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Abstract—Tetrakis(triphenylphosphine)palladium, Pd(PPh3)4, is an efficient catalyst for the selective dechlorination of 2,3-
dichloronitrobenzene into 3-chloronitrobenzene. During the reaction the selectivity is over 90% in a very reproducible manner and
the reaction can be stopped at the maximum selectivity. Pd(PPh3)4 is also a catalyst for the one-pot transformation of
2,3-dichloronitrobenzene into 3-chloroaniline (selectivity >60%). © 2001 Elsevier Science Ltd. All rights reserved.

Polychloroarenes are often by-products of industrial
reactions and are persistent environmental pollutants
which require effective means of disposal.1 In the last
few years many studies have been devoted to the prob-
lem of dechlorination of polychloroarenes,2 which
appears to be a necessary step before incineration.3

However, some chloroarenes are also important chemi-
cals for the manufacture of fertilizers, herbicides,
etc….4 Therefore, from both an economic and environ-
mental point of view, it would be challenging to trans-
form useless, toxic polychloroarenes into chloroarenes
that can be used for further chemical synthesis.

2,3-Dichloronitrobenzene (2,3-DCNB) is a by-product
of the nitration of 1,2-dichlorobenzene. We have con-
sidered the transformation of 2,3-DCNB into 3-
chloroaniline (3-CA), which is used for the manufacture
of the herbicide chlorpropham. Formally, this transfor-
mation can be carried out according to two reaction
sequences (Scheme 1). Examination of the literature on
the reactions depicted in Scheme 1 led to the following
conclusions:
1. The particular case of 2,3-DCNB has never been

considered.
2. For what concerns the (1a+1b) sequence, several

catalytic systems allow the selective hydrogenation
of monochloronitrobenzenes into the corresponding
chloroanilines (reaction 1a).5,6 For this reaction, het-

erogeneous platinum catalysts seem to be the most
efficient.6 However, the only catalytic systems for
reaction (1b) are based on Pd/C in highly acidic
media (e.g. aqueous HCl 4 M) in the presence of
iodides or Lewis acids (150°C, 20 bars H2).7,8 These
experimental conditions are prohibitive for an
industrial application.

3. For the (2a+2b) sequence, only a few catalytic sys-
tems have been tested for the selective dechlorina-
tion of chloronitrobenzenes into nitrobenzene.
These are palladium-based catalysts, either
heterogeneous9,10 or homogeneous.11,12

On the basis of the above data, it was decided to
investigate the possible transformation of 2,3-DCNB
according to the (2a+2b) sequence:
� either in two steps: since reaction (2b) is possible

with platinum-based catalysts (vide supra) the prob-

Scheme 1. The two possible reaction sequences for the trans-
formation of 2,3-DCNB into 3-CA.
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Figure 1. Dechlorination of 2,3-DCNB with 15% Pd(PPh3)4 (curves A) and 8% Pd(PPh3)4 (curves B).

lem was to find a regioselective dechlorination of
2,3-DCNB into 3-chloronitrobenzene (3-CNB).

� Or in one-step: in this case, no literature data could
direct the choice of a catalytic system.

In a preliminary study, six palladium-based catalytic
systems, either heterogeneous (Pd/C, Pd/Al2O3, PVP-
PdCl2) or homogeneous (Pd(OAc)2/PEt3, Pd(OAc)2/
PCy3), Pd(PPh3)4) were tested for the transformation of
2,3-DCNB under 1 atm hydrogen pressure. Monitoring
the reactions by GC analysis indicated that, among the
six palladium catalysts considered, Pd(PPh3)4 exhibits
the more promising selectivity for the dechlorination of
2,3-DCNB into 3-CNB.

When a solution of 2,3-DCNB (6.2 mmol) in DMF (15
mL) in the presence of AcOK (7.5 mmol) and
Pd(PPh3)4 is heated from 20 to 120°C (internal temper-
ature 116±2°C, reached in 0.3 h) under hydrogen (1
atm), GC and GC–MS analyses indicate the highly
selective formation of 3-CNB which is later trans-
formed into nitrobenzene (NB), 3-CA or aniline (AN),
depending on the catalyst concentration (vide infra).
No loss of material is observed (GC calibration with
anisole).

When the Pd(PPh3)4 concentration is 15% (mol/mol),
2,3-DCNB is consumed within 4 h. At that moment,
the selectivity in 3-CNB is 94%. When the catalyst
concentration is reduced to 8%, the selectivity in 3-
CNB after total consumption of 2,3-DCNB is 91%. The
above selectivities proved to be reproducible within
1–2% variations, depending on the exact time of sam-
pling. The corresponding curves are shown in Fig. 1.

Curves A: up to 50% conversion (2 h), the reaction is
fully selective. Small amounts of 2,3-DCA are formed,
but never exceed 1–2%. After 3 h, NB is slowly formed.
When 2,3-DCNB is totally consumed (4 h), the reaction
medium contains 3-CNB (94%), 2,3-dichloroaniline
(2,3-DCA) (1%) and NB (4%), corresponding to the

maximum selectivity obtained with this catalyst. Later,
3-CNB is transformed into NB and 3-CA. AN forms
slowly only after 6 h reaction.

Curves B: up to total conversion of 2,3-DCNB, the
reaction occurs in the same manner as with 15% cata-
lyst (curves A) to give de 3-CNB (91%) and NB (9%),
with slightly lower selectivity than above. The differ-
ence only appears later: nitro groups are more rapidly
hydrogenated, 3-CNB into 3-CA and NB into AN.
2,3-DCA is never detected. The most interesting result
is that, after 7 h under these conditions, the percentage
of 3-CA reaches 62%, which is the best result for the
one-pot transformation of 2,3-DCNB into 3-CA.
Preparative runs on ca. 10 g of 2,3-DCNB indicated
that the same selectivities are observed.

Unexpectedly, when the catalyst concentration is
decreased to 1%, the transformation of 2,3-DCNB is no
more selective. Large proportions of AN and 3-CA are
formed before total conversion of 2,3-DCNB. For
instance, after 3 h reaction, GC analysis indicates the
following product distribution: 2,3-DCNB (11%), 2,3-
DCA (6%), 3-CA (15%), 3-CNB (21%), NB (9%), AN
(30%). A similar observation has been mentioned by
Ohta et al. for the dechlorination of 4-chloronitroben-
zene with the same catalyst.12 At the beginning,
Pd(PPh3)4 selectively dechlorinates 2,3-DCNB to 3-
CNB, but after some turnovers hydrogenation occurs.
These observations suggest that there is a change in the
state of the palladium species, maybe from Pd(PPh3)n to
metallic palladium. The observed effect on the selectiv-
ity obviously depends on the catalyst concentration.

In conclusion, tetrakis(triphenylphosphine)palladium,
Pd(PPh3)4, is an efficient catalyst for the selective
dechlorination of 2,3-dichloronitrobenzene into 3-
chloronitrobenzene. During the reaction the selectivity
is over 90% in a very reproducible manner and the
reaction can be stopped at the maximum selectivity.
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This is the first reported example of both chemoselec-
tive (versus the nitro group) and regioselective (versus
chlorine in the meta position) dechlorination of a poly-
chloronitrobenzene. Pd(PPh3)4 is also a catalyst for the
one-pot transformation of 2,3-dichloronitrobenzene
into 3-chloroaniline (selectivity >60%). This is the first
example of the regioselective dechlorination–hydro-
genation sequence of polychloronitrobenzenes.

Further investigations are in progress directed to
improve the catalyst stability during the reaction in
order to allow much lower catalyst concentrations to be
used.
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