothiazine (**9a** $). (0.14 g, 82%), m.p. 68–69 °C. ¹H NMR (CDCl₃) <math>\delta$: 1.88 (m, 4H, 2CH₂), 2.80 (m, 4H, 2CH₂), 3.04 (m, 2H, CH₂), 4.46 (m, 2H, NCH₂), 6.90 (t, 1H, H-9), 7.06 (2d, 2H, H-7, H-10), 7.15 (t, 1H, H-8), 7.24 (t, 1H, H-2), 7.47 (m, 2H, H-1, H-3), 7.57 (s, 1H, H-12), 7.68 (m, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 23.55, 44.62, 52.12, 54.50, 115.71, 118.43, 120.00, 122.58, 124.14, 126.08, 126.73, 127.31, 127.73, 129.00, 131.47, 141.35, 145.71, 151.93. FAB MS *m/z*: 348 (M + 1, 52), 277 (M + 1 – C₄H₉N, 100), 250 (M + 1 – C₂H₄NC₄H₈, 28). Anal. calcd. for C₂₁H₂₁N₃S: C 72.59, H 6.09, N 12.09. Found: C 72.41, H 6.14, N 11.89.

4.2.2.11. 6-(1-Pyrrolidylethyl)-9-chloroquinobenzothiazine (**9b**). (0.15 g, 79%), m.p. 68–69 °C. ¹H NMR (CDCl₃) δ : 1.96 (m, 4H, 2CH₂), 2.95 (m, 4H, 2CH₂), 3.15 (m, 2H, CH₂), 4.51 (m, 2H, NCH₂), 6.04 (m, 2H, H-7, H-10), 7.13 (d, 1H, H-8), 7.28 (t, 1H, H-2), 7.50 (t, 1H, H-3), 7.51 (d, 1H, H-1), 7.61 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS *m*/*z*: 382 (M + 1, 76), 311 (M + 1 - HNC₄H₈, 100), 284 (M + 1 - C₂H₄NC₅H₁₀, 15). Anal. calcd. for C₂₁H₂₀ClN₃S: C 66.04, H 5.28, N 11.00. Found: C 65.88, H 5.31, N 10.81.

4.2.2.12. 6-(1-Pyrrolidylethyl)-methylthioquinobenzothiazine (**9c**). (0.15 g, 76%), m.p. 90–91 °C. ¹H NMR (CDCl₃) δ : 1.93 (m, 4H, 2CH₂), 2.45 (s, 3H, SCH₃), 1.74 (m, 4H, 2CH₂), 2.88 (m, 4H, 2CH₂), 3.09 (m, 2H, CH₂), 4.49 (m, 2H, NCH₂), 7.00 (d, 1H, H-7), 7.05 (d, 1H, H-10), 7.09 (d, 1H, H-8), 7.26 (t, 1H, H-2), 7.49 (t, 1H, H-3), 7.50 (d, 1H, H-1), 7.59 (s, 1H, H-12), 7.68 (d, 1H, H-4). FAB MS *m*/*z*: 394 (M + 1, 100), 323 (M - NC₄H₈, 90), 309 [M - CH₂N(CH₂)₄, 10], 296 [M + 1 - C₂H₄N(CH₂)₄, 30]. Anal. calcd. for C₂₂H₂₃N₃S₂: C 67.14, H 5.89, N 10.68. Found: C 66.95, H 5.91, N 10.42.

4.2.2.13. 6-(1-Piperidylethyl)quinobenzothiazine (10a). (0.15 g, 83%), m.p. 71–72 °C. ¹H NMR (CDCl₃) δ : 1.58 (m, 2H, CH₂), 1.87 (m, 4H, 2CH₂), 2.90 (m, 4H, 2CH₂), 3.13 (m, 2H, CH₂), 4.60 (m, 2H, NCH₂), 6.92 (t, 1H, H-9), 7.07 (d, 1H, H-7), 7.21 (d + t, 2H, H-8, H-10), 7.26 (t, 1H, H-2), 7.46 (m, 2H, H-1, H-3), 7.59 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS *m*/*z*: 362 (M + 1, 100), 277 (M + 1 - C₅H₁₁N, 55), 250 (M + 1 - C₂H₄NC₅H₁₀, 21). Anal. calcd. for C₂₂H₂₃N₃S: C 73.10, H 6.41, N 11.62. Found: C 73.02, H 6.29, N 11.37.

4.2.2.14. 6-(1-Piperidylethyl)-9-chloroquinobenzothiazine (**10b**). (0.16 g, 81%), m.p. 93–94 °C. ¹H NMR (CDCl₃) δ : 1.53 (m, 2H, CH₂), 1.74 (m, 4H, 2CH₂), 2.67 (m, 4H, 2CH₂), 2.92 (m, 2H, CH₂), 4.45 (m, 2H, NCH₂), 7.04 (d, 1H, H-7), 7.12 (m, 2H, H-8, H-10), 7.27 (t, 1H, H-2), 7.49 (t, 1H, H-3), 7.50 (d, 1H, H-1), 7.59 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS *m/z*: 396 (M + 1, 32), 311 (M + 1 - HNC₅H₁₀, 100), 284 (M + 1 - C₂H₄NC₅H₁₀, 21). Anal. calcd. for C₂₂H₂₂ClN₃S: C 66.74, H 5.60, N 10.61. Found: C 66.49, H 5.64, N 10.36.

4.2.2.15. 6-(1-Piperidylethyl)-9-methylthioquinobenzothiazine (**10c**). (0.16 g, 79%), m.p. 59–60 °C. ¹H NMR (CDCl₃) δ: 1.66 (m, 2H, CH₂), 1.70 (m, 6H, 3CH₂), 2.44 (s, 3H, CH₃), 2.59 (m, 2H, CH₂), 2.88 (m, 2H, CH₂), 4.41 (m, 2H, NCH₂), 6.99 (d, 1H, H-7), 7.03 (d, 1H, H-10), 7.08 (dd, 1H, H-8), 7.24 (t, 1H, H-2), 7.48 (t, 1H, H-3), 7.49 (d, 1H, H-1), 7.57 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS m/z: 408 (M + 1, 100), 323 (M + 1 - HNC₅H₁₀, 10), 284 (M + 1 - C₂H₄NC₅H₁₀, 20). Anal. calcd. for C₂₃H₂₅N₃S₂: C 67.78, H 6.18, N 10.31. Found: C 67.40, H 6.21, N 10.09.

4.2.2.16. 6-(1-Methyl-2-piperidylethyl)quinobenzothiazine (**11a**). (0.15 g, 80%), m.p. 109–110 °C. ¹H NMR (CDCl₃) δ : 1.43 (m, 4H, 2CH₂), 1.83 (m, 2H, CH₂), 2.21 (m, 4H, 2CH₂), 2.44 (s, 3H, CH₃), 2.88 (m, 1H, CH), 4.18 (m, 1H, NCH₂), 4.30 (m, 1H, NCH₂), 6.89 (t, 1H, H-9), 6.93 (d, 1H, H-7), 7.05 (d, 1H, H-10), 7.14 (t, 1H, H-8), 7.23 (t, 1H, H-2), 7.47 (m, 2H, H-1, H-3), 7.57 (s, 1H, H-12), 7.66 (m, 1H, H-4). FAB MS *m*/*z*: 376 (M + 1, 100), 277 (M + 1 - C₅H₁₀NCH₃, 19), 263 (M + 1 - C₆H₁₂NCH₃, 48), 250 (M + 1 - C₂H₄NC₅H₉CH₃, 37). Anal. calcd. for C₂₃H₂₅N₃S: C 73.56, H 6.71, N 11.19. Found: C 73.44, H 6.70, N 11.02.

4.2.2.17. 6-(1-Methyl-2-piperidylethyl)-9-chloroquinobenzothiazine(**11b**). (0.15 g, 73%), m.p. 139–140 °C. ¹H NMR (CDCl₃) δ : 1.51 (m, 2H, CH₂), 1.92 (m, 8H, 4CH₂), 2.66 (s, 3H, CH₃), 3.16 (m, 1H, CH), 4.31 (m, 2H, NCH₂), 6.93 (d, 1H, H-7), 7.12 (d, 1H, H-10), 7.18 (d, 1H, H-8), 7.33 (t, 1H, H-2), 7.55 (t, 1H, H-3), 7.57 (d, 1H, H-1), 7.67 (s, 1H, H-12), 7.69 (d, 1H, H-4). FAB MS *m/z*: 410 (M + 1, 100), 311 (M + 1 - C₅H₁₀NCH₃, 26), 297 (M + 1 - C₆H₁₂NCH₃, 60), 284 (M + 1 - C₂H₄C₅H₉NCH₃, 49). Anal. calcd. for C₂₃H₂₄ClN₃S: C 67.38, H 5.90, N 10.25. Found: C 67.19, H 5.88, N 10.02.

4.2.2.18. 6-(1-Methyl-2-piperidylethyl)-9-methylthioquinobenzothiazine (**11c**). (0.17 g, 81%), m.p. 129–130 °C. ¹H NMR (CDCl₃) δ : 1.40 (m, 2H, CH₂), 1.72 (m, 4H, 2CH₂), 1.84 (m, 2H, CH₂), 2.17 (m, 2H, CH₂), 2.41 (s, 3H, SCH₃), 2.53 (s, 3H, NCH₃), 3.02 (m, 1H, CH), 4.24 (m, 2H, NCH₂), 6.87 (d, 1H, H-7), 7.00 (d, 1H, H-10), 7.09 (d, 1H, H-8), 7.25 (t, 1H, H-2), 7.48 (t, 1H, H-3), 7.49 (d, 1H, H-1), 7.59 (s, 1H, H-12), 7.64 (d, 1H, H-4). FAB MS *m*/*z*: 422 (M + 1, 100), 309 [M + 1 - CHN(CH₃) C₅H₉, 15], 296 [M + 1 - (CH₂)₂NCH₃C₅H₉, 15]. Anal. calcd. for C₂₄H₂₇N₃S₂: C 68.37, H 6.45, N 9.97. Found: C 68.14, H 6.47, N 9.73.

4.2.3. Synthesis of 9-substituted 6-phthalimidoalkylquinobenzothiazines **12**

To a stirred solution of 6*H*-quinobenzothiazine **3a** (0.25 g, 1 mmol) [or 9-chloro-6*H*-quinobenzothiazine **3c** (0.28 g, 1 mmol) or 9-methylthio-6*H*-quinobenzothiazine **3f** (0.30 g, 1 mmol)] in dry toluene (10 mL) NaH (0.24 g, 10 mmol, washed out with hexane) was added. The mixture was refluxed for 30 min and a solution of *N*-(bromoalkyl)phthalimide [2.2 mmol, *N*-(3-bromopropyl)phthalimide – 0.60 g, *N*-(4-bromobutyl)phthalimide – 0.62 g] in dry toluene (5 mL) was added. The mixture was refluxed for 24 h. Next toluene was evaporated *in vacuo* and the residue was extracted with CHCl₃ (2 × 5 mL). The extract was concentrated and purified by column chromatography (silica gel, CHCl₃) to give compounds **12**.

4.2.3.1. 6-Phthalimidopropylquinobenzothiazine (**12a**). (0.39 g, 89%), m.p. 104–105 °C. ¹H NMR (CDCl₃) δ : 2.34 (m, 2H, CH₂), 3.94 (t, 2H, NCH₂), 4.32 (t, 2H, NCH₂), 6.90 (m, 1H, H-7), 6.92 (m, 1H, H-9), 7.05 (d, 1H, H-10), 7.14 (t, 1H, H-8), 7.22 (t, 1H, H-2), 7.42 (t, 1H, H-3), 7.46 (d, 1H, H-1), 7.55 (m, 2H, H-4, H-12), 7.66 (m, 2H, 2H_{phthal}), 7.77 (m, 2H, 2H_{phthal}). FAB MS *m*/*z*: 438 (M + 1, 100), 437 (M⁺, 65), 250 (M - C₁₁H₉O₂N, 30). Anal. calcd. for C₂₆H₁₉N₃O₂S: C 71.38, H 4.38, N 9.60. Found: C 71.23, H 4.35, N 9.43.

4.2.3.2. 9-Chloro-6-phthalimidopropylquinobenzothiazine (12b). (0.40 g, 85%), m.p. 161–162 °C. ¹H NMR (CDCl₃) δ : 2.30 (m, 2H, CH₂), 3.91 (t, 2H, NCH₂), 4.35 (t, 2H, NCH₂), 6.84 (m, 1H, H-7), 7.05

(d, 1H, H-10), 7.12 (dd, 1H, H-8), 7.28 (t, 1H, H-2), 7.47 (t, 1H, H-3), 7.50 (d, 1H, H-1), 7.62 (s, 1H, H-12), 7.67 (m, 3H, H-4, 2H_{phthal.}), 7.75 (m, 2H, 2H_{phthal.}). ¹³C NMR (75 MHz, CDCl₃) δ : 25.34, 35.97, 42.81, 116.28, 117.79, 122.49, 123.13, 124.34, 125.90, 126.12, 126.33, 127.38, 127.68, 129.22, 131.92, 132.04, 133.87, 139.98, 145.54, 151.73, 168.33. FAB MS *m*/*z*: 472 (M + 1, 100), 311 (M - C₉H₆O₂N, 20), 297 (M - C₁₀H₈O₂N, 20), 284 (M + 1 - C₁₁H₁₀O₂N, 30). Anal. calcd. for C₂₆H₁₈ClN₃O₂S: C 66.17, H 3.84, N 8.90. Found: C 66.01, H 3.88, N 8.69.

4.2.3.3. 9-*Methylthio*-6-*phthalimidopropylquinobenzothiazine* (**12c**). (0.42 g, 87%), m.p. 141–142 °C. ¹H NMR (CDCl₃) δ : 2.27 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.85 (t, 2H, NCH₂), 4.56 (m, 2H, NCH₂), 6.97 (d, 1H, H-7), 7.02 (d, 1H, H-10), 7.12 (dd, 1H, H-8), 7.38 (t, 1H, H-2), 7.57 (t, 1H, H-3), 7.58 (d, 1H, H-1), 7.63 (m, 2H, 2H_{phthal}), 7.69 (m, 3H, H-12, 2H_{phthal}), 7.80 (d, 1H, H-4). FAB MS *m/z*: 484 (M + 1, 100), 296 (M - C₃H₆C₈H₄O₂ N, 10). Anal. calcd. for C₂₇H₂₁N₃O₂S₂: C 67.06, H 4.38, N 8.69. Found: C 66.91, H 4.36, N 8.45.

4.2.3.4. 6-Phthalimidobutylquinobenzothiazine (**12d**). (0.40 g, 89%), m.p. 111–112 °C. ¹H NMR (CDCl₃) δ : 1.92 (m, 4H, 2CH₂), 3.78 (t, 2H, CH₂), 4.28 (t, 2H, NCH₂), 6.88 (t, 1H, H-9), 6.90 (d, 1H, H-7), 7.05 (d, 1H, H-10), 7.13 (t, 1H, H-8), 7.22 (t, 1H, H-2), 7.44 (t, 1H, H-3), 7.47 (d, 1H, H-1), 7.58 (s, 1H, H-12), 7.63 (d, 1H, H-4), 7.69 (m, 2H, 2H_{phthal}), 7.81 (m, 2H, 2H_{phthal}). FAB MS *m*/*z*: 452 (M + 1, 100), 263 (M + 1 - C₃H₆NO₂C₈H₄, 20), 250 (M - C₁₂H₁₂O₂N, 50). Anal. calcd. for C₂₇H₂₁N₃O₂S: C 71.82, H 4.69, N 9.31. Found: C 71.60, H 4.67, N 9.08.

4.2.3.5. 9-Chloro-6-phthalimidobutylquinobenzothiazine (12e). (0.42 g, 88%), m.p. 139–140 °C. ¹H NMR (CDCl₃) δ : 1.90 (m, 4H, 2CH₂), 3.77 (m, 2H, NCH₂), 4.28 (m, 2H, NCH₂), 6.80 (d, 1H, H-7), 7.01 (d, 1H, H-10), 7.08 (dd, 1H, H-8), 7.25 (m, 1H, H-2), 7.46 (d, 1H, H-1), 7.48 (t, 1H, H-3), 7.61 (s, 1H, H-12), 7.70 (m, 3H, H-4, 2H_{phthal}), 7.81 (m, 2H, 2H_{phthal}). FAB MS *m*/*z*: 486 (M + 1, 100), 284 (M – C₁₂H₁₂O₂N, 30). Anal. calcd. for C₂₇H₂₀ClN₃O₂S: C 66.73, H 4.15, N 8.65. Found: C 66.59, H 4.17, N 8.51.

4.2.3.6. 9-*Methylthio*-6-*phthalimidobutylquinobenzothiazine* (**12***f*). (0.43 g, 87%), m.p. 118–119 °C. ¹H NMR (CDCl₃) δ : 2.27 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.85 (t, 2H, NCH₂), 4.56 (m, 2H, NCH₂), 6.97 (d, 1H, H-7), 7.02 (d, 1H, H-10), 7.12 (dd, 1H, H-8), 7.38 (t, 1H, H-2), 7.57 (t, 1H, H-3), 7.58 (d, 1H, H-1), 7.63 (m, 2H, 2H_{phthal}), 7.69 (m, 3H, H-12, 2H_{phthal}), 7.80 (d, 1H, H-4). FAB MS *m*/*z*: 484 (M + 1, 100), 296 (M - C₃H₆C₈H₄O₂ N, 10). Anal. calcd. for C₂₇H₂₁N₃O₂S: C 67.58, H 4.66, N 8.44. Found: C 67.51, H 4.63, N 8.29.

4.2.4. Synthesis of 9-substituted 6-aminoalkylquinobenzothiazines 13

To a boiling solution of 6-phthalimidoalkylquinobenzothiazines **12a**–**f** (1 mmol) in EtOH (25 mL) 80% aqueous solution of hydrazine (0.2 mL, 5 mmol) was added. The mixture was refluxed for 2 h. After cooling the reaction mixture was acidified to pH = 2 with conc. hydrochloric acid and evaporated. Water (10 mL) was added to the residue, the resulting solid was filtered off and washed with 10% hydrochloric acid. Combined filtrates were alkalized to pH = 10 and the resulted solid was filtered off, washed with water, dried and purified by column chromatography (SiO₂, CHCl₃–EtOH 10:1) to give compounds **13**.

4.2.4.1. 6-Aminopropylquinobenzothiazine (**13a**). (0.25 g, 81%), m.p. 142–143 °C. ¹H NMR (CDCl₃) δ : 2.16 (m, 2H, CH₂), 3.03 (t, 2H, NCH₂), 4.28 (t, 2H, NCH₂), 6.88 (m, 1H, H-7), 6.90 (m, 1H, H-9), 7.03 (d, 1H, H-10), 7.12 (t, 1H, H-8), 7.18 (t, 1H, H-2), 7.43 (m, 2H, H-1, H-3), 7.52 (s, 1H, H-12), 7.67 (d, 1H, H-4). FAB MS *m/z*: 308 (M + 1, 100), 291 (M + 1 - NH₃, 50), 263 (M + 1 - C₂H₅NH₂, 40), 250

 $[(M+1-C_3H_6NH_2), 50].$ Anal. calcd. for $C_{18}H_{17}N_3S$: C 70.33, H 5.57, N 13.67. Found: C 70.21, H 5.59, N 13.48.

4.2.4.2. 6-Aminopropyl-9-chloroquinobenzothiazine (**13b**). (0.26 g, 76%), m.p. 84–85 °C. ¹H NMR (DMSO- d_6) δ : 2.08 (m, 2H, CH₂), 2.97 (t, 2H, NCH₂), 4.24 (m, 2H, NCH₂), 7.14 (d, 1H, H-7), 7.25 (dd, 1H, H-8), 7.34 (m, 2H, H-2, H-10), 7.56 (t, 1H, H-3), 7.68 (m, 2H, H-1, H-4), 8.01 (s, 1H, H-12). FAB MS *m/z*: 342 (M + 1, 100), 325 (M + 1 - NH₃, 40), 295 (M + 1 - C₄H₆N, 20), 284 (M + 1 - C₃H₈N, 35). Anal. calcd. for C₁₈H₁₆ClN₃S: C 63.24, H 4.72, N 12.29. Found: C 63.10, H 4.75, N 12.03.

4.2.4.3. 6-Aminopropyl-9-methylthioquinobenzothiazine (13c). (0.30 g, 85%), m.p. 94–95 °C. ¹H NMR (DMSO- d_6) δ : 2.40 (m, 2H, CH₂), 2.49 (s, 3H, CH₃), 2.73 (m, 2H, CH₂), 4.23 (m, 2H, NCH₂), 7.10 (d, 1H, H-7), 7.11 (d, 1H, H-8), 7.29 (t, 1H, H-2), 7.45 (d, 1H, H-10), 7.52 (t, 1H, H-3), 7.63 (m, 2H, H-1, H-4), 7.94 (s, 1H, H-12). FAB MS *m/z*: 354 (M + 1, 100), 337 (M + 1 - NH₃, 40), 296 (M + 1 - C₃H₆NH₂, 20). Anal. calcd. for C₁₉H₁₉N₃S₂: C 64.56, H 5.42, N 11.89. Found: C 64.46, H 5.45, N 11.61.

4.2.4.4. 6-*Aminobutylquinobenzothiazine* (**13d**). (0.27 g, 84%), m.p. 158–159 °C. ¹H NMR (CDCl₃) δ : 1.66 (m, 2H, CH₂), 1.92 (m, 2H, CH₂), 2.28 (t, 2H, NCH₂), 4.24 (t, 2H, NCH₂), 6.90 (t, 1H, H-9), 6.91 (d, 1H, H-7), 7.06 (d, 1H, H-10), 7.15 (t, 1H, H-8), 7.23 (t, 1H, H-2), 7.47 (t, 1H, H-3), 7.48 (d, 1H, H-1), 7.58 (s, 1H, H-12), 7.69 (d, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 27.96, 29.72, 38.95, 42.75, 115.75, 118.41, 120.09, 122.77, 124.25, 125.94, 126.09, 126.71, 126.93, 127.72, 129.22, 131.64, 140.91, 145.35, 152.07. FAB MS *m*/*z*: 322 (M + 1, 100), 263 (M + 1 - C₃H₇NH₂, 30), 250 (M + 1 - C₄H₈NH₂, 75). Anal. calcd. for C₁₉H₁₉N₃S: C 71.00, H 5.96, N 13.07. Found: C 7.89, H 5.91, N 12.88.

4.2.4.5. 6-Aminobutyl-9-chloroquinobenzothiazine (**13e**). (0.25 g, 70%), m.p. 95–96 °C. ¹H NMR (DMSO- d_6) δ : 1.68 (m, 2H, CH₂), 1.77 (m, 2H, CH₂), 2.83 (m, 2H, NCH₂), 4.19 (m, 2H, NCH₂), 7.10 (d, 2H, H-7), 7.22 (d, 1H, H-10), 7.30 (m, 2H, H-8, H-2), 7.53 (t, 1H, H-3), 7.64 (m, 2H, H-1, H-4), 7.97 (s, 1H, H-12). FAB MS *m*/*z*: 356 (M + 1, 100), 284 (M + 1 - C₄H₈NH₂, 35). Anal. calcd. for C₁₉H₁₈ClN₃S: C 64.12, H 5.10, N 11.81. Found: C 64.00, H 5.11, N 11.59.

4.2.4.6. 6-Aminobutyl-9-methylthioquinobenzothiazine (13f). (0.30 g, 83%), m.p. 102–103 °C. ¹H NMR (DMSO- d_6) δ : 1.50 (m, 2H, CH₂), 1.73 (m, 2H, CH₂), 2.46 (s, 3H, SCH₃), 3.29 (m, 2H, CH₂), 4.16 (m, 2H, NCH₂), 7.03 (d, 2H, H-7), 7.07 (m, 2H, H-9, H-10), 7.27 (t, 1H, H-2) 7.50 (t, 1H, H-3), 7.58 (d, 1H, H-1), 7.26 (d, 1H, H-4), 7.92 (s, 1H, H-12). FAB MS *m*/*z*: 368 (M + 1, 100), 351 (M + 1 - NH₃, 50), 337 (M - CH₂NH₂, 30), 309 (M - C₃H₆NH₂, 50), 296 (M + 1 - C₄H₈NH₂, 90). Anal. calcd. for C₂₀H₂₁N₃S₂: C 65.36, H 5.76, N 11.43. Found: C 65.16, H 5.71, N 11.28.

4.2.5. Synthesis of 9-substituted 6-acetylaminoalkylquinobenzothiazines **14**

To a suspension of aminoalkylquinothiazines 13a-f(1 mmol) in pyridine (5 mL) acetic anhydride (6 mL, 64 mmol) was added and the mixture was stirred at rt for 24 h. The reaction mixture was poured into water (20 mL) and the resulting solid was filtered off, washed with water, air-dried and purified by column chromatography (Al₂O₃, CHCl₃) to give compounds **14**.

4.2.5.1. 6-Acetylaminopropylquinobenzothiazine (**14a**). (0.31 g, 89%), m.p. 114–115 °C. ¹H NMR (CDCl₃) δ : 1.99 (s, 3H, CH₃), 2.09 (m, 2H, CH₂), 3.43 (m, 2H, NCH₂), 4.39 (m, 2H, NCH₂), 6.28 (s, 1H, NH), 6.96 (m, 2H, H-7, H-9), 7.09 (d, 1H, H-10), 7.16 (t, 1H, H-8), 7.28 (t, 1H, H-2), 7.58 (m, 2H, H-1, H-3), 7.64 (s, 1H, H-12), 7.72 (m, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 23.41, 26.44, 37.54, 42.34, 115.82, 118.61, 120.42, 122.97, 124.37, 126.11, 126.32, 126.79, 126.94, 127.81, 129.31, 131.96, 141.00, 145.50, 152.58, 170.12. FAB MS m/z: 350 (M + 1, 100), 263 (M + 1 - C₂H₅NHCOCH₃, 10), 250 (M + 1 - C₃H₆NHCOCH₃, 25). Anal. calcd. for C₂₀H₁₉N₃OS: C 68.74, H 5.48, N 12.02. Found: C 68.51, H 5.50, N 11.79.

4.2.5.2. 6-Acetylaminopropyl-9-chloroquinobenzothiazine (**14b**). (0.32 g, 84%), m.p. 172–173 °C. ¹H NMR (CDCl₃) δ : 2.00 (s, 3H, CH₃), 2.08 (m, 2H, CH₂), 3.43 (m, 2H, NCH₂), 4.50 (m, 2H, NCH₂), 6.92 (d, 1H, H-7), 7.12 (d, 1H, H-10), 7.16 (d, 1H, H-8), 7.36 (t, 1H, H-2), 7.58 (m, 2H, H-1, H-3), 7.74 (s, 1H, H-12), 8.05 (m, 1H, H-4). FAB MS *m*/*z*: 384 (M + 1, 100), 311 (M + 1 – CH₃NHCOCH₃, 40), 297 (M + 1 – C₂H₅NHCOCH₃, 45), 284 (M + 1 – C₃H₆NHCOCH₃, 65). Anal. calcd. for C₂₀H₁₈ClN₃OS: C 62.57, H 4.73, N 10.95. Found: C 62.29, H 4.75, N 10.77.

4.2.5.3. 6-Acetylaminopropyl-9-methylthioquinobenzothiazine (**14c**). (0.34 g, 86%), m.p. 138–139 °C. ¹H NMR (CDCl₃) δ : 1.26 (t, 3H, CH₃), 2.07 (m, 2H, CH₂), 2.45 (s, 3H, SCH₃), 3.36 (m, 2H, CH₂), 4.10 (m, 2H, CH₂), 4.34 (m, 2H, NCH₂), 6.88 (d, 1H, H-7), 6.99 (d, 1H, H-10), 7.08 (dd, 1H, H-8), 7.28 (t, 1H, H-2), 7.51 (m, 2H, H-1, H-3), 7.63 (s, 1H, H-12), 7.93 (m, 1H, H-4). FAB MS *m*/*z*: 426 (M + 1, 100), 296 (M + 1 - C₃H₆NHCO₂C₂H₅, 40). Anal. calcd. for C₂₁H₂₁N₃OS₂: C 63.77, H 5.35, N 10.62. Found: C 63.55, H 5.37, N 10.47.

4.2.5.4. 6-Acetylaminobutylquinobenzothiazine (**14d**). (0.33 g, 91%), m.p. 132–133 °C. ¹H NMR (CDCl₃) δ : 1.70 (m, 2H, CH₂), 1.91 (m, 2H, CH₂), 1.93 (s, 3H, CH₃), 3.36 (m, 2H, NCH₂), 4.29 (m, 2H, NCH₂), 6.93 (m, 2H, H-7, H-9), 7.09 (d, 1H, H-10), 7.17 (t, 1H, H-8), 7.25 (t, 1H, H-2), 7.50 (t, 1H, H-3), 7.51 (d, 1H, H-1), 7.63 (s, 1H, H-12), 7.75 (m, 1H, H-4). FAB MS *m*/*z*: 364 (M + 1, 100), 277 (M + 1 – C₂H₅NHCOCH₃, 15), 263 (M + 1 – C₃H₇NHCOCH₃, 20), 250 (M + 1 – C₄H₈NHCOCH₃, 50). Anal. calcd. for C₂₁H₂₁N₃OS: C 69.39, H 5.82, N 11.56. Found: C 69.22, H 5.85, N 11.43.

4.2.5.5. 6-Acetylaminobutyl-9-chloroquinobenzothiazine (14e). (0.34 g, 86%), m.p. 144–145 °C. ¹H NMR (CDCl₃) δ : 1.72 (m, 2H, CH₂), 1.91 (m, 2H, CH₂), 1.96 (s, 3H, CH₃), 3.34 (m, 2H, NCH₂), 4.40 (m, 2H, NCH₂), 6.90 (d, 1H, H-7), 7.10 (m, 1H, H-8), 7.16 (d, 1H, H-10), 7.25 (m, 1H, H-2), 7.34 (t, 1H, H-3), 7.56 (m, 2H, H-1, H-4), 7.73 (s, 1H, H12). FAB MS *m*/*z*: 398 (M + 1, 100), 297 (M + 1 - C₃H₇NHCOCH₃, 35), 284 (M + 1 - C₄H₈NHCOCH₃, 80). Anal. calcd. for C₂₁H₂₀ClN₃OS: C 63.39, H 5.07, N 10.56. Found: C 63.26 H 5.05, N 10.38.

4.2.5.6. 6-Acetylaminobutyl-9-methylthioquinobenzothiazine (14f). (0.345 g, 86%), m.p. 135–136 °C. ¹H NMR (CDCl₃) δ : 1.75 (t, 2H, CH₂), 1.96 (t, 2H, CH₂), 1.98 (s, 3H, CH₃), 2.47 (s, 3H, SCH₃), 3.34 (m, 2H, CH₂), 4.54 (m, 2H, NCH₂), 6.97 (d, 1H, H-7), 7.03 (d, 1H, H-10), 7.12 (d, 1H, H-8), 7.40 (t, 1H, H-2), 7.58 (d, 1H, H-1), 7.63 (t, 1H, H-3), 7.80 (s, 1H, H-1, H-12), 8.49 (d, 1H, H-4). FAB MS *m/z*: 410 (M + 1, 100), 296 (M + 1 - C₄H₈NHCOCH₃, 45). Anal. calcd. for C₂₂H₂₃N₃OS₂: C 64.52, H 5.66, N 10.26. Found: C 64.38, H 5.63, N 10.05.

4.2.6. Synthesis of 9-substituted 6-etoxycarbonylaminoalkylquinobenzothiazines 15

To a stirred solution of aminoalkylquinobenzothiazines 13a-f (1 mmol) in a mixture of CH₂Cl₂ (5 mL) and 10% Na₂CO₃ solution (5 mL), a solution of ethyl chloroformate (1.3 mL, 1.3 mmol) in CH₂Cl₂ (3 mL) was added. The mixture was stirred at rt for 24 h. The organic phase was separated and aqueous phase was extracted with CH₂Cl₂ (2 × 5 mL). The combined extracts were washed with water (2 × 10 mL) and dried over Na₂SO₄. The drying agent was filtered off and filtrate was evaporated. The resulting residue was purified by column chromatography (Al₂O₃, CHCl₃) to give compounds **15**:

4.2.6.1. 6-Ethoxycarbonylaminopropylquinobenzothiazine (**15a**). (0.30 g, 79%), m.p. 82–83 °C. ¹H NMR (CDCl₃) δ : 1.28 (t, 3H, CH₃), 2.10 (m, 2H, CH₂), 3.38 (m, 2H, NCH₂), 4.13 (m, 2H, CH₂), 4.32 (m, 2H, NCH₂), 6.92 (t, 1H, H-9), 6.94 (d, 1H, H-7), 7.06 (d, 1H, H-10), 7.15 (t, 1H, H-8), 7.27 (t, 1H, H-2), 7.50 (m, 2H, H-1, H-3), 7.60 (s, 1H, H-12), 7.85 (m, 1H, H-4). FAB MS *m*/*z*: 380 (M + 1, 100), 277 (M + 1 – CH₂NHCO₂C₂H₅, 15), 263 (M + 1 – C₂H₅NHCO₂C₂H₅, 20), 250 (M + 1 – C₃H₆NCO₂C₂H₅, 35). Anal. calcd. for C₂₁H₂₁N₃O₂S: C 66.47, H 5.58, N 11.07. Found: C 66.40, H 5.51, N 10.88.

4.2.6.2. 9-Chloro-6-ethoxycarbonylaminopropylquinobenzothiazine (**15b**). (0.32 g, 77%), m.p. 121–122 °C. ¹H NMR (CDCl₃) δ : 1.24 (t, 3H, CH₃), 2.06 (m, 2H, CH₂), 3.37 (m, 2H, NCH₂), 4.07 (m, 2H, NCH₂), 4.39 (t, 2H, NCH₂), 6.89 (d, 1H, H-7), 7.08 (d, 1H, H-10), 7.13 (dd, 1H, H-8), 7.32 (t, 1H, H-2), 7.53 (m, 2H, H-1, H-3), 7.68 (s, 1H, H-12), 8.05 (m, 1H, H-4). FAB MS *m/z*: 414 (M + 1, 100), 311 (M + 1 - CH₃NHCO₂C₂H₅, 40), 297 (M + 1 - C₂H₅NHCO₂C₂H₅, 45), 284 (M + 1-C₃H₆NHCO₂C₂H₅, 65). Anal. calcd. for C₂₁H₂₀ClN₃O₂S: C 60.94, H 4.87, N 10.15. Found: C 60.73, H 4.875 N 10.01.

4.2.6.3. 6-Ethoxycarbonylaminopropyl-9-methylthioquinobenzothiazine (**15c**). (0.36 g, 85%), m.p. 125–126 °C. ¹H NMR (CDCl₃) δ : 1.26 (t, 3H, CH₃), 2.07 (m, 2H, CH₂), 2.45 (s, 3H, SCH₃), 3.36 (m, 2H, CH₂), 4.10 (m, 2H, CH₂), 4.34 (m, 2H, NCH₂), 6.88 (d, 1H, H-7), 6.99 (d, 1H, H-10), 7.08 (dd, 1H, H-8), 7.28 (t, 1H, H-2), 7.51 (m, 2H, H-1, H-3), 7.63 (s, 1H, H-12), 7.93 (m, 1H, H-4). FAB MS *m*/*z*: 426 (M + 1, 100), 296 (M + 1 - C₃H₆NHCO₂C₂H₅, 40). Anal. calcd. for C₂₂H₂₃N₃O₂S₂: C 62.09, H 5.45, N 9.87. Found: C 61.87, H 5.46, N 9.63.

4.2.6.4. 6-*Ethoxycarbonylaminobutylquinobenzothiazine* (**15d**). (0.35 g, 89%), m.p. 90–91 °C. ¹H NMR (CDCl₃) δ : 1.26 (t, 3H, CH₃), 1.70 (m, 2H, CH₂), 1.92 (m, 2H, CH₂), 3.29 (m, 2H, NCH₂), 4.10 (m, 2H, CH₂), 4.26 (m, 2H, NCH₂), 6.91 (m, 2H, H-7, H-9), 7.08 (d, 1H, H-10), 7.16 (t, 1H, H-8), 7.25 (t, 1H, H-2), 7.49 (t, 1H, H-3), 7.50 (d, 1H, H-1), 7.60 (s, 1H, H-12), 7.74 (m, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 14.68, 23.48, 27.36, 40.49, 44.80, 60.70, 115.74, 118.68, 120.48, 122.62, 124.13, 126.03, 126.13, 126.86, 127.27, 127.65, 129.06, 131.71, 141.34, 145.72, 152.45, 156.73. FAB MS *m/z*: 394 (M + 1, 100), 277 (M + 1 – C₂H₅NHCO₂C₂H₅, 20), 250 (M + 1 – C₄H₈NCO₂C₂H₅, 35). Anal. calcd. for C₂₂H₂₃N₃O₂S: C 67.15, H 5.89, N 10.68. Found: C 67.01, H 5.88, N 10.41.

4.2.6.5. 9-Chloro-6-ethoxycarbonylaminobutylquinobenzothiazine (**15e**). (0.34 g, 80%), m.p. 130–131 °C. ¹H NMR (CDCl₃) δ : 1.21 (m, 5H, CH₃, CH₂), 1.69 (m, 2H, CH₂), 1.89 (m, 2H, NCH₂), 3.25 (m, 2H, NCH₂), 4.06 (m, 2H, NCH₂), 6.98 (d, 1H, H-7), 7.15 (d, 1H, H-10), 7.20 (dd, 1H, H-8), 7.26 (t, 1H, H-2), 7.40 (t, 1H, H-3), 7.59 (d, 1H, H-1), 7.63 (d, 1H, H-4), 7.82 (s, 1H, H-12). FAB MS *m*/*z*: 428 (M + 1, 100), 297 (M + 1 – C₃H₇NHCO₂C₂H₅, 30), 284 (M + 1 – C₄H₈NHCO₂C₂H₅, 62). Anal. calcd. for C₂₂H₂₂ClN₃O₂S: C 61.75, H 5.18, N 9.82. Found: C 61.47, H 5.20, N 9.60.

4.2.6.6. 6-*Ethoxycarbonylaminobutyl*-9-*methylthioquinobenzothiazine* (**15f**). (0.37 g, 84%), m.p. 95–96 °C. ¹H NMR (CDCl₃) δ : 1.22 (t, 3H, CH₃), 1.69 (t, 2H, CH₂), 1.90 (t, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.28 (m, 2H, CH₂), 4.09 (m, 2H, CH₂), 4.36 (n, 2H, NCH₂), 6.89 (d, 1H, H-7), 7.02 (d, 1H, H-10), 7.09 (d, 1H, H-8), 7.30 (t, 1H, H-2), 7.52 (d, 1H, H-1), 7.53 (t, 1H, H-3), 7.67 (s, 1H, H-12), 7.96 (d, 1H, H-4). FAB MS *m/z*: 440 (M + 1, 100), 296 (M + 1 - C₄H₈NHCO₂C₂H₅, 35). Anal. calcd. for C₂₃H₂₅N₃O₂S₂: C 62.84, H 5.73, N 9.56. Found: C 62.61, H 5.76, N 9.39.

4.2.7. Synthesis of 9-substituted 6-chloroethylureidoalkylquinobenzothiazines **16**

To a stirred solution of 6-aminoalkyldiquinothiazines 13a-f (1 mmol) in ethanol (25 mL) at 0 °C 2-chloroethyl isocyanate (0.16 mL, 2 mmol) was added. The mixture was stirred at 0 °C for 1 h

and at rt for 24 h. After evaporation of EtOH *in vaccuo* the residue was purified by column chromatography (Al₂O₃, CHCl₃) to give compounds **16**.

4.2.7.1. 6-Chloroethylureidopropylquinobenzothiazine (16a). (0.27 g, 66%), m.p. 177–178 °C. ¹H NMR (CDCl₃) δ : 1.25 (m, 2H, CH2), 2.09 (m, 2H, CH₂), 3.49 (m, 2H, NCH₂), 3.50 (m, 2H, CH₂), 3.57 (m, 2H, NCH₂), 4.44 (broad s, 2H, 2NH), 6.99 (m, 2H, H-7, H-9), 7.12 (d, 1H, H-10), 7.20 (t, 1H, H-8), 7.31 (t, 1H, H-2), 7.54 (m, 2H, H-1, H-3), 7.69 (m, 1H, H-4) 7.93 (s, 1H, H-12). FAB MS *m/z*: 413 (M + 1, 40), 377 (M + 1 - HCl, 40), 277 (M + 1 - CH₂NHCONHCH₂CH₂Cl, 35), 263 (M + 1 - C₂H₅NHCONHCH₂CH₂Cl, 45), 250 (M - C₃H₆NHCONHCH₂CH₂Cl, 70). Anal. calcd. for C₂₁H₂₁ClN₄OS: C 61.08, H 5.13, N 13.57. Found: C 60.88, H 5.12, N 13.39.

4.2.7.2. 6-Chloroethylureidopropyl-9-chloroquinobenzothiazine (**16b**). (0.31 g, 69%), m.p. 151–152 °C. ¹H NMR (CDCl₃) δ : 1.25 (m, 2H, CH₂), 2.09 (m, 2H, CH₂), 3.43 (m, 2H, NCH₂), 3.52 (m, 2H, NCH₂), 3.59 (broad s, 2H, 2NH), 4.59 (t, 2H, NCH₂), 7.10 (d, 1H, H-7), 7.21 (d, 1H, H-10), 7.29 (d, 1H, H-8), 7.55 (t, 1H, H-2), 7.66 (d, 1H, H-1), 7.75 (m, 2H, H-3, H-4), 7.97 (s, 1H, H-12). FAB MS *m/z*: 448 (M + 1, 21) 411 (M + 1 - HCl, 100), 368 (M - NH₂CH₂CH₂Cl, 22), 325 (M - NH₂CONHCH₂CH₂Cl, 38), 284 (M + 1 - C₃H₆NHCONHCH₂CH₂Cl, 43). Anal. calcd. for C₂₁H₂₀Cl₂N₄OS: C 56.38, H 4.51, N 12.52. Found: C 56.19, H 4.53, N 12.37.

4.2.7.3. 6-Chloroethylureidopropyl-9-methylthioquinobenzothiazine (**16c**). (0.30 g, 66%), m.p. 167–168 °C. ¹H NMR (CDCl₃) δ : 1.25 (m, 2H, CH₂), 2.06 (m, 2H, CH₂), 2.46 (s, 3H, SCH₃), 3.48 (m, 2H, CH₂), 3.49 (m, 2H, CH₂), 3.55 (t, 2H, NCH₂), 4.50 (broad s, 2H, 2NH), 6.92 (d, 1H, H-7), 7.02 (d, 1H, H-10), 7.08 (d, 1H, H-8), 7.34 (t, 1H, H-2), 7.54 (d, 1H, H-1), 7.58 (t, 1H, H-3), 7.72 (s, 1H, H-12), 8.14 (m, 1H, H-4). FAB MS *m/z*: 458 (M⁺, 100), 459 (M + 1, 90), 380 (M - NHC₂H₄Cl, 30), 323 (M - CH₂NHCONHC₂H₄Cl, 10), 310 (M + 1 - C₂H₄NHCONHC₂H₄Cl, 20), 296 (M + 1 - C₃H₆NHCONHC₂H₄Cl, 40). Anal. calcd. for C₂₂H₂₃ClN₄OS₂: C 57.57, H 5.05, N 12.21. Found: C 57.38, H 5.07, N 12.00.

4.2.7.4. 6-Chloroethylureidobutylquinobenzothiazine (16d). (0.28 g, 66%), m.p. 132–133 °C. ¹H NMR (CDCl₃) δ : 1.67 (m, 2H, CH₂), 1.89 (m, 2H, CH₂), 3.27 (m, 2H, CH₂), 3.47 (m, 2H, CH₂), 3.56 (m, 2H, NCH₂), 4.23 (m, 2H, NCH₂), 4.96 (broad s, 2H, 2NH), 6.91 (m, 2H, H-7, H-9), 7.06 (m, 1H, H-10), 7.15 (t, 1H, H-8), 7.24 (t, 1H, H-2), 7.47 (t, 1H, H-3), 7.48 (d, 1H, H-1), 7.58 (s, 1H, H-12), 7.69 (m, 1H, H-4). FAB MS *m*/*z*: 427 (M + 1, 100), 391 (M + 1 - HCl, 35), 263 (M + 1 - C₃H₇NHCONHCH₂CH₂Cl, 30), 250 (M + 1 - C₄H₈NHCONHCH₂CH₂Cl, 80). Anal. calcd. for C₂₂H₂₃ClN₄OS: C 61.89, H 5.43, N 13.12. Found: C 61.62, H 5.44, N 12.87.

4.2.7.5. 6-Chloroethylureidobutyl-9-chloroquinobenzothiazine (**16e**). (0.29 g, 63%), m.p. 164–165 °C. ¹H NMR (CDCl₃) δ : 1.25 (m, 2H, CH₂), 1.88 (m, 2H, CH₂), 1.99 (m, 4H, 2CH₂), 3.50 (m, 2H, NCH₂), 3.71 (m, 2H, NCH₂), 4.75 (broad s, 2H, 2NH), 7.10 (d, 1H, H-7), 7.35 (dd, 1H, H-8), 7.59 (m, 2H, H-2, H-10), 7.71 (d, 1H, H-1), 7.82 (m, 2H, H-3, H-4), 8.06 (s, 1H, H-12). FAB MS *m/z*: 462 (M + 1, 3), 425 (M – HCl, 100), 382 (M – NH₂CH₂CH₂Cl, 6), 297 (M + 1 – C₃H₇NHCONHCH₂CH₂Cl, 16), 284 (M + 1 – C₄H₈NHCONHCH₂CH₂Cl, 38). Anal. calcd. for C₂₂H₂₂Cl₂N₄OS: C 57.27, H 4.81, N 12.14. Found: C 57.20, H 4.82, N 11.93.

4.2.7.6. 6-Chloroethylureidobutyl-9-methylthioquinobenzothiazine (**16f**). (0.32 g, 68%), m.p. 129–130 °C. ¹H NMR (CDCl₃) δ: 1.25 (m, 2H, CH₂), 1.71 (m, 2H, CH₂), 1.92 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.32 (m, 2H, NCH₂), 3.50 (m, 2H, CH₂), 3.58 (m, 2H, NCH₂), 4.40 (broad s, 2H, 2NH), 6.92 (d, 1H, H-7), 7.03 (d, 1H, H-10), 7.12 (d, 1H, H-8), 7.27 (t, 1H, H-2), 7.39 (t, 1H, H-3), 7.55 (m, 2H, H-1, H-4), 7.72 (s, 1H, H-12). FAB MS m/z: 473 (M + 1, 98), 472 (M⁺, 100), 437 (M + 1 - HCl), 394 (M - NHCH₂CH₂Cl, 35), 309 (M + 1 - C₃H₇NHCONHCH₂CH₂Cl, 40), 296 (M + 1 - C₄H₈NHCONHCH₂CH₂Cl, 100). Anal. calcd. for C₂₃H₂₅ClN₄OS₂: C 58.40, H 5.33, N 11.84. Found: C 58.29, H 5.35, N 11.61.

4.2.8. Synthesis of 9-substituted 6-methanesulfonylaminoalkylquinobenzothiazines **17**

To a stirred solution of aminoalkyldiquinothiazines 13a-f (1 mmol) in a mixture of CH₂Cl₂ (10 mL) and 10% Na₂CO₃ solution (14 mL), a solution of methanesulfonyl chloride (0.12 mL, 1.5 mmol) was added. The mixture was stirred at rt for 24 h. The organic phase was separated and aqueous phase was extracted with CH₂Cl₂ (2 × 5 mL). The combined extracts were washed with water (2 × 10 mL) and dried over Na₂SO₄. The drying agent was filtered off and filtrate was evaporated. The resulting residue was purified by column chromatography (Al₂O₃, CHCl₃) to give compounds **17**.

4.2.8.1. 6-Methanesulfonylaminopropylquinobenzothiazine (17a). (0.28 g, 73%), m.p. 117–118 °C. ¹H NMR (CDCl₃) δ : 2.16 (m, 2H, CH₂), 2.86 (s, 3H, CH₃), 3.31 (m, 2H, NCH₂), 4.53 (m, 2H, NCH₂), 5.99 (s, 1H, NH), 6.97 (m, 2H, H-7, H-9), 7.07 (d, 1H, H-10), 7.17 (t, 1H, H-8), 7.30 (t, 1H, H-2), 7.51 (d, 1H, H-1), 7.55 (t, 1H, H-3), 7.63 (s, 1H, H-12), 7.92 (m, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ : 27.35, 39.97, 40.86, 41.82, 115.50, 118.06, 119.90, 123.06, 124.59, 126.08, 126.20, 126.53, 126.82, 127.76, 129.69, 131.88, 140.55, 145.22, 151.96. FAB MS *m/z*: 386 (M + 1, 100), 277 (M + 1 – CH₂NHSO₂CH₃, 35), 250 (M + 1 – C₃H₆NHSO₂CH₃, 60). Anal. calcd. for C₁₉H₁₉N₃O₂S₂: C 59.20, H 4.97, N 10.90. Found: C 59.03, H 4.92, N 10.67.

4.2.8.2. 9-Chloro-6-methanesulfonylaminopropylquinobenzothiazine (**17b**). (0.32 g, 76%), m.p. 129–130 °C. ¹H NMR (CDCl₃) δ : 2.14 (m, 2H, CH₂), 2.87 (s, 3H, CH₃), 3.30 (m, 2H, NCH₂), 4.44 (t, 2H, NCH₂), 6.88 (d, 1H, H-7), 7.06 (d, 1H, H-10), 7.11 (dd, 1H, H-8), 7.32 (t, 1H, H-2), 7.53 (d, 1H, H-1), 7.56 (t, 1H, H-3), 7.65 (s, 1H, H-12), 7.97 (m, 1H, H-4). FAB MS *m/z*: 420 (M + 1, 100), 311 (M + 1 - CH₃NHSO₂CH₃, 25), 297 (M + 1 - C₂H₅NHSO₂CH₃, 30), 284 (M + 1-C₃H₆NHSO₂CH₃, 50). Anal. calcd. for C₁₉H₁₈ClN₃O₂S₂: C 54.34, H 4.32, N 10.01. Found: C 54.09, H 4.34, N 9.82.

4.2.8.3. 6-Methanesulfonylaminopropyl-9-methylthioquinobenzothiazine (**17c**). (0.33 g, 77%), m.p. 100–101 °C. ¹H NMR (CDCl₃) δ : 2.13 (m, 2H, CH₂), 2.45 (s, 3H, CH₃), 2.86 (s, 3H, SCH₃), 3.29 (m, 2H, CH₂), 4.41 (m, 2H, NCH₂), 6.88 (d, 1H, H-7), 6.97 (d, 1H, H-10), 7.05 (d, 1H, H-8), 7.28 (t, 1H, H-2), 7.49 (d, 1H, H-1), 7.53 (t, 1H, H-3), 7.61 (s, 1H, H-12), 7.91 (m, 1H, H-4). FAB MS *m/z*: 432 (M + 1, 100), 353 (M + 1 - SO₂CH₃, 10), 323 (M - CH₂NHSO₂CH₃, 25), 309 (M - C₂H₄NHSO₂CH₃, 30), 296 (M + 1 - C₃H₆NHSO₂CH₃, 60). Anal. calcd. for C₂₀H₂₁N₃O₂S₃: C 55.66, H 4.90, N 9.74. Found: C 55.48, H 4.88, N 9.59.

4.2.8.4. 6-Methanesulfonylaminobutylquinobenzothiazine (**17d**). (0.27 g, 68%), m.p. 97–98 °C. ¹H NMR (CDCl₃) δ : 1.78 (m, 2H, CH₂), 1.96 (m, 2H, CH₂), 2.93 (s, 3H, CH₃), 3.25 (m, 2H, NCH₂), 4.34 (m, 2H, NCH₂), 4.76 (m, 1H, NH), 6.95 (m, 2H, H-7, H-9), 7.10 (d, 1H, H-10), 7.18 (t, 1H, H-8), 7.28 (t, 1H, H-2), 7.51 (m, 2H, H-1, H-3), 7.64 (s, 1H, H-12), 7.85 (m, 1H, H-4). FAB MS *m/z*: 400 (M + 1, 100), 263 (M – C₃H₆NHSO₂CH₃, 25), 250 (M + 1 – C₄H₈NHSO₂CH₃, 50). Anal. calcd. for C₂₀H₂₁N₃O₂S₂: C 60.13, H 5.30, N 10.52. Found: C 59.96, H 5.29, N 10.36.

4.2.8.5. 9-Chloro-6-methanesulfonylaminobutylquinobenzothiazine (**17e**). (0.32 g, 74%), m.p. 163–164 °C. ¹H NMR (CDCl₃) δ: 1.83 (m, 2H, CH₂), 2.10 (m, 2H, CH₂), 2.96 (s, 3H, CH₃), 3.27 (m, 2H, NCH₂), 4.70 (m, 2H, NCH₂), 7.06 (d, 1H, H-7), 7.18 (d, 1H, H-10), 7.47 (m, 2H, H-2, H-8), 7.62 (d, 1H, H-1), 7.70 (m, 2H, H-3, H-4), 7.90 (s, 1H, H-12). FAB MS m/z: 434 (M + 1, 100), 297 (M - C₃H₆NHSO₂CH₃, 19), 284 (M + 1 - C₄H₈NHSO₂CH₃, 43). Anal. calcd. for C₂₀H₂₀ClN₃O₂S₂: 2 55.35, H 4.65, N 9.68. Found: C 55.21, H 4.65, N 9.49.

4.2.8.6. 6-Methanesulfonylaminobutyl-9-methylthioquinobenzothiazine (**17f**). (0.34 g, 76%), m.p. 119–120 °C. ¹H NMR (CDCl₃) δ : 1.78 (m, 2H, CH₂), 1.94 (m, 2H, CH₂), 2.46 (s, 3H, SCH₃), 2.94 (s, 3H, CH₃), 3.25 (m, 2H, CH₂), 4.32 (m, 2H, NCH₂), 6.86 (d, 1H, H-7), 7.05 (d, 1H, H-10), 7.09 (d, 2H, H-8), 7.27 (t, 1H, H-2), 7.51 (m, 2H, H-1, H-3), 7.65 (s, 1H, H-12), 7.78 (m, 1H, H-4). FAB MS *m*/*z*: 446 (M + 1, 100), 309 (M – C₃H₆NHSO₂CH₃, 15), 296 (M + 1 – C₄H₈NHSO₂CH₃, 40). Anal. calcd. for C₂₁H₂₃N₃O₂S₃: C 56.60, H 5.20, N 9.43. Found: C 56.40, H 5.21, N 9.28.

4.2.9. Synthesis of 9-substituted 6-p-toluenesulfonylaminolkylquinobenzothiazines **18**

To a stirred solution of aminoalkyldiquinothiazines **13a–f** (1 mmol) in a mixture of CH_2Cl_2 (6 mL) and 10% Na_2CO_3 solution (7 mL), a solution of *p*-toluenesulfonyl chloride (0.28 g, 1.5 mmol) in CH_2Cl_2 (6 mL) was added. The mixture was stirred at rt for 24 h. The organic phase was separated and aqueous phase was extracted with CH_2Cl_2 (2 × 5 mL). The combined extracts were washed with water (2 × 10 mL) and dried over Na_2SO_4 . The drying agent was filtered off and filtrate was evaporated. The resulting residue was purified by column chromatography (Al_2O_3 , $CHCl_3$) to give: compounds **18**.

4.2.9.1. 6-*p*-Toluenesulfonylaminopropylquinobenzothiazine (**18a**). (0.36 g, 78%), m.p. 68–69 °C. ¹H NMR (CDCl₃) δ : 2.02 (m, 2H, CH₂), 2.35 (s, 3H, CH₃), 3.11 (m, 2H, NCH₂), 4.24 (m, 2H, NCH₂), 6.86 (d, 1H, H-7), 6.91 (t, 1H, H-9), 7.02 (d, 1H, H-10), 7.10 (t, 1H, H-8), 7.14 (d, 2H, 2H_{benz.}), 7.29 (t, 1H, H-2), 7.49 (d, 1H, H-1), 7.56 (m, 2H, H-3, H-12), 7.61 (d, 2H, 2H_{benz.}), 7.92 (m, 1H, H-4). FAB MS *m/z*: 462 (M + 1, 100), 277 (M + 1 - CH₂NHSO₂C₆H₄CH₃, 60), 263 (M + 1 - C₂H₅NHSO₂C₆H₄CH₃, 70), 251 (M + 1 - C₃H₅NHSO₂C₆H₄CH₃, 96), 250 (M + 1 - C₃H₆NHSO₂C₆H₄CH₃, 90). Anal. calcd. for C₂₅H₂₃N₃O₂S₂: C 65.05, H 5.02, N 9.10. Found: C 64.81, H 5.00, N 8.95.

4.2.9.2. 9-Chloro-6-p-toluenesulfonylaminopropylquinobenzothiazine (**18b**). (0.38 g, 77%), m.p. 116–117 °C. ¹H NMR (CDCl₃) δ : 2.01 (m, 2H, CH₂), 2.36 (s, 3H, CH₃), 3.11 (m, 2H, NCH₂), 4.29 (t, 2H, NCH₂), 6.86 (d, 1H, H-7), 7.04 (d, 1H, H-10), 7.10 (dd, 1H, H-8), 7.16 (d, 2H, 2H_{benz.}), 7.34 (t, 1H, H-2), 7.52 (d, 1H, H-1), 7.59 (t, 1H, H-3), 7.63 (m, 3H, H-12, 2H_{benz.}), 8.03 (d, 1H, H-4). FAB MS *m/z*: 496 (M + 1, 100), 311 (M + 1 - CH₃NHSO₂C₆H₄CH₃, 35), 297 (M + 1 - C₂H₅NHSO₂C₆H₄CH₃, 30), 284 (M + 1 - C₃H₆NHSO₂C₆H₄CH₃, 45). Anal. calcd. for C₂SH₂2ClN₃O₂S₂: C 60.53, H 4.47, N 8.47. Found: C 60.45, H 4.42, N 8.33.

4.2.9.3. 9-Methylthio-6-p-toluenesulfonylaminopropylquinobenzothiazine (**18c**). (0.40 g, 79%), m.p. 70–71 °C. ¹H NMR (CDCl₃) δ : 2.00 (m, 2H, CH₂), 2.35 (s, 3H, CH₃), 2.44 (s, 3H, CH₃), 3.10 (m, 2H, CH₂), 4.29 (m, 2H, NCH₂), 6.79 (d, 1H, H-7), 6.94 (d, 1H, H-10), 7.01 (d, 1H, H-8), 7.14 (d, 2H, 2H_{benz}), 7.31 (t, 1H, H-2), 7.50 (d, 1H, H-1), 7.58 (m, 2H, H-3, H-12) 7.65 (d, 2H, 2H_{benz}), 7.93 (d, 1H, H-4). FAB MS *m/z*: 508 (M + 1, 100), 323 (M - CH₂NHSO₂C₆H₄CH₃, 25), 309 (M - C₂H₄NHSO₂C₆H₄CH₃, 30), 296 (M + 1 - C₃H₆NHSO₂C₆H₄CH₃, 40). Anal. calcd. for C₂₆H₂₅N₃O₂S₃: C 61.51, H 4.96, N 8.28. Found: C 61.38, H 4.94, N 8.09.

4.2.9.4. 6-p-Toluenesulfonylaminobutylquinobenzothiazine (18d). (0.35 g, 74%), m.p. 63–64 °C. ¹H NMR (CDCl₃) δ : 1.66 (m, 2H, CH₂), 2.39 (m, 2H, CH₂), 2.39 (s, 3H, CH₃), 3.07 (m, 2H, NCH₂), 4.19 (m, 2H, NCH₂), 4.65 (m, 1H, NH), 6.87 (d, 1H, H-7), 6.92 (t, 1H, H-9), 7.08 (d, 1H, H-10), 7.15 (t, 1H, H-8), 7.25 (m, 3H, H-2, 2H_{benz.}), 7.49 (m, 2H, H-1, H-3), 7.61 (s, 1H, H-12), 7.71 (m, 3H, H-4, 2H_{benz.}). ¹³C NMR (75 MHz, CDCl₃) δ : 21.53, 23.30, 26.96, 42.87, 44.48, 115.73, 118.62, 120.45, 122.69, 124.19, 126.01, 126.15, 126.86, 127.08, 127.22, 127.71, 129.14, 129.70, 131.74, 136.99, 141.20, 143.34, 145.64, 152.38. FAB MS *m/z*: 476 (M + 1, 100), 369 (M + 1 - OC₆H₄CH₃, 25), 277 (M + 1 - C₂H₄NHSO₂C₆H₄CH₃, 20), 250 (M + 1 - C₄H₈NHSO₂C₆H₄CH₃, 20). Anal. calcd. for C₂₆H₂SN₃O₂S₂: C 65.66, H 5.30, N 8.83. Found: C 65.46, H 5.26, N 8.59.

4.2.9.5. 9-Chloro-6-p-toluenesulfonylaminobutylquinobenzothiazine (**18e**). (0.38 g, 75%), m.p. 140–141 °C. ¹H NMR (CDCl₃) δ : 1.68 (m, 2H, CH₂), 1.88 (m, 2H, CH₂), 2.40 (s, 3H, CH₃), 3.05 (m, 2H, NCH₂), 4.34 (m, 2H, NCH₂), 6.86 (d, 1H, H-7), 7.09 (d, 1H, H-10), 7.14 (d, 1H, H-8), 7.25 (m, 2H, 2H_{benz.}), 7.34 (t, 1H, H-2), 7.55 (d, 1H, H-1), 7.56 (t, 1H, H-3), 7.72 (m, 3H, H-12, 2H_{benz.}), 8.04 (d, 1H, H-4). FAB MS *m/z*: 510 (M + 1, 100), 297 (M + 1 - C₃H₇NHSO₂C₆H₄CH₃, 21), 284 (M + 1 - C₄H₈NHSO₂C₆H₄CH₃, 50). Anal. calcd. for C₂₆H₂₄ClN₃O₂S₂: C 61.22, H 4.74, N 8.24. Found: C 61.01, H 4.71, N 8.07.

4.2.9.6. 9-Methylthio-6-p-toluenesulfonylaminobutylquinobenzothiazine (**18f**). (0.42 g, 81%), m.p. 119–120 °C. ¹H NMR (CDCl₃) δ : 1.64 (m, 2H, CH₂), 1.83 (m, 2H, CH₂), 2.38 (s, 3H, CH₃), 2.44 (s, 3H, SCH₃), 3.05 (m, 2H, CH₂), 4.16 (m, 2H, NCH₂), 6.78 (d, 1H, H-7), 6.99 (d, 1H, H-10), 7.06 (d, 1H, H-8), 7.25 (m, 3H, H-2, 2H_{benz}), 7.49 (m, 1H, H-1, H-3), 7.59 (s, 1H, H-12), 7.72 (m, 5H, H-12, 2H_{benz}), FAB MS *m/z*: 522 (M + 1, 100), 521 (M⁺, 55), 309 (M-C₃H₇NHSO₂C₆H₄CH₃, 40). Anal. calcd. for C₂₇H₂₇N₃O₂S₃: C 62.16, H 5.22, N 8.05. Found: C 62.01, H 5.19, N 7.81.

4.3. Biological assays

4.3.1. Preparation of the compounds for biological assays

The compounds were dissolved in DMSO (10 mg/mL) and subsequently diluted in RPMI-1640 cell culture medium (see below).

4.3.2. Isolation of the peripheral blood mononuclear cells (PBMC)

Venous blood from a single donor was withdrawn into heparinized syringes and diluted twice with PBS. PBMC were isolated by centrifugation on Ficoll-uropoline gradient (density 1.077 g/mL) and centrifuged at $800 \times g$ for 20 min at 4 °C. The interphase cells, consisting of lymphocytes (20%) and monocytes (80%) were then washed three times with Hanks' medium and re-suspended in a culture medium, referred to below as the culture medium, consisting of RPMI-1640, supplemented with 10% fetal calf serum, L-glutamine, sodium pyruvate, 2-mercaptoethanol and antibiotics, at density of 2×10^6 cells/mL.

4.3.3. PHA-induced proliferation of human blood mononuclear cells

The isolated PBMC were distributed into 96-well flat-bottom plates in 100 μ L aliquots (2 \times 10⁵cells/well). PHA was added at a concentration of 5 μ g/mL. The compounds were tested at doses of 10 and 50 μ g/mL. DMSO at appropriate dilutions served as control. After a four-day incubation in a cell culture incubator, the proliferative response of the cells was determined by the colorimetric MTT method [31]. The results are given in percentage inhibition as compared with appropriate DMSO controls.

4.3.4. Cytotoxicity of the compounds against human blood mononuclear cells

PBMC at density of 2×10^5 /well, re-suspended in the culture medium, were cultured for 24 h in a cell culture incubator with the preparations at indicated concentrations. Cell survival was

determined by MTT colorimetric method [31]. The results are given in percentage inhibition as compared with appropriate DMSO controls.

4.3.5. Lipopolysaccharide-induced TNF-a production in whole blood cell culture

Venous blood from a single donor was diluted $10 \times$ with RPMI-1640 medium and distributed in 1 mL aliquots in 24-well culture plates. The cultures were stimulated by addition of 1 µg/mL of LPS from *Escherichia coli*, O111:B4. The compounds were added to the cultures at concentrations of 5 and 25 µg/mL. Higher concentrations of the compounds could not be used because of inhibitory effects on TNF- α production by corresponding DMSO (the solvent) dilutions. Appropriate dilutions of DMSO served as controls. After overnight incubation in a cell culture incubator, the supernatants were harvested and frozen at -20 °C until cytokine determination by a biological assay [32]. The results are given in percentage inhibition as compared with appropriate DMSO controls.

4.3.6. Growth inhibition of tumor cell lines

A-431 epidermal cell line, L-1210 lymphoma and SW-948 colon tumor cell lines derived from the Collection of Cell Lines of The Institute of Immunology and Experimental Therapy, Wrocław, Poland. The lines were re-suspended in the culture medium and distributed into 96-well flat-bottom plates. L-1210 was present at 1.5×10^4 cells/well while SW-948 and A-431 at 2.5×10^4 cells/well. The preparations were added to the wells at the concentration range of 0.1–50 µg/mL. Cisplatin was used as a reference drug in the same concentrations. After 3-day incubation in a cell culture incubator, the proliferation was determined using MTT colorimetric method. The data are presented as a mean OD value from quadruplicate wells ±SE.

4.3.7. Statistics

The results are presented as mean values \pm standard error (SE) or percentage inhibition = [(control value – tested value)/control value]*100. Brown–Forsyth's test was used to determine the homogeneity of variance between groups. When the variance was homogenous, analysis of variance (One-way ANOVA) was applied, followed by *post hoc* comparisons with the Tukey's test to estimate the significance of the difference between groups. Nonparametric data were evaluated with the Kruskal–Wallis' analysis of variance. Significance was determined at p < 0.05. Statistical analysis was performed using STATISTICA 6.1 for Windows.

Acknowledgments

The work is supported by the National Centre of Science (grant N N405 101739).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ejmech.2013.02.023.

References

- R.R. Gupta, M. Kumar, Synthesis, properties and reactions of phenothiazines, in: R.R. Gupta (Ed.), Phenothiazines and 1,4-Benzothiazines – Chemical and Biological Aspects, Elsevier, 1988, pp. 1–161.
- [2] N. Motohashi, M. Kawase, S. Saito, H. Sakagami, Antitumor potential and possible targets of phenothiazine-related compounds, Curr. Drug Targets 1 (2000) 237–245.
- [3] N. Motohashi, M. Kawase, K. Satoh, H. Sakagami, Cytotoxic potential of phenothiazines, Curr. Drug Targets 7 (2006) 1055–1066.
- [4] K. Pluta, B. Morak-Młodawska, M. Jele&nacute, Recent progress in biological activities of synthesized phenothiazines, Eur. J. Med. Chem. 46 (2011) 3179–3189.
- [5] J.J. Aaron, M.D. Gaye Seye, S. Trajkovska, N. Motohashi, Bioactive Phenothiazines and Benzo[a]phenothiazines: spectroscopic studies and biological and

biomedical properties and applications, Top. Heterocycl. Chem. 16 (2009) 153–231. Springer-Verlag, Berlin.

- [6] A. Dasgupta, S.G. Dastridara, Y. Shirataki, N. Motohashi, Antibacterial activity of artificial phenothiazines and isoflavones from plants, Top. Heterocycl. Chem. 15 (2008) 67–132. Springer-Verlag, Berlin.
- [7] K. Pluta, B. Morak-Młodawska, M. Jele&nacute, Synthesis and properties of diaza-, triaza- and tetraazaphenothiazines, J. Heterocycl. Chem. 46 (2009) 355–391.
- [8] A. Hilgeroth, A. Molnar, J. Molnar, B. Voigt, Correlation of calculated molecular orbital energies of some phenothiazine compounds with MDR reversal properties, Eur. J. Med. Chem. 41 (2006) 548–551.
- [9] Y.S. Sadandam, M.M. Shetty, A. Bhaskar Rao, 10H-Phenothiazines: a new class of enzyme inhibitors for inflammatory diseases, Eur. J. Med. Chem. 44 (2009) 197–202.
- [10] V.K. Tandon, H.K. Maurya, A. Tripathi, G.B. Shiva Keshava, P.K. Shukla, P. Srivastava, D. Panda, 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo [b]phenothiazine-6,11-diones and related compounds: synthesis and biological evaluation as potential antiproliferative and antifungal agents, Eur. J. Med. Chem. 44 (2009) 1086–1092.
- [11] K. Pluta, A. Maślankiewicz, M. Szmielew, N, N-Dialkylaminoalkylsubstituted quinobenzo[1,4]thiazines and diquino[1,4]thiazines, Phosphorus Sulfur Silicon 159 (2000) 79–86.
- [12] B. Morak, K. Pluta, Synthesis of novel dipyrido-1,4-thiazines, Heterocycles 71 (2007) 1347–1361.
- [13] M. Nowak, K. Pluta, K. Suwińska, L. Straver, Synthesis of new pentacyclic diquinothiazines, J. Heterocycl. Chem. 44 (2007) 543–550.
- [14] M. Jeleń, K. Pluta, Synthesis of 6-aminoalkyldiquino-1,4-thiazines and their acyl and sulfonyl derivatives, Heterocycles 75 (2008) 859–870.
- [15] B. Morak-Młodawska, K. Suwińska, K. Pluta, M. Jeleń, 10-(3'-Nitro-4'-pyridyl)-1,8-diazaphenothiazine as the double Smiles rearrangement, J. Mol. Struct. 1015 (2012) 94–98.
- [16] K. Pluta, M. Jeleń, B. Morak-Młodawska, M. Zimecki, J. Artym, M. Kocięba, Anticancer activity of newly synthesized azaphenothiazines in NCI's anticancer screening, Pharmacol. Rep. 62 (2010) 319–332.
- [17] M. Zimecki, J. Artym, M. Kocięba, K. Pluta, B. Morak-Młodawska, M. Jele&nacute, Immunosupressive activities of newly synthesized azaphenothiazines in human and mouse models, Cell. Mol. Biol. Lett. 14 (2009) 622–635.
- [18] A. Zięba, A. Maślankiewicz, K. Suwińska, 1-Alkyl-4-(arylamino)quinobenzothiazinium-3-thiolates and 7-alkyl-12H-quino[3,4-b]-1,4-benzothiazinium salts, Eur. J. Org. Chem. (2000) 2947–2953.

- [19] A. Zięba, A. Sochanik, A. Szurko, M. Rams, A. Mrozek, P. Cmoch, Synthesis and in vitro antiproliferative activity of 5-alkyl-12H-quino[3,4-b]benzothiazinium salts, Eur. J. Med. Chem. 45 (2010) 4733–4739.
- [20] M. Kumar, K. Sharma, R.M. Samarth, A. Kumar, Synthesis and antioxidant activity of quinolinobenzothiazinones, Eur. J. Med. Chem. 45 (2010) 4467–4472.
- [21] M. Jeleń, K. Pluta, Synthesis of quinobenzo-1,4-thiazines from diquino-1,4dithiin and 2,2'-dichloro-3,3'-diquinolinyl disulfide, Heterocycles 78 (2009) 2325–2336.
- [22] B.A. Dreikorn, F.E. Elsasser, G.P. Jourdan, Reaction of thionyl chloride with 3,4dihydro-2(1H)-quinolone, J. Org. Chem. 44 (1979) 877–880.
- [23] M. Nowak, K. Pluta, K. Suwińska, Synthesis of novel heteropentacenes containing nitrogen, sulfur and oxygen or selenium, New J. Chem. 26 (2002) 1216–1220.
- [24] M. Jeleń, K. Suwińska, C. Besnard, K. Pluta, B. Morak-Młodawska, The structures of 8- and 10-trifluoromethylquino[3,2-b]benzo[1,4]thiazines and their benzyl derivatives, Heterocycles 85 (2012) 2281–2290.
- [25] M. Jeleń, K. Suwińska, K. Pluta, B. Morak-Młodawska, N-[4-(chloroquino[3,2b]benzo[1,4]thiazin-6-yl)butyl]acetamide, Acta Cystallogr. E68 (2012) 03324-03325.
- [26] G.E. Umbach, S.E. Singletary, B. Tomasovic, G. Spitzer, V. Hug, B. Drevinko, Dose–survival curves of cis-platinum, melphalan, and velban in human granulocyte/macrophage progenitor cells, Int. J. Cell. Cloning 2 (1984) 335–340.
- [27] X. Yao, K. Panichpisal, N. Kurtzman, K. Nugent, Cisplatin nephrotoxicity: a review, Am. J. Med. Sci. 334 (2007) 115–124.
- [28] N. Motohashi, T. Kurihara, H. Sakagami, D. Szabo, K. Csuri, J. Molnár, Chemical structure and tumor type specificity of "half-mustard type" phenothiazines, Anticancer Res. 19 (1999) 1859–1864.
- [29] S. Nagy, G. Argyelan, J. Molnár, M. Kawase, N. Motohashi, Antitumor activity of phenothiazine-related compounds, Anticancer Res. 16 (1996) 1915–1918.
- [30] H. Sakagami, H. Takahashi, H. Yoshida, M. Yamamura, K. Fukuchi, K. Gomi, N. Motohashi, M. Takeda, Induction of DNA fragmentation in human Myelogenous Leukaemic cell lines by phenothiazine-related compounds, Anticancer Res. 15 (1995) 2533–2540.
- [31] M.B. Hansen, S.E. Nielsen, K. Berg, Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill, J. Immunol. Methods 119 (1989) 203–210.
- [32] T. Espevik, J. Nissen-Meyer, A highly sensitive cell line WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes, J. Immunol. Methods 95 (1986) 99–103.