

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com:80/loi/gpss20

Synthesis and Characterization of (Disilylanilino)Phosphines

Pradeep Devulapalli, Bin Wang & Robert H. Neilson

To cite this article: Pradeep Devulapalli, Bin Wang & Robert H. Neilson (2015) Synthesis and Characterization of (Disilylanilino)Phosphines, Phosphorus, Sulfur, and Silicon and the Related Elements, 190:12, 2154-2163, DOI: 10.1080/10426507.2015.1072196

To link to this article: http://dx.doi.org/10.1080/10426507.2015.1072196

Accepted author version posted online: 02 Oct 2015.

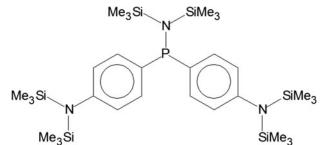
Submit your article to this journal

Article views: 17

View related articles

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com:80/action/journalInformation?journalCode=gpss20



SYNTHESIS AND CHARACTERIZATION OF (DISILYLANILINO)PHOSPHINES

Pradeep Devulapalli, Bin Wang, and Robert H. Neilson

Department of Chemistry, Texas Christian University, Fort Worth, TX 76134, USA

GRAPHICAL ABSTRACT

The disilyl(4-bromo)aniline $(Me_3Si)_2NC_6H_4Br(A)$ readily undergoes metal-halogen exchange to give the reactive organolithium derivative $(Me_3Si)_2NC_6H_4Li(B)$. Subsequent reactions with various chlorophosphines, R(R')PCl, or chloro(disilylamino)phosphines, $(Me_3Si)_2NP(R)Cl$, were used to prepare three varieties of the title compounds: $(Me_3Si)_2NC_6H_4P(R')R(I: R = R' = NMe_2; 2: R = R' = OCH_2CF_3; 3: R = Ph, R' = OCH_2CF_3; 4: R = R' = Ph; 5: R = Ph, R' = Me), <math>(Me_3Si)_2NC_6H_4P(R)N(SiMe_3)_2$ [6: R = Me; 7: R = i-Pr; 8: R = n-Bu, 9: R = OCH_2CF_3; **10**: R = C_6H_4N(SiMe_3)_2; **11**: R = Ph], and $(Me_3Si)_2NC_6H_4P(Ph)R$ [**12**: R = n-Bu; **13**: R = C_6H_4N(SiMe_3)_2]. The new compounds **1–13** were generally obtained as colorless, distillable liquids that were fully characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy and elemental analysis.

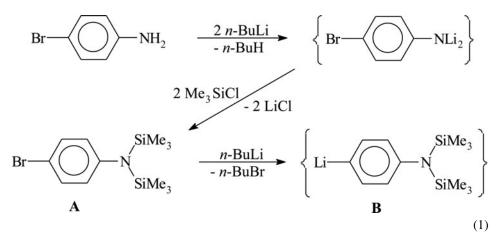
Keywords Silylaniline; anilinophosphine; phosphine; aminophosphine; silylamine

INTRODUCTION

The derivative chemistry of silicon-nitrogen-phosphorus compounds is quite extensive and, in many cases, synthetically useful.¹ A wide variety of oxidation and substitution reactions at phosphorus combined with facile Si-N bond cleavage often leads to

Received 17 June 2015; accepted 29 June 2015.

Dedicated to Professor Robert R. Holmes in honor of his many years of professionalism and high standards as Editor of this journal.


Address correspondence to Dr. Robert H Neilson, Department of Chemistry, Texas Christian University, TCU Box 298860, Fort Worth, TX 76129, United States. E-mail: r.neilson@tcu.edu

intermolecular silyl group rearrangements² or elimination of small-molecule silane byproducts.³ In particular, N-silylphosphoranimines, Me₃SiN=P(R')(R)X, readily undergo thermally or catalytically induced elimination of Me₃SiX to afford either cyclic⁴ or polymeric⁵ phosphazenes, (N=PRR')_n, depending on the nature of the leaving group (X) and/or catalytic factors.

More recently, we have extended our studies of Si-N-P compounds to include systems in which the silicon-nitrogen and phosphorus-containing groups are not directly connected. In this context, we report here on the synthesis and characterization of a series of new (disilylanilino)phosphines, $(Me_3Si)_2N-C_6H_4-P(R')R^6$ Pending future studies, some of these compounds are viewed as potential precursors to novel macrocyclic or polymeric organicinorganic hybrid materials, $[-C_6H_4-N=P(R')R_-]_n$.

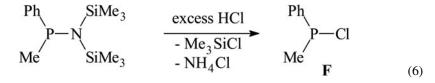
RESULTS AND DISCUSSION

All of the synthetic chemistry reported here begins with deprotonation reactions of 4-bromoaniline (Equation (1)). Addition of one or two equivalents of *n*-BuLi readily affords the corresponding N-lithio reagents in solution. In a slight modification of the published procedure,⁷ the dilithio (-NLi₂) intermediate was converted to the disilylaniline reagent **A** in good yield. While the -NLi₂ reagent reacted rapidly at 0°C with the first equivalent of Me₃SiCl, addition of the second required refluxing for several hours in hexane. Subsequent metal-halogen exchange (at 0°C in Et₂O solution) was used to generate the N-silylated aryllithium reagent **B**.

The new (disilylanilino)phosphines described here were obtained from the aryllithium reagent **B** by way of nucleophilic substitution reactions with three different types of P-Cl compounds. In the first variation, treatment of mono-chlorophosphines RR'PCl with reagent **B** at -78° C in Et₂O resulted in the formation of (disilylanilino)phosphines **1–5** (Equation (2)). These compounds were obtained in moderate yields (ca. 60%) as colorless, distillable liquids (**1–3**, **5**) or a pale yellow solid (**4**) that were fully characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy and elemental analysis (see Experimental section).

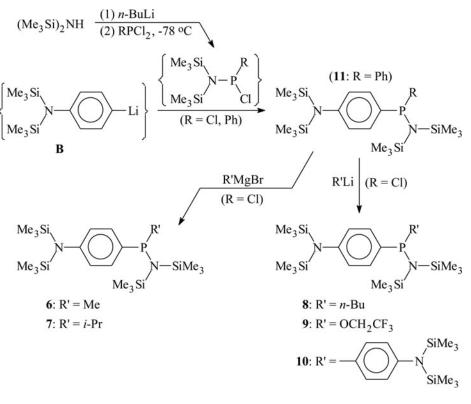
$$\begin{cases} Me_{3}Si \\ Me_{3}S$$

Although these new phosphines 1-5 were readily prepared, this synthetic pathway is limited by difficulties in obtaining many of the necessary mono-chlorophosphines. Other than Ph₂PCl (used to prepare 4), few such reagents are commercially available. The other chlorophosphines (C–F) were prepared in this work as summarized in Equations (3)–(6).


$$PCl_{3} \xrightarrow{4 \text{ Me}_{2}\text{NH}} P-Cl \qquad Me_{2}\text{N} \qquad P-Cl \qquad Me_{2}\text{N} \qquad P-Cl \qquad Me_{2}\text{N} \qquad (3)$$

$$PCl_{3} + 2 CF_{3}CH_{2}OH \xrightarrow{2 Et_{2}NPh} CF_{3}CH_{2}O \xrightarrow{P-Cl} CF_{3}CH_{2}O \xrightarrow{P-CL}$$

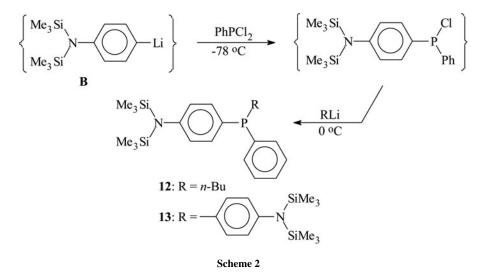
$$PhPCl_{2} + CF_{3}CH_{2}OH \xrightarrow{Et_{2}NPh} \xrightarrow{CF_{3}CH_{2}O} P-Cl$$


$$PhPCl_{2} + CF_{3}CH_{2}OH \xrightarrow{Ft_{2}NPh(H)Cl} Ph$$

$$E (5)$$

While the dehydrohalogenation reaction of PCl_3 with Me_2NH (Equation (3)) was a relatively straightforward, published procedure,⁸ those involving the P-trifluoroethoxy analogs **D** (Equation (4)) and **E** (Equation (5)) were more complicated.⁹ Mixtures of products, such as **D** combined with smaller amounts of (CF₃CH₂O)₃P and CF₃CH₂OPCl₂, were generally obtained due to multiple P-Cl replacements and/or disproportionation reactions of the mixed-substituent products.⁹ Nonetheless, the impure reagents **D** and **E** were used successfully to prepare the corresponding anilinophosphines **2** and **3** (Equation (2)). The alkyl/aryl(chloro)phosphine¹⁰ (**F**) was prepared in this study by treatment of a (disilylamino)phosphine, $(Me_3Si)_2NP(Ph)Me$, with four equivalents of anhydrous HCl (Equation (6)). Although the yield of **F** was relatively low (ca. 40%), this new method holds promise for the preparation of other mixed-substituent chlorophosphines since the requisite (silylamino)-phosphines are readily available from a "one-pot" procedure known as the Wilburn¹¹ method. In this process, either PCl₃ or PhPC₁₂ is treated first with one equivalent of (Me₃Si)₂NLi and the remaining P-Cl groups are then replaced by addition of Grignard or organolithium reagents.

Our second synthetic approach to the title compounds generally made use of the Wilburn¹¹ method as summarized in **Scheme 1**. In this "one-pot" procedure, the dichlorophosphine intermediate, $(Me_3Si)_2NPCl_2$, was treated first with organolithium reagent **B**, followed by the appropriate Grignard or lithium reagent to afford compounds **6–10**. Alternatively, by starting with PhPC₁₂ instead of PCl₃, the P-phenyl derivative **11** was easily prepared. Notably, all of these new phosphines (**6–11**) contain both disilyl*anilino* and disilyl*amino* groups on phosphorus (**10** actually incorporates two of the anilino groups). They were all obtained in moderate yields (ca. 50–60%) as colorless, distillable liquids that were fully characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy and elemental analysis.



Scheme 1

As is the case for all of the products reported here, the NMR spectral data for compounds 6–11 are completely consistent with the proposed structures. For example, the 1,4-substitution pattern of aryl ring is clearly indicated by the observation of four distinct

signals in the ¹³C NMR spectra with three of the signals being doublets due to coupling to phosphorus. The ³¹P chemical shifts generally reflect the expected electronic and steric effects of the substituents at the 3-coordinate phosphorus center.¹² It seems noteworthy that, in all cases, the ³¹P chemical shifts are within 1 ppm of those observed for analogous structures containing a simple P-phenyl group instead of the P-C₆H₄N(SiMe₃)₂ substituent.

In the third synthetic route to the title compounds, $PhPC_{12}$ was employed as a convenient starting material (**Scheme 2**). In one case, it was treated first with the organolithium reagent **B** and then with *n*-BuLi to yield the mixed-substituent phosphine **12**. Similarly, the direct reaction of $PhPC_{12}$ with two equivalents of **B** afforded **13** that contains two sily-lanilino groups, similar to compound **10** (**Scheme 1**). Compounds **12** and **13** were obtained as colorless, distillable liquids, and were characterized as previously described.

In summary, this work demonstrates that a significant series (i.e., **1–13**) of the title compounds are accessible by varied synthetic routes. Studies of the derivative chemistry of selected members of this series are ongoing and will be reported in due course.

EXPERIMENTAL SECTION

Materials and General Procedures

The following reagents were obtained from commercial sources and used without further purification: BrC₆H₄NH₂, (Me₃Si)₂NH, Me₃SiCl, PCl₃, PhPCl₂, Ph₂PCl, CF₃CH₂OH, Me₂NH, Et₂NPh, CH₃MgBr (3.0 M in ether), *i*-PrMgBr (2.0 M in ether), *n*-BuLi (2.5 M in hexane), and anhydrous HCl (1.0 M in Et₂O). The disilylaniline reagent (Me₃Si)₂NC₆H₄Br (A⁷) and the chlorophosphines RR'PCl (C⁸: R = R' = NMe₂; **D**⁹: R = R' = OCH₂CF₃; **E**⁹: R = Ph, R' = OCH₂CF₃) were prepared by the referenced procedures, in some cases with modifications as detailed below. The chlorophosphine, Ph(Me)PCl (**F**¹⁰), was prepared by the reaction of the (disilylamino)phosphine (Me₃Si)₂NP(Me)Ph¹¹ with dry HCl as described below. Hexane and Et₂O were distilled under N₂ from CaH₂ and either used immediately or stored over molecular sieves. Proton, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were obtained on a Varian XL-300 spectrometer using CDC1₃ or C₆D₆ as a lock solvent. Positive ¹H and ¹³C NMR chemical shifts and ³¹P NMR shifts are downfield from the external references Me4Si and H₃PO₄, respectively, with coupling constants (*J*) given in Hz. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, NY or E&R Microanalytical Laboratory, Corona, NY. All reactions and manipulations were carried out under a nitrogen atmosphere and/or by using standard vacuum line techniques.

Preparation of the Disilylaniline, (Me₃Si)₂NC₆H₄Br (A)

A three-neck (2000 mL) round-bottom flask, equipped with a mechanical stirrer, N₂ inlet, and an addition funnel was charged with Et₂O (800 mL) and BrC₆H₄NH₂ (51.6 g, 300 mmol). The mixture was cooled to 0°C and *n*-BuLi (240 mL, 600 mmol) was added slowly from the addition funnel. The mixture was allowed to warm to room temperature and stirred for 1 h. The solution was cooled again to 0°C and Me₃SiCl (32.6 g, 300 mmol) was added slowly. The mixture was then allowed to warm to room temperature and was stirred for 2 h. Most of the Et₂O was then removed under reduced pressure and hexane (800 mL) was added, followed by additional Me₃SiCl (39.0 g, 350 mmol). The mixture was then refluxed while stirring overnight to complete the reaction. The salt was removed by filtration and hexane was removed under reduced pressure. Fractional distillation afforded compound **A**⁷ as a colorless liquid, bp: 57–59°C (0.01 mm Hg), generally in 65–70% yield.

Preparation of the Chlorophosphine, (CF₃CH₂O)₂PCI (D)

In a typical experiment, a three-neck (3000 mL) round-bottom flask, equipped with a mechanical stirrer, N₂ inlet, and an addition funnel was charged with Et₂O (1500 mL) and PCl₃ (67.3 g, 490 mmol). The solution was cooled to 0°C and a mixture of Et₂NPh (147.7 g, 990 mmol) and CF₃CH₂OH (99.0 g, 990 mmol) was added from the addition funnel. The mixture was then allowed to warm to room temperature and was stirred for 3 h. Ether was removed under reduced pressure and the remaining volatile material was removed by distillation at ca. 70°C (5 mm Hg). By NMR spectroscopy, the distillate was determined to be a mixture consisting of **D**⁹ (³¹P NMR: δ 166.0), (CF₃CH₂O)₃P, and CF₃CH₂OPCl₂. Repeated distillations increased the relative proportion of **C** to ca. 60–70%. The mixture containing **C** was subsequently used to prepare the (disilylanilino)phosphine **2**. In a similar procedure, the reaction of PhPC₁₂ and CF₃CH₂OH (mixed with Et₂NPh) afforded the chlorophosphine **E**, Ph(CF₃CH₂O)PCl (³¹P NMR: δ 177.5), containing ca. 10–20% of PhP(OCH₂CF₃)₂. This product mixture was then used to prepare the (disilylanilino)phosphine **3**.

Preparation of the Chlorophosphine, Ph(Me)PCI (F)

A three-neck (1000 mL) round-bottom flask, equipped with a mechanical stirrer, N₂ inlet, and an addition funnel was charged with Et₂O (200 mL) and (Me₃Si)₂NP(Ph)Me¹¹ (14.2 g, 50.0 mmol). The mixture was cooled to 0°C and HCl (200 mL, 200 mmol, 1.0 M in Et₂O) was added slowly. The mixture was allowed to warm to room temperature and was stirred for ca. 4 h. Most of the ether was removed under reduced pressure and hexane (ca. 200 mL) was added to precipitate the salt. The salt was removed by filtration and hexane was removed under reduced pressure. Fractional distillation afforded the chlorophosphine \mathbf{F}^{10} (³¹P NMR: δ 87.0) as a colorless, very moisture-sensitive liquid, bp: 38–42°C (0.01 mm Hg), typically in ca. 40% yield.

Preparation of (Disilylanilino)phosphines, (M₃Si)₂NC₆H₄P(R')R (1–5)

A typical experiment for the synthesis of $1 (\mathbf{R} = \mathbf{R}' = \mathbf{NMe}_2)$ is described here. A three-neck (100 mL) round-bottom flask, equipped with a magnetic stirring bar, N_2 inlet, rubber septum, and an addition funnel was charged with $Et_2O(50 \text{ mL})$ and the disilylaniline A (15.8 g, 50.0 mmol). The mixture was cooled to 0° C and *n*-BuLi (20 mL, 50 mmol) was added slowly via syringe. The mixture was allowed to warm to room temperature and was stirred for 1 h, affording a solution of the organolithium reagent **B**. Separately, another threeneck (250 mL) round-bottom flask, equipped with a magnetic stirring bar, N_2 inlet, rubber septum, and an addition funnel was charged with Et₂O (50 mL) and the chlorophosphine, $(Me_2N)_2PCl$ (7.70 g, 50.0 mmol). The solution of **B**, prepared above, was transferred via cannula to the addition funnel and added slowly to the solution of (Me₂N)₂PCl with stirring at -78° C. The mixture was allowed to warm to room temperature and was stirred for ca. 2 h. Most of the ether was removed under reduced pressure and hexane (ca. 100 mL) was added to precipitate the salt. The salt was removed by filtration and hexane was removed under reduced pressure. Fractional distillation afforded 1 as a colorless liquid. (1: $\mathbf{R} = \mathbf{R}'$ = NMe₂) Yield: 63%. bp: 87–90°C (0.01 mm Hg). ³¹P NMR: δ 100.8. ¹H NMR: δ 0.05 (s, Me_3SiN , 2.74 (d, Me_2N , $J_{PH} = 9.1$), 6.9–7.2 (m, C_6H_4). ¹³C NMR: δ 2.1 (s, Me_3SiN), 41.6 (d, Me_2N , $J_{PC} = 15.2$), 134.9 (d, PC_6H_4 , C_1 , $J_{PC} = 6.8$), 129.9 (d, PC_6H_4 , $C_{2.6}$, $J_{PC} = 4.1$), 131.3 (d, PC₆H₄, $C_{3.5}$, JPC = 4.1), 147.5 (s, PC₆H₄, C_4). Anal. Calcd. for C₁₆H₃₄N₃PSi₂: C, 54.04; H, 9.64. Found: C, 53.91; H, 10.22.

The (disilylanilino)phosphines 2 and 3 were prepared in the same manner from the corresponding chloro(trifluoroethoxy)phosphine reagents C and D, respectively. Both were initially obtained by fractional distillation as colorless liquids containing ca. 3-5% impurities as indicated by NMR spectroscopy. Redistillation afforded the pure compounds that were characterized as follows. (2: $\mathbf{R} = \mathbf{R}' = \mathbf{OCH}_2\mathbf{CF}_3$). Yield: ca. 60%. bp: 61–61°C (0.01 mm Hg). ³¹P NMR: δ 168.4. ¹H NMR: δ 0.07 (s, *Me*₃SiN), 3.9–4.2 (m, OCH₂CF₃), 6.9-7.2 (m, C_6H_4). ¹³C NMR: δ 2.0 (s, Me_3 SiN), 63.5 (dq, OCH₂CF₃, $J_{PC} = 8.7, J_{FC} =$ 36.2), 123.5 (dq, $J_{PC} = 6.2$, $J_{FC} = 277.8$), 131.8 (d, PC₆H₄, C_1 , $J_{PC} = 18.5$), 130.3 (d, PC_6H_4 , $C_{2.6}$, $J_{PC} = 6.2$, 130.1 (d, PC_6H_4 , $C_{3.5}$, $J_{PC} = 21.8$), 152.0 (s, PC_6H_4 , C_4). Anal. Calcd. for $C_{16}H_{26}F_6O_2NPSi_2$: C, 41.28; H, 5.63. Found: C, 41.73; H, 6.13. (3: $\mathbf{R} = \mathbf{Ph}$, $\mathbf{R}' = \mathbf{OCH}_2\mathbf{CF}_3$). Yield: ca. 60%. bp: 121–123°C (0.01 mm Hg). ³¹P NMR: δ 128.3. ¹H NMR: δ 0.06 (s, Me_3 SiN), 4.0–4.2 (m, OCH₂CF₃), 7.0–7.5 (m, C_6H_4), 7.3–7.4 (m, Ph). ¹³C NMR: δ 2.1 (s, Me_3 SiN), 66.9 (dq, OCH₂CF₃, $J_{PC} = 21.2$, $J_{FC} = 35.2$), 123.7 (dq, J_{PC} $= 9.3, J_{FC} = 278.8), 134.4$ (d, PC₆H₄, $C_1, J_{PC} = 16.1), 128.4$ (d, PC₆H₄, $C_{2.6}, J_{PC} = 6.9), 128.4$ (d, PC₆H₄, $C_{2.6}, J_{PC} = 6.9$), 128.4 (d, PC₆H₄, $C_{2.6}, J_{2.6} = 6.9$), 128.4 (d, PC₆H₄, $C_{2.6}$ 130.4 (d, PC_6H_4 , $C_{3,5}$, $J_{PC} = 21.2$), 150.6 (s, PC_6H_4 , C_4), 140.6 (d, PPh, C_1 , $J_{PC} = 16.3$), 130.1 (d, PPh, $C_{2.6}$, $J_{PC} = 7.5$), 131.5 (d, PPh, $C_{3.5}$, $J_{PC} = 23.2$), 129.6 (s, PPh, C_4). Anal. Calcd. for C₂₀H₂₉F₃ONPSi₂: C, 54.15; H, 6.59. Found: C, 53.98; H, 6.47.

Similarly, the reaction of **B** with Ph₂PCl afforded (disilylanilino)phosphine **4** as a pale yellow solid. (**4**: **R** = **R**' = **Ph**). Yield: ca. 60%. ³¹P NMR: δ –6.4. ¹H NMR: δ 0.08 (s, *Me*₃SiN), 6.8–7.2 (m, *C*₆*H*₄), 7.2–7.4 (m, *Ph*). ¹³C NMR: δ 2.1 (s, *Me*₃SiN), 135.7 (d, PC₆H₄, *C*₁, *J*_{PC} = 21.3), 128.4 (d, PC₆H₄, *C*_{2,6}, *J*_{PC} = 7.2), 133.6 (d, PC₆H₄, *C*_{3,5}, *J*_{PC} = 19.1), 149.2 (s, PC₆H₄, *C*₄), 137.8 (d, PPh, *C*₁, *J*_{PC} = 11.3), 130.3 (d, PPh, *C*_{2,6}, *J*_{PC} = 7.4), 134.1 (d, PPh, *C*_{3,5}, *J*_{PC} = 20.0), 128.5 (s, PPh, *C*₄). Anal. Calcd. for C₂₄H₃2NPSi₂: C, 68.36; H, 7.65. Found: C, 67.99; H, 8.02.

In the same manner, the reaction of **B** with Ph(Me)PCl (**E**), freshly prepared as described above, afforded (disilylanilino)phosphine **5** as a colorless liquid. (**5**: **R** = **Ph**, **R**' = **Me**). Yield: 62%. bp: 135–139°C (0.03 mm Hg). ³¹P NMR: δ –27.1. ¹H NMR: δ 0.00

(s, Me_3 SiN), 1.54 (d, PMe, $J_{PH} = 3.6$), 6.8–7.2 (m, C_6H_4), 7.2–7.3 (m, Ph). ¹³C NMR: δ 0.0 (s, Me_3 SiN), 10.8 (d, PMe, $J_{PH} = 13.3$), 126.1 (d, PC_6H_4 , C_1 , $J_{PC} = 22.2$), 131.5 (d, PC_6H_4 , $C_{2.6}$, $J_{PC} = 9.5$), 130.5 (d, PC_6H_4 , $C_{3.5}$, $J_{PC} = 19.6$), 146.7 (s, PC_6H_4 , C_4), 139.1 (d, PPh, C_1 , $J_{PC} = 12.4$), 128.1 (d, PPh, $C_{2.6}$, $J_{PC} = 7.2$), 129.7 (d, PPh, $C_{3.5}$, $J_{PC} = 18.1$), 126.2 (s, PPh, C_4). Anal. Calcd. for $C_{19}H_{30}NPSi_2$: C, 63.46; H, 8.41. Found: C, 63.25; H, 9.19.

Preparation of (Disilylanilino)phosphines, $(M_3Si)_2NC_6H_4P(R)N$ (SiMe₃)₂ (6–11)

A typical experiment for the synthesis of $6 (\mathbf{R} = \mathbf{M}\mathbf{e})$ is described here. A three-neck (1000 mL) round-bottom flask, equipped with a mechanical stirrer, N₂ inlet, and an addition funnel was charged with Et₂O (200 mL) and (Me₃Si)₂NH (8.25 g, 51.1 mmol). The mixture was cooled to 0°C and n-BuLi (21.6 mL, 54.0 mmol) was added slowly. The mixture was allowed to warm to room temperature and was stirred for 1 h. The mixture was then cooled to -78° C and PCl₃ (7.08 g, 51.6 mmol) was added slowly. The mixture was allowed to warm to room temperature and was stirred for 2 h. The mixture was again cooled to 0°C and a previously prepared solution of the organolithium reagent B (51.2 mmol) was added slowly via cannula. The reaction mixture was allowed to warm to room temperature and was stirred for 2 h. To replace the remaining chlorine, the mixture was again cooled to 0° C and CH₃MgBr (17.3 mL, 52 mmol) was added slowly from the addition funnel. After warming to room temperature, the mixture was stirred for ca. 3 h. Most of the solvents were removed under reduced pressure and hexane (300 mL) was added to precipitate the salt. After filtration and solvent removal under reduced pressure, fractional distillation afforded **6** as a colorless liquid. (**6**: **R** = **Me**). Yield: 62%. bp: 75–80°C (0.10 mm Hg). ³¹P NMR: δ 38.5. ¹H NMR: δ 0.01 (s, *Me*₃SiN), 0.08 (s, *Me*₃SiNP), 1.56 (d, *PMe*, *J*_{PH} = 5.7), 6.8–7.2 (m, C_6H_4). ¹³C NMR: δ 0.0 (s, Me_3 SiN), 2.1 (s, Me_3 SiNP), 14.9 (d, PMe, $J_{PC} = 25.0$), 139.2 (d, PC₆H₄, C_1 , $J_{PC} = 18.3$), 126.9 (d, PC₆H₄, $C_{2,6}$, $J_{PC} = 15.8$), 127.7 (s, PC₆H₄, C3,5), 144.8 (s, PC₆H₄, C₄). Anal. Calcd. for C₁₉H₄₃N₂PSi₄: C, 51.52; H, 9.78. Found: C, 51.93; H, 10.88.

Compounds 7-10 were prepared in the same manner using the appropriate Grignard (*i*-PrMgBr) or lithium reagent RLi [R = n-Bu, OCH₂CF₃, C₆H₄N(SiMe₃)₂], instead of MeMgBr. All were obtained as colorless liquids after fractional distillation. (7: $\mathbf{R} = i$ -Pr). Yield: 50%. bp: 130–135°C (0.01 mm Hg). ³¹P NMR: δ 57.8. ¹H NMR: δ 0.00 (s, Me₃SiN), 0.08 (s, Me_3 SiNP), 1.07 (dd, PCH Me_2 , $J_{PH} = 21.9$, JHH = 6.9), 1.15 (dd, PCH Me_2 , J_{PH} = 16.2, JHH = 6.3), 2.35 (ds, PCHMe₂, J_{PH} = 6.6, JHH = 6.9), 6.7–7.3 (m, C_6H_4). ¹³C NMR: $\delta 0.1$ (s, Me_3 SiN), 2.5 (d, Me_3 SiNP, $J_{PC} = 6.6$), 17.5 (d, PCH Me_2 , $J_{PC} = 11.2$), 18.8 (d, PCHM e_2 , $J_{PC} = 37.6$), 24.7 (d, PCHM e_2 , $J_{PC} = 18.4$), 136.0 (d, PC₆H₄, C_1 , $J_{PC} = 23.6$), 128.9 (d, PC₆H₄, $C_{2,6}$, $J_{PC} = 15.5$), 127.7 (s, PC₆H₄, $C_{3,5}$), 145.6 (s, PC₆H₄, C_4). Anal. Calcd. for $C^{21}H_{47}N_2PSi_4$: C, 53.56; H, 10.06. Found: C, 52.41; H, 10.26. (8: $\mathbf{R} = n$ -Bu). Yield: 59%. bp: $128-133^{\circ}$ C (0.10 mm Hg). ³¹P NMR: δ 47.6. ¹H NMR: δ 0.01 (s, *Me*₃SiN), 0.09 (s, Me_3 SiNP), 0.94 (t, CH₂CH₃, JHH = 6.6), 1.5–1.6 (m, PCH₂CH₂, CH₂CH₃), 1.9-2.0 (m, PCH₂) 6.8-7.2 (m, C₆H₄). ¹³C NMR: δ 0.0 (s, Me₃SiN), 2.3 (d, Me₃SiNP, J_{PC} = 6.6), 11.9 (s, CH₂CH₃), 22.4 (d, CH₂CH₃, $J_{PC} = 13.6$), 26.2 (d, PCH₂CH₂, $J_{PC} = 20.3$), 29.5 (d, PCH₂, $J_{PC} = 21.2$), 138.7 (d, PC₆H₄, C_1 , $J_{PC} = 21.6$), 127.1 (d, PC₆H₄, $C_{2.6}$, J_{PC} = 15.2), 127.7 (s, PC₆H₄, $C_{3,5}$), 144.8 (s, PC₆H₄, C_4). Anal. Calcd. for C₂₂H₄₉N₂PSi₄: C, 54.49; H, 10.18. Found: C, 53.27; H, 10.87. (9: $\mathbf{R} = \mathbf{OCH}_2\mathbf{CF}_3$). Yield: ca. 60%.

bp: 93–96°C (0.10 mm Hg). ³¹P NMR: δ 150.2. ¹H NMR: δ 0.01 (s, Me_3 SiN), 0.11 (s, Me_3 SiNP), 4.0–4.2 (m, OCH_2 CF₃), 6.8–7.2 (m, C_6H_4). ¹³C NMR: δ 0.0 (s, Me_3 SiN), 1.9 (d, Me_3 SiNP, $J_{PC} = 7.2$), 63.9 (dq, OCH_2 CF₃, $J_{PC} = 27.5$, $J_{FC} = 35.2$), 123.5 (dq, $J_{PC} = 6.2$, $J_{FC} = 278.0$), 139.2 (d, PC₆H₄, C_1 , $J_{PC} = 18.3$), 126.9 (d, PC₆H₄, $C_{2,6}$, $J_{PC} = 15.8$), 127.7 (s, PC₆H₄, $C_{3,5}$), 144.8 (s, PC₆H₄, C_4). Anal. Calcd. for C₂₀H₄₂F₃ON₂PSi₄: C, 45.59; H, 8.03. Found: C, 45.73; H, 7.84. (**10: R = C₆H₄N(SiMe_3)₂**). Yield: 46%. bp: 170–180°C (0.01 mm Hg). ³¹P NMR: δ 48.9. ¹H NMR: δ 0.02 (s, Me_3 SiN), 0.08 (s, Me_3 SiNP), 6.8–7.3 (m, C_6H_4). ¹³C NMR: δ 0.0 (s, Me_3 SiN), 2.2 (d, Me_3 SiNP, $J_{PC} = 7.2$), 133.1 (d, PC₆H₄, C_1 , $J_{PC} = 21.0$), 128.9 (d, PC₆H₄, $C_{2,6}$, $J_{PC} = 19.6$), 127.4 (s, PC₆H₄, $C_{3,5}$), 146.7 (s, PC₆H₄, C_4). Anal. Calcd. for C₃₀H₆₂N₃PSi₆: C, 54.24; H, 9.41. Found: C, 54.50; H, 9.17.

Compound **11** was prepared in the same manner starting from PhPC₁₂ instead of PCl₃. Fractional distillation afforded **11** as a colorless liquid. (**11: R** = **Ph**). Yield: 58%. bp: 149–152°C (0.10 mm Hg). ³¹P NMR: δ 48.9. ¹H NMR: δ 0.00 (s, Me_3 SiN), 0.02 (s, Me_3 SiNP), 6.8–7.3 (m, C_6H_4), 7.3–7.5 (m, *Ph*). ¹³C NMR: δ 0.1 (s, Me_3 SiN), 2.4 (d, Me_3 SiNP, $J_{PC} = 7.0$), 138.8 (d, PC₆H₄, C_1 , $J_{PC} = 23.4$), 129.3 (d, PC₆H₄, $C_{2,6}$, $J_{PC} = 19.6$), 129.3 (d, PC₆H₄, $C_{3,5}$, $J_{PC} = 19.0$), 146.7 (s, PC₆H₄, C_4), 133.2 (d, PPh, C_1 , $J_{PC} = 21.2$), 127.6 (d, PPh, $C_{2,6}$, $J_{PC} = 5.4$), 128.8 (d, PPh, $C_{3,5}$, $J_{PC} = 5.0$), 125.4 (s, PPh, C_4). Anal. Calcd. for C₂₄H₄₅N₂PSi₄: C, 57.09; H, 8.98. Found: C, 56.93; H, 9.43.

Preparation of (Disilylanilino)phosphines, (M₃Si)₂NC₆H₄P(R)Ph (12, 13)

A solution of the silylaniline reagent **B** (141 mmol) in Et₂O (300 mL) was prepared (as described above in the synthesis of **1**). The mixture was cooled to -78° C and PhPC₁₂ (25.1 g, 140.0 mmol) was slowly added via syringe. The mixture was allowed to warm to 0°C and was stirred for 2 h before *n*-BuLi (56.0 mL, 140.0 mmol) was slowly added. The mixture was allowed to warm to room temperature and was stirred for 3 h. The ether was removed under reduced pressure and hexane was added to precipitate the salt. After filtration and solvent removal under reduced pressure, fractional distillation afforded **12** as a colorless liquid. (**12: R** = **Ph**, **R**' = *n*-**Bu**). Yield: 50%. bp: 140–144°C (0.01 mm Hg). ³¹P NMR: δ –16.2. ¹H NMR: δ 0.01 (s, *Me*₃SiN), 0.84 (t, CH₂*CH*₃, *J*HH = 6.3), 1.3–1.4 (m, PCH₂*CH*₂, *CH*₂CH₃), 1.9–2.0 (m, *PCH*₂), 6.8–7.2 (m, *C*₆*H*₄), 7.3–7.5 (m, *PPh*). ¹³C NMR: δ 0.0 (s, *Me*₃SiN), 11.7 (s, CH₂*CH*₃), 22.2 (d, *CH*₂CH₃, *J*_{PC} = 13.3), 26.1 (d, PCH₂*CH*₂, *J*_{PC} = 10.6), 26.2 (d, *PCH*₂, *J*_{PC} = 4.9), 131.1 (d, PC₆H₄, *C*₁, *J*_{PC} = 19.0), 130.3 (d, PC₆H₄, *C*_{2,6}, *J*_{PC} = 17.9), 127.0 (s, PC₆H₄, *C*_{3,5}), 146.8 (s, PC₆H₄, *C*₄), 125–133 (m, *PPh*). Anal. Calcd. for C₂₂H₃₆NPSi₂: C, 65.78; H, 9.03. Found: C, 65.51; H, 9.98.

Similarly, the one-step reaction of the silylaniline reagent **B** (100 mmol) with PhPC₁₂ (50 mmol) afforded **13** as a colorless liquid. (**13: R** = **Ph**, **R'** = **C**₆**H**₄**N**(**SiMe**₃)₂). Yield: 55%. bp: 180–186°C (0.01 mm Hg). ³¹P NMR: δ –7.0. ¹H NMR: δ 0.00 (s, *Me*₃SiN), 6.8–7.2 (m, *C*₆*H*₄), 7.3–7.5 (m, PPh). ¹³C NMR: δ 0.0 (s, *Me*₃SiN), 131.8 (d, PC₆H₄, *C*₁, *J*_{PC} = 19.9), 131.4 (d, PC₆H₄, *C*_{2,6}, *J*_{PC} = 19.2), 128.0 (s, PC₆H₄, *C*_{3,5}), 146.8 (s, PC₆H₄, *C*₄), 126–136 (m, PPh). Anal. Calcd. for C₃₀H₄₉N₂PSi₄: C, 62.01; H, 8.50. Found: C, 62.20; H, 8.45.

FUNDING

The authors thank the Robert A. Welch Foundation (Grant P-0759) and the TCU Research Fund for financial support of this work.

REFERENCES

- Neilson, R. H. Phosphorus-nitrogen compounds. In: R. B. King (Ed.), *Encyclopedia of Inorganic Chemistry*, Vol 6; John Wiley & Sons: Chichester, England, **1994**, pp. 3180-3199.
- For example, see the following and references cited therein: (a) Scheide, G. M.; Neilson, R. H. Organometallics 1989, 8, 1987-1991. (b) Morton, D. W.; Neilson, R. H. Organometallics 1982, 1, 289-295. (c) Neilson, R. H.; Wisian-Neilson, P.; Wilburn, J. C. Inorg. Chem. 1980, 19, 413-416. (d) Wilburn, J. C.; Neilson, R. H. Inorg. Chem. 1979, 18, 347-351.
- For early examples, see: (a) Wisian-Neilson, P.; Neilson, R. H.; Cowley, A. H. *Inorg. Chem.* 1977, 16, 1460-1463. (b) Wisian-Neilson, P.; Neilson, R. H. *J. Am. Chem. Soc.* 1980, 102, 2848-2849.
- See, for example: (a) Neilson, R. H.; Klaehn, J. R. J. Inorg. Organomet. Polym. 2006, 16, 319-326. (b) Wisian-Neilson, P.; Johnson, R. S.; Zhang, H.; Jung, J.-H.; Neilson, R. H.; Ji, J.; Watson, W. H.; Krawiec, M. Inorg. Chem. 2002, 41, 4775-4779. (c) Jung, J.-H.; Pomeroy, J. C.; Zhang, H.; Wisian-Neilson, P. J. Am. Chem. Soc. 2003, 125, 15537-15542.
- See, for example: (a) Neilson, R. H.; Hani, R.; Wisian-Neilson, P.; Meister, J. J.; Roy, A. K.; Hagnauer, G. L. *Macromolecules* 1987, 20, 910-916. (b) Neilson, R. H.; Wisian-Neilson, P. *Chem. Rev.* 1988, 88, 541-562. (c) Wisian-Neilson, P.; Neilson, R. H. *Inorg. Synth.* 1989, 25, 69-74. (d) Matyjaszewski, K.; Dauth, J.; Montague, R. A.; Reddick, C.; White, M. L. *J. Am. Chem. Soc.* 1990, 112, 6721-6723. (e) White, M. L.; Matyjaszewski, K. J. Polym. Science (A) 1996, 34, 277-289. (f) Honeyman, C. H.; Manners, I.; Morrissey, C. T.; Allcock, H. R. *J. Am. Chem. Soc.* 1995, 117, 7035-7036. (g) Allcock, H. R.; Crane, C. A.; Morrissey, C. T.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. *Macromolecules* 1996, 29, 7740-7747. (h) Allcock, H. R.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. *Macromolecules* 1997, 30, 50-56. (i) Wang, B.; Rivard, E.; Manners, I. *Inorg. Chem.* 2002, 41, 1690-1691. (j) Wang, B. *Macromolecules* 2005, 38, 643-645.
- Some preliminary aspects of this work were briefly reported in a conference proceedings but without experimental details. See: Neilson, R. H.; Devulapalli, P.; Jackson, B. K.; Neilson, A. R.; Parveen, S.; Wang, B. ACS Sympos. Ser. 2006, 917, 325-334.
- 7. Broser, W.; Harrer, W. Angew. Chem. Int. Ed. Engl. 1965, 4, 1081.
- 8. Nöth, H.; Vetter, H.-J. Chem. Ber. 1963, 96, 1109.
- 9. Lenton, M. V.; Lewis, B. Chem. Indus. 1965, 946-947.
- For other syntheses and NMR data of Me(Ph)PCl, see: (a) Wolfsberger, W. J. Organomet. Chem. 1986, 317, 167-173. (b) Lindner, E.; Merkle, R. D.; Mayer, H. A. Chem. Ber. 1986, 119, 645-658.
- (a) Wilburn, J. C.; Neilson, R. H. *Inorg. Chem.* **1979**, 18, 347-351. (b) Neilson, R. H.; Wisian-Neilson, P. *Inorg. Chem.* **1982**, 21, 3568-3569.
- For comparative ³¹P NMR data, see: (a) Crutchfield, M. M.; Dungan, C. H.; Letcher, J. H.; Mark, V.; Van Wazer, J. R. P-31 nuclear magnetic resonance. In: M. Grayson; E. J. Griffith (Eds.), *Topics in Phosphorus Chemistry*, Vol. 5; John Wiley & Sons: New York, **1967**. (b) Verkade, J. G.; Quin, L. D. Phosphorus-31 NMR spectroscopy in stereochemical analysis. In: A. P. Marchand (Ed.), *Methods in Stereochemical Analysis*, Vol. 8; VCH Publishers: Dearfield Beach, FL, **1987**.