
Accepted Manuscript

Synthesis and characterisation of organo-platinum(II) complexes of the N,O-
donor ligands hippuric acid (N-benzoylglycine) and N-phenylanthranilic acid

Sophie A. Sim, Graham C. Saunders, Joseph R. Lane, William Henderson

PII: S0020-1693(16)30308-5
DOI: http://dx.doi.org/10.1016/j.ica.2016.05.053
Reference: ICA 17089

To appear in: Inorganica Chimica Acta

Received Date: 18 March 2016
Accepted Date: 29 May 2016

Please cite this article as: S.A. Sim, G.C. Saunders, J.R. Lane, W. Henderson, Synthesis and characterisation of
organo-platinum(II) complexes of the N,O-donor ligands hippuric acid (N-benzoylglycine) and N-phenylanthranilic
acid, Inorganica Chimica Acta (2016), doi: http://dx.doi.org/10.1016/j.ica.2016.05.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ica.2016.05.053
http://dx.doi.org/10.1016/j.ica.2016.05.053


  

1 
 

Correspondence to:    

Professor W. Henderson,  

Chemistry, 

School of Science, 

University of Waikato, 

Private Bag 3105, 

Hamilton 3240 

New Zealand 

e-mail w.henderson@waikato.ac.nz 

 

Synthesis and characterisation of organo-platinum(II) complexes of the 

N,O-donor ligands hippuric acid (N-benzoylglycine) and N-

phenylanthranilic acid 

 

Sophie A. Sim, Graham C. Saunders, Joseph R. Lane and William Henderson* 

Chemistry, School of Science, University of Waikato, Private Bag 3105, Hamilton, New 

Zealand 3240 

 

 

     Received:   

 

 

 

 

 



  

2 
 

 

Abstract 

 

Reaction of [PtCl2(cod)] (cod = cyclo-octa-1,5-diene) with either hippuric acid 

[PhC(O)NHCH2COOH] or N-phenylanthranilic acid (ortho-PhNHC6H4COOH) in refluxing 

dichloromethane in the presence of silver(I) oxide gave the new organoplatinum derivatives 

[Pt{N(COPh)CH2COO}(cod)] and [Pt{N(Ph)C6H4COO}(cod)] respectively. Ligand 

substitution reactions of the cod ligand in [Pt{N(COPh)CH2COO}(cod)] provided a facile 

route to a selection of phosphine-substituted analogues [Pt{N(COPh)CH2COO}L2] [L = 

phosphatriazaadamantane (pta), PPh3, or L2 = Ph2PCH2CH2PPh2 or Fe(η5-C5H4PPh2)2] via 

displacement of the labile cod ligand. The complexes were characterised using NMR 

spectroscopy, IR spectroscopy, and ESI mass spectrometry. The X-ray structure of 

[Pt{N(COPh)CH2COO}(cod)]  is also reported. 

 

 

Keywords: Platinum complexes; Metallacyclic complexes; Silver(I) oxide; Hippuric acid; N-

Phenylanthranilic acid; Crystal structure 

 

 

 

 



  

3 
 

Introduction 

The coordination chemistry of amino acid ligands towards the platinum group metals 

has been extensively studied,[1,2,3] on account of the importance of such ligands in 

biological systems, and the utility of a number of platinum-based drugs for the treatment of 

cancer. However, there have been fewer studies on analogous complexes of ligands where 

the amine group of the amino acid is ‘protected’ by means of an acyl or sulfonyl [4] 

substituent. Both the NH and OH groups of the ligand can be readily deprotonated, allowing 

the ligand to bind as a dianion, typically forming a metallacyclic ring. The first examples of 

this type of complex resulted from reactions of the dipeptides L-val- L-val, L-leu- L-val and 

L-val- L-leu with Zeise’s salt, K[PtCl3(C2H4)].[5] Kemmitt and co-workers prepared a 

substantial range of complexes by reaction of cis-[PtCl2L2] (L = tertiary phosphine) with 

acetylated derivatives of the amino acids glycine, DL-alanine, DL-methionine, L-

phenylalanine and L-proline, giving five-membered metallacyclic complexes 

[Pt{N(COMe)CHRC(O)O}L2] (R = H, Me, CH2CH2SMe or CH2Ph).[6] Other prepared 

derivatives in this work included complexes of the N-formyl and N-trifluoroacetyl derivatives 

of glycine, together with the 1,5-cyclo-octadiene (cod) derivatives 

[Pt{N(COMe)CHRC(O)O}(cod)] (R = H, CH2Ph), which provide access to a range of other 

derivatives through facile ligand substitution reactions.[2] Related complexes derived from 

α-acetamidocinnamic acid produced a series of complexes 

[Pt{N(COMe)C(=CHR)C(O)O}L2] (L = tertiary phosphine).[7] Bauer et al have also 

reported three heterobimetallic complexes containing the [Pt{N(COR)CHR’C(O)O}(PPh3)2] 

metallacyclic ring, where the R group is appended with an Fe(CO)3(diene) group.[8] 

 In this paper we report the synthesis and characterisation of some analogous 

platinum(II) complexes derived from N-benzoylglycine (hippuric acid, 
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PhC(O)NHCH2COOH). Although platinum complexes containing chelating hippurate 

dianions have not been described previously, some analogous complexes of this general type 

are known, for example the reaction of N-benzoyl-DL-α-valine (PhC(O)NHCHiPrCOOH) 

with [PtCl2(bipy)] (bipy = 2,2’-bipyridine) gave [Pt{N(COPh)CHiPrC(O)O}(bipy)].[9] An 

analogue with an estrogen-like ligand has also been developed [10], together with a number 

of bipy-containing derivatives [11] that have been patented as precursors for the preparation 

of anti-tumour drugs.[12]  

We also report herein a related platinum complex derived from N-phenylanthranilic 

acid (PhNHC6H4COOH), which can also form a dianionic N,O-bonded ligand, and a six-

membered chelate ring. The focus in this current work is the cod complexes since the labile 

cod ligand allows a facile route to a range of ligand-substituted derivatives. Furthermore, it 

has recently been shown that a number of cod-platinum(II) complexes show higher anti-

tumour activity than cisplatin towards HeLa cells,[13] suggesting that such organoplatinum 

complexes could also be of potential interest for their biological properties. 

 

Results and discussion 

 

Synthesis and X-ray structural characterisation of hippurate complexes 

 Reaction of [PtCl2(cod)] with hippuric acid in refluxing dichloromethane in the 

presence of excess silver(I) oxide gave, on workup, the air- and moisture-stable organo-

platinum hippurate complex 1a in reasonable yield and purity (Scheme 1). The complex 

initially crystallised as a light purple solid due to contamination by silver, but a second 

recrystallisation gave almost colourless crystals that were analytically pure. Silver(I) oxide is 

well-recognised as a reagent in the chemistry of the platinum group metals, where it acts as 
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both a halide abstracting reagent and a strong base, with the first known example of its use 

being reported in 1977.[14] Silver(I) oxide is now widely established as a mediator for 

metallacyclic reactions, and for the formation of platinum group metal-ligand bonds 

[6,15,16,17], and more recently, the synthesis of N-heterocyclic carbene 

complexes.[18,19,20,21] However, in our experience the use of silver oxide can result in the 

product having a slight purple tinge, most likely due to colloidal silver, originating from 

decomposition of soluble silver-containing complexes which form during the reaction. The 

silver impurities can be removed by allowing the initially isolated sample to ‘age’. 

Dissolution in the desired solvent (e.g. dichloromethane or chloroform) and filtering through 

Celite filter aid to remove the silver impurities, followed by crystallisation typically yields 

analytically pure products. An investigation into the potential applicability of alternative 

bases (copper(I) oxide or calcium hydroxide) in the synthesis of 1a did not produce the 

desired product.  

The presence of the labile cod ligand allowed the facile synthesis of a number of 

ligand-substituted derivatives. Thus, reaction of 1a with PPh3, dppe (Ph2PCH2CH2PPh2), pta 

(phosphatriazaadamantane) and dppf [Fe(η5-C5H4PPh2)2] in dichloromethane solution gave 

(in high yield and good purity) the phosphine-substituted analogues 1b-1e, Scheme 1. These 

complexes crystallise as white or yellow solids, which have relatively high melting points, 

and are generally readily soluble in dichloromethane and chloroform. The triphenylphosphine 

complex crystallises from the reaction mixture with dichloromethane of crystallisation, as 

confirmed by 1H NMR spectroscopy. 

In a similar fashion to the synthesis of the cod-Pt complex 1a, reaction of the 2,2’-

bipyridyl-palladium complex [PdCl2(bipy)] with hippuric acid and silver(I) oxide in refluxing 
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dichloromethane gave the palladium complex [Pd{N(COPh)CH2COO}(bipy)] 2 as an 

orange solid; this complex has much lower solubility than the platinum complexes.  

In order to unambiguously confirm the structure of a hippurate complex, the X-ray 

structure of [Pt{N(COPh)CH2COO}(cod)] 1a was determined. The structure is shown in 

Figure 1 together with the atom numbering scheme, while Table 1 gives selected bond 

lengths and angles. Examination of the Cambridge Structural Database (version 5.36) 

confirms that there are no known X-ray structure determinations of metal complexes 

containing the hippurate dianion ligand, although the platinum complex of the related N-

acetylglycine ligand, [Pt{N(COMe)CH2COO}(Ph2PCH2CH2PPh2)], has been structurally 

characterised,[6] together with a platinum complex containing a related benzoylated amino 

acid ligand, [Pt{N(COPh)CH(CH2
iPr)COO}(bipy)].[11] Furthermore, there have only been 

three previous structure determinations of cod-Pt complexes containing chelating N,O 

ligands, none being amino acidate-type ligands.[22,23] 

 The geometry about the platinum atom of 1a is the expected pseudo-square planar. 

The five-membered hippurate ring is not planar but has a slight envelope conformation, with 

a fold angle between the planes defined by Pt(1)-N(1)-O(2) and O(2)-C(10)-C(9)-N(1) of 

10.3 ̊. The metallacyclic carbonyl lies roughly in the least-squares metallacycle plane defined 

by Pt(1), N(1), C(9), C(10) and O(2), with the distance of O(1) to the plane being 0.014 Å. 

The benzoyl carbonyl lies more out of the metallacycle least-squares plane, with O(3) lying 

0.56 Å out of the plane. The phenyl ring is almost orthogonal to the metallacycle, as defined 

by an angle of 87.0 ̊ between the Pt(1)-N(1)-O(2) coordination plane and the least-squares 

plane of the phenyl ring [C(21)-C(26)].  

 As expected due to the lower trans-influence [24] of the carboxylate oxygen, the 

platinum-carbon distances trans to oxygen [Pt(1)-C(1) 2.157(4) and Pt(1)-C(2) 2.171(4) Å] 
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are shorter than the corresponding Pt-C distances trans to the amidate nitrogen [Pt(1)-C(5) 

2.181(4), Pt(1)-C(6) 2.187(4) Å]. These bond distances can be compared to Pt-C bond 

distances of 2.161(4) to 2.171(5) Å, with an average of 2.166(4) Å, in a recent structural 

determination of [PtCl2(cod)].[13] The projection of the C(11)-O(3) bond of the benzoyl 

substituent towards the cod ligand appears to lengthen the Pt-C(2) distance relative to the 

Pt-C(1) distance. The cod ligand has a slightly skewed conformation. 

 

Spectroscopic characterisation of hippurate complexes 1a - 1e 

Each of the complexes was characterised using positive-ion ESI MS. For complex 

1a, only a relatively weak [M + H]+ ion was observed at m/z 480.98 (calculated m/z 481.11), 

despite several attempts at varying the ionisation conditions and solvents (methanol and 

acetonitrile). In contrast, the phosphine-substituted derivatives 1b-1e showed much more 

intense ions, typically showing a mixture of [M + H]+, [M + Na]+ and [M + K]+ ions; the 

spectra were considerably simplified upon addition of a small quantity of NaCl, which 

resulted in the observation of solely the [M + Na]+ ions. For example, the positive-ion 

spectrum of the triphenylphosphine complex 1b (without added NaCl) showed [M + H]+ 

(m/z observed 897.19 calculated 897.20), [M + Na]+ (m/z observed 919.17, calculated 

919.18) and [M + K]+ (m/z observed 935.24, calculated 935.15) ions, with the [M + Na]+ 

ion dominating the spectrum, as shown in Figure 2. The reasons for the apparent low 

ionisation efficiency of 1a are not clear, since other cod-Pt complexes have been found to 

analyse well by ESI MS.[15] The bipyridine palladium complex 2 also showed the [M + 

Na]+ ion as the base peak in the ESI mass spectrum (with added sodium formate), in 

addition to weaker ions due to [M + H]+ (m/z 439.89), [2M + Na]+ (m/z 461.88) and [3M + 

Na]+ (m/z 902.77). 
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1H, 31P{1H} and 13C{1H} NMR spectroscopies have been employed to provide a full 

spectral assignment of the complexes. The 31P{1H} NMR spectra of the phosphine-

substituted complexes 1b – 1e give typical spectra for this type of complex, showing two 

doublets for the two inequivalent P nuclei (trans to O or N), showing mutual 2
JP-P coupling. 

Satellites due to coupling to 195Pt are also observed, with the magnitude of 1
JPt-P reflecting 

the trans influence of the trans donor atom (either higher trans influence N or lower trans 

influence O, producing respectively lower or higher 1
JPt-P values for the trans P atoms); data 

are summarised in Table 2. The pta complex has very upfield resonances (δ 31P -67.0, -67.4 

ppm) typical for pta-platinum(II) complexes.[25] 

Full characterisation of the 1H NMR spectrum of the cod complex 1a was carried out 

using a combination of 1- and 2-dimensional NMR techniques. The 1H NMR spectrum of 1a 

is shown in Figure 3, a full assignment of the proton and carbon resonances is given in the 

Experimental section, and the atom numbering scheme is shown in Scheme 2. 

Two signals are observed for the cod CH protons in the 1H NMR spectrum (at 

δ 6.51 and 5.43) due to symmetry in the cod moiety which renders C1 and C2, and C5 and C6 

spectroscopically equivalent. Consequently, the bonded hydrogens H1 & H2 and H5 & H6 are 

also equivalent. Each of the cod CH resonances has broad shoulders attributable to coupling 

to 195Pt (2
JPt-H ca. 70 Hz and 57 Hz, respectively).  

As observed in the 31P NMR spectra of the phosphine complexes, the differing trans 

influences of the N and O donors of the hippurate ligand in 1a allows differentiation between 

CH groups trans to nitrogen/oxygen, based on their 2
JPt-H (and 1

JPt-C) coupling constants. 

The cod CH resonance at δ 6.51 is assigned to H1 & H2, as it has the larger 2
JPt-H coupling 

constant (70 Hz), indicating that the bonded carbon (at δ 96.0, from the HSQC spectrum) is 
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trans to oxygen. Similarly, the resonance at δ 5.43 is assigned to H5 & H6, with a smaller 

2
JPt-H of 57 Hz, which suggests that the attached carbon (δ 98.5) is trans to nitrogen. There 

are also notable differences between the two cod CH signals in terms of chemical shift, 

multiplicity and broadness. In particular, the broadness of the signal at δ 6.51 may be 

attributable to a proximity to lone pair electron density such as that on the N-C=O group on 

the hippurate moiety. This is consistent with the data, as the H1 & H2 signal at δ 6.51 is 

broader and downfield, while the H5 & H6 signal at δ 5.43 is sharper and more upfield. 

Density functional theory (DFT) was used to calculate theoretical NMR shifts; two different 

environments are calculated which, when averaged to account for vibrational motion on the 

time-scale of NMR spectroscopy, show a difference of 0.84 ppm (the chemical shifts for 

H1/H2 and H5/H6 are calculated to occur at δ 5.69 and 4.86 respectively). This is fairly 

consistent with the observed 1H NMR data of 1a, which shows a difference of 1.1 ppm 

between the signals for H1/H2 and H5/H6. Although these differ from the experimental 

chemical shifts of δ 6.51 and 5.43 (by 0.8 and 0.6 ppm respectively) they still suggest that 

the proton closest to the nitrogen is that in the H1/H2 environment. 

Assuming that the two protons in the H22/H26 environment are identical (due to free 

rotation about the C11-C21 bond) there are three aromatic proton environments from the 

hippurate moiety (corresponding to H22 & H26, H23 & H25, and H24 in Scheme 2). These 

appear in the region from δ 7.36-7.18, and an expansion of this can be seen in the top left of 

the 1H NMR spectrum of 1a (Figure 3). Only one of the three aromatic proton environments 

was adequately resolved in the proton spectrum. The signal at δ 7.19 (essentially as a 

doublet of doublets with 3
J = 8.0, 4

J = 1.7 Hz) can be uniquely attributed to the H22/H26 

environment, since of the aromatic proton environments only this proton is expected to 
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show a 3
J coupling to its nearest neighbour (H6) and a smaller 4

J coupling to H7. A NOESY 

experiment confirmed this, showing an NOE from the H22/H26 protons at δ 7.19 to the H9 

protons at δ 4.01, consistent with H22/H26 being the closest of the aromatic protons to H9. 

The H24 and H23/H25 proton environments occur in the δ 7.36-7.27 region as complex 

second-order overlapped multiplets. Notwithstanding the complex nature of the overlapped 

signal, it was apparent from a high resolution COSY spectrum that the initial more intense 

correlation peaks are attributable to the larger 3
J couplings between H22 at δ 7.19 and the 

protons at δ 7.31, and later the smaller 4
J coupling correlations develop to the proton at δ 

7.34. This allows tentative assignment for the higher chemical shift as H24 and the lower as 

the H23/H25 environment. 

The hippurate CH2 protons at δ 4.01 also show significant coupling to 195Pt (3
JPt-H ~ 

18.1 Hz), as expected. It is clearly recognisable as a methylene signal in a DEPT135 

experiment. The observation of a single peak in the 1H NMR spectrum indicates that the 

hippurate ligand lies in a plane of symmetry, which makes both protons chemically 

equivalent.  

The cod CH2 protons are observed as four complex multiplets around δ 2.5 and are 

easily distinguished as methylenes in a DEPT135 experiment. These protons are symmetry-

paired (with H3a & H8a, H3b & H8b, H4a & H7a and H4b & H7b being the chemically equivalent 

pairs). In addition, there is both geminal 2
J coupling (between Ha and Hb for the CH2 

protons) and 3
J coupling between methylene and methyne protons, leading to complicated 

overlapping signals. Furthermore, each cod methylene couples to 195Pt which adds to the 

complexity of the cod CH2 signals. In the COSY spectrum the cod CH proton at δ 6.51 

correlates to the protons at δ 2.72 and 2.42, whereas the proton at δ 5.43 shows correlations 
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to the protons at δ 2.60 and 2.28. In addition, the high-resolution COSY spectrum shows 

mutual correlations between the four adjacent methylene signals. Axial protons are generally 

higher in chemical shift than equatorial protons [26] which allows assignment of the cod 

CH2 protons: H3a & H8a at δ 2.72, H3b & H8b at δ 2.42, H4a & H7a at δ 2.60, and H4b & H7b at 

δ 2.28.  

The 13C{1H} NMR spectrum of complex 1a shows a number of key resonances. The 

metallacycle ring CH2 carbon appears at δ 56.9 as expected and exhibits broad shoulders due 

to coupling to 195Pt (2
JPt-C 15 Hz). The nitrogen-attached carbonyl (C11) is observed at δ 

176.7 and has slightly broad shoulders from coupling to 195Pt (2
JPt-C 32 Hz), while the 

metallacycle ring carbonyl (C10) appears slightly upfield at δ 184.4, but no 195Pt coupling 

could be resolved for this signal. The HMBC spectrum confirms these shifts since it shows 

correlations from the nitrogen-attached carbonyl to the aromatic protons, whereas the ring 

carbonyl displays no coupling to 1H as it is too far away. The 1H-coupled 13C spectrum 

shows further evidence, with C10 appearing as a triplet at δ 184.4 (JC-H 6 Hz) due to splitting 

by the neighbouring CH2 protons, while the nitrogen-attached carbonyl C11 appears as a 

singlet at δ 176.7. Similarly, the quaternary carbon (C21) of the phenyl ring shows broad 

shoulders due to coupling to 195Pt (3
JPt-C 42 Hz). As expected, it is further upfield in the 

aromatic region (δ 138.5), has a low intensity and shows no correlations to protons in the 

HSQC spectrum. In the aromatic region, two of the environments appear to overlap at δ 

128.6, while the final signal occurs at δ 125.5. The latter is assigned as the C22/C26 

environment due to its correlation to the H22/H26 signal at δ 7.19 in the HSQC spectrum. An 

expansion of the aromatic region allows the peaks at δ 128.6 to be almost fully separated to 

see the intensity ratio of 2:1. This enables clear assignment of C24 as the signal with the 
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lower chemical shift (δ 128.58) since it has a lower intensity attributable to its single carbon. 

In contrast, the signal with the higher chemical shift (δ 128.61) has a doubled intensity and 

therefore corresponds to the C23/C25 environment.  

The two cod CH resonances (the C1/C2 and C5/C6 environments in Scheme 2) are 

both seen in the 13C{1H} spectrum as singlets at δ 98.5 (1
JPt-C 140 Hz) and 96.0 (1

JPt-C 160 

Hz), both displaying substantial coupling to 195Pt. The HSQC spectrum showed that these 

are attached to the protons at δ 5.43 and 6.51, respectively. The signal at δ 96.0 can be 

assigned as the C1 & C2 environment due to its higher 1
JPt-C coupling constant (160 Hz) 

indicating it is trans to the metallacycle oxygen atom, while the δ 98.5 resonance can be 

correspondingly attributed to the C5 & C6 environment (trans to N) by its smaller 1
JPt-C 

coupling constant (140 Hz). In the 1H-coupled 13C NMR spectrum, the C1/C2 and C3/C4 

resonances appear as doublets (1
JC-H ca. 165 Hz). These JC-H coupling constants are typical 

for CH environments of this type.[15,27,28] 

The cod methylene carbons (C3 & C8, and C4 & C7) occur at δ 32.4 and 28.2 in the 

13C{1H} NMR spectrum. In the proton-coupled spectrum, the C3/C8 and C4/C7 

environments appears as triplets (1
JC-H 131 and 132 Hz respectively). As expected due to 

changes in s-character [27], the JC-H values for the cod methylene signals are approximately 

35 Hz lower than those for the cod CH resonances. The HSQC spectrum shows that the 

CH2 at δ 32.4 correlates to the proton signals centred at δ 2.72 and 2.42, while the CH2 at 

28.2 correlates to the proton signals centred at δ 2.60 and 2.28.  

In comparison to its parent complex 1a, the proton NMR spectrum of the 

triphenylphosphine complex 1b appears rather straightforward, with only two regions. The 

complex multiplet from δ 7.81-6.75 corresponds to the aromatic protons, making 
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interpretation difficult, and no further assignment was undertaken. The ring methylene signal 

at δ 4.16 (3
JPt-H 41 Hz) comes at an expected chemical shift, and is slightly more downfield 

than that of the ring methylene in the parent complex 1a (δ 4.03). It appears as a doublet as 

a result of coupling to the trans phosphine.  The 1H NMR spectra of the other phosphine 

complexes were assigned in analogous fashion to those of 1a, and showed typical features 

expected for these complexes. 

The bipyridine palladium complex 2 had relatively poor solubility in CDCl3 but was 

able to be characterised by 1H NMR. In addition to the complex set of resonances due to the 

bipyridine and phenyl protons, a singlet at δ 4.26 is assigned to the CH2 protons, by 

comparison with the chemical shift of the same protons in the analogous platinum 

complexes.  

 

Synthesis and characterisation of the N-phenylanthranilate complex 

[Pt{OC(O)C6H4NPh}(cod)] 3 

In a similar fashion to the synthesis of the hippurate complex 1a, reaction of 

[PtCl2(cod)], N-phenylanthranilic acid and silver(I) oxide in refluxing dichloromethane gave 

complex 3 on workup (Scheme 3). The complex, isolated in reasonable yield and purity, is 

an intense green-yellow coloured solid, in contrast to the platinum hippurate complexes, 

which are colourless (with of course the exception of the yellow ferrocene-derived complex 

1e). Somewhat surprisingly, there are no well-characterised complexes that contain dianionic 

N-phenylanthranilate ligands, although there are many examples of complexes containing 

monoanionic ligands [29,30,31] including complexes of the lanthanides,[32,33,34,35,36] and 
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other platinum group metals such as rhodium.[37,38] Platinum complexes of N-

phenylanthranilate ligands have not been reported to date. 

The IR spectrum of N-phenylanthranilic acid shows a very strong C=O stretch at 

1660 cm-1, as well as a very strong C-N stretch at 1263 cm-1; these decrease to 1616 cm-1 

and increase to 1338 cm-1 respectively, upon coordination to platinum(II) in complex 3. 

Assignment of peaks was assisted by DFT calculations for both N-phenylanthranilic acid and 

complex 3. As for complex 1a, the N-phenylanthranilate complex 3 also did not give a 

simple ESI mass spectrum, though a weak [M + H]+ ion was observed at m/z 515.17 

(calculated m/z 515.12). 

The 1H NMR spectrum of 3 in CDCl3 showed many similarities with that of the 

hippurate complex 1a. The atom numbering is shown in Scheme 4; a full assignment of the 

various 1H and 13C resonances was able to be made following methods analogous to those 

used in the assignment of complex 1a. The four cod CH protons are seen as two distinct 

signals in the 1H NMR spectrum, due to the equivalence of C1 and C2, and of C5 and C6 (and 

their attached hydrogens). These resonances show different 2
JPt-H coupling constants (ca. 54 

and 65 Hz), due to the differing trans-influence of the N and O donors. The resonance at δ 

4.42 is assigned to the CH trans to O, as it shows the larger coupling constant. The DFT-

calculated 1H NMR shifts for the cod CH protons (δ 5.18 and 4.20) confirm these 

assignments, with the calculated difference in chemical shifts ∆δ (0.98 ppm) being very close 

to the experimentally observed difference (1.0 ppm). 

 

 

 



  

15 
 

Conclusions 

New platinum(II) complexes of the dianionic N,O-donor ligands hippurate and N-

phenylanthranilate, which also contain ancillary cyclo-octadiene ligands, can be conveniently 

synthesised by the reaction of [PtCl2(cod)] with the parent hippuric acid or N-

phenylanthranilic acid in the presence of silver(I) oxide. In the case of the hippurate 

complexes, the labile cod ligand allows access to a selection of phosphine-substituted 

derivatives by facile ligand substitution reactions.  

 

Experimental  

 

Instrumentation 

High resolution ESI mass spectra were recorded on a Bruker MicrOTOF instrument, which 

was periodically calibrated using a solution of sodium formate. Samples of isolated products 

were typically prepared for analysis by dissolution in a few drops of dichloromethane 

followed by dilution with methanol and centrifugation. Typical parameters used a Capillary 

Exit voltage of 150 V and a Skimmer 1 voltage of 50 V. Assignment of ions was assisted by 

comparison of experimental and theoretical isotope patterns, the latter calculated using an 

internet-based program [39] or proprietary instrument-based software. 

 All 1D and 2D NMR spectra (1H, 13C and 31P, COSY, NOESY, DEPT, HSQC, 

HMBC and H2BC) were recorded on a Bruker AVIII-400 spectrometer in CDCl3 (unless 

otherwise specified in-text) using BBI or BBFO probes, depending on the nucleus of the 

sample. Standard Bruker supplied pulse programmes were used for each experiment, with 

parameters including spectral window, number of increments, pulse angle and repetition rate 

altered as appropriate for each specific sample.  
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Elemental analyses were carried out by the Campbell Microanalytical Laboratory, 

University of Otago, Dunedin, New Zealand. Melting points were recorded as finely ground 

samples in capillary tubes on a Buchi M-560 Melting Point instrument. IR spectra were 

recorded as KBr disks on a Perkin Elmer Spectrum 100 FTIR spectrometer. 

 

Materials 

Silver(I) oxide (BDH), hippuric acid (Sigma), 1,1’-bis(diphenylphosphino)ferrocene (dppf, 

Aldrich) and N-phenylanthranilic acid (BDH) were used as supplied. The complexes 

[PtCl2(cod)] [40] and [PdCl2(bipy)],[41] and the phosphines dppe [42] and pta [43] were 

prepared by the literature procedures. All solvents used were drum grade, with the exception 

of dichloromethane, which was passed through a solvent purification system to remove 

water, air and stabilisers. 

 

Synthesis of [Pt{N(COPh)CH2COO}(cod)] 1a 

A mixture of [PtCl2(cod)] (201.2 mg, 0.538 mmol) and hippuric acid (96.7 mg, 0.540 mmol) 

with silver(I) oxide (611 mg, excess) in dichloromethane (30 mL) was refluxed for 3.5 h. 

After cooling to room temperature the mixture was filtered, giving a pale purple solution. 

Petroleum spirits (60 mL) was added and the mixture allowed to crystallise, giving pale 

purple crystals that were filtered, washed with petroleum spirits (10 mL) and dried under 

vacuum to give 1a (124.3 mg, 48%). The product was dissolved in a minimal amount of 

dichloromethane, filtered through filter aid, and crystallised by vapour diffusion of diethyl 

ether to give almost colourless crystals. Found: C 42.5; H 4.0; N 2.9. C17H19NO3Pt requires 

C 42.5; H 4.0; N 2.9%. M.p. 162-163 °C (decomp.). IR ν(C=O) 1690(vs), 1604(vs) cm-1. 
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ESI MS (capillary exit voltage 250 V) [M + H]+ m/z 480.98 (calculated for C17H19NO3PtH 

m/z 481.11).  

1H NMR, δ 7.36-7.18 (m, 5H, H21-H26), 6.51 (s, 2H, H1/H2, 
2
JPt-H 70), 5.43 (m, 2H, 

H5/H6, 
2
JPt-H 57), 4.01 (s, 2H, H9a & H9b, 

3
JPt-H 18), 2.77-2.23 (m, 8H, H3, H4, H7 & H8). 

13C{1H} NMR, δ 184.4 (s, C10), 176.7 (s, C11, 
2
JPt-C 32), 138.5 (s, C21, 

3
JPt-C 42), 128.6 (d, 

overlapping s + s, C23/C25 & C24), 125.5 (s, C22/C26), 98.5 [s, C5/C6(trans N), 
1
JPt-C 140], 96.0 

[s, C1/C2(trans O), 
1
JPt-C 160], 56.9 [s, C9, 

2
JPt-C 15], 32.4 [s, C3/C8], 28.2 [s, C4/C7]. 

13C NMR, 

(excluding aromatic region) δ 184.4 (t, C10, 
1
JC-H 6), 176.7 (s, C11), 138.6 (t, C21, 

1
JC-H 7), 

98.5 [d, C5/C6(trans N), 
1
JC-H 165], 96.0 [d,  C1/C2(trans O), 

1
JC-H 166], 56.9 (t, C9, 

1
JC-H 140), 

32.4 (t, C3/C8, 
1
JC-H 131), 28.2 (t, C4/C7, 

1
JC-H 132). Scheme 2 shows the atom numbering 

scheme of the complex. 

 

Synthesis of [Pt{N(COPh)CH2COO}(PPh3)2]·1.5.CH2Cl2 (1b·1.5CH2Cl2) 

Complex 1b was prepared by a ligand substitution reaction. A mixture of triphenylphosphine 

(51.8 mg, 0.197 mmol) and [Pt{N(COPh)CH2COO}(cod)] 1a (46.5 mg, 0.097 mmol) was 

dissolved in dichloromethane (4 mL) and left to stand for 5 min., then filtered through a 

cotton-plugged glass Pasteur pipette and washed through with a further 0.5 mL 

dichloromethane. Petroleum spirits (25 mL) was added, giving white needle crystals on 

standing overnight. Upon subsequent evaporation of around one third of the solvent, further 

product formed which, following removal of the supernatant, was washed with petroleum 

spirits (ca. 2 mL) and dried under vacuum for 3 h to give 95.7 mg (97%) of 1b·1.5CH2Cl2. 

Found: C 54.3; H 4.0; N 1.4%. C45H37NPtO3P2·1.5CH2Cl2 requires C 54.5; H 4.0; N 1.4%. 
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M.p. 174-178 °C. IR: ν(C=O) 1647(vs) cm-1. ESI MS (added NaCl, capillary exit voltage 

160 V): [M + Na]+ 
m/z 919.18 (100%), calculated for C45H37NO3P2PtNa m/z 919.18. 

1H NMR, δ 7.81-6.75 (m, 35H, Ph), 5.32 (s, CH2Cl2), 4.16 (d, 2H, CH2, 
3
JPt-H 41). 

31P{1H} NMR, δ 9.2 [d, PA(trans N), 
1
JPt-P 3058, 2

JP-P 24], 4.8 [d, PB(trans O), 
1
JPt-P 4031, 2

JP-P 

23]. 

 

Synthesis of [Pt{N(COPh)CH2COO}(dppe)] 1c 

Complex 1c was prepared by a ligand substitution reaction, following the same procedure as 

for 1b, with a mixture of dppe (37.9 mg, 0.095 mmol) and [Pt{N(COPh)CH2COO}(cod)] 

1a (44.4 mg, 0.092 mmol) in dichloromethane (4 mL) giving fluffy white crystals (41.1 mg, 

57%) of 1c. Found: C 54.7; H 4.1; N 1.8%. C35H31NPtO3P2 requires C 54.6; H 4.1; N 1.8%. 

M.p. 276-278 °C. IR ν(C=O) 1652(vs) cm-1. ESI MS (added NaCl, capillary exit voltage 

160 V): [M + Na]+ 
m/z 793.13 (100%), calculated for C35H31NO3P2PtNa m/z 793.13.   

1H NMR, δ 7.99-6.77 (m, 25H, Ph), 4.03 [d, 2H, CH2(hippurate), 3
JPt-H 18], 2.39-

1.99 [m, 4H, CH2(dppe)]. 31P{1H} NMR, δ 37.4 [d, PA(trans N), 
1
JPt-P 3085, 2

JP-P 12], 28.1 [d, 

PB(trans O), 
1
JPt-P 3876, 2

JP-P 12]. 

 

Synthesis of [Pt{N(COPh)CH2COO}(pta)2] 1d 

A mixture of pta (28.9 mg, 0.184 mmol) and [Pt{N(COPh)CH2COO}(cod)] 1a (45.7 mg, 

0.095 mmol) was dissolved in dichloromethane (4 mL) and left for 5 min., resulting in the 

formation of fluffy white crystalline solid. Petroleum spirits (25 mL) was added and the 

mixture allowed to stand overnight. Following removal of the supernatant, the product was 

washed with petroleum spirits (ca. 2 mL) and dried under vacuum for 3 h to give 1d (58.5 
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mg, 90%). Found: C 35.9; H 4.8; N 13.7%. C21H21NPtO2 requires C 36.7; H 4.6; N 14.3%. 

M.p. 250-265 °C (decomp.). IR ν(C=O) 1638(vs) cm-1. ESI MS (added NaCl, capillary exit 

voltage 160 V): [M + Na]+ m/z 709.10 (100%), calculated for C21H31N7O3P2PtNa m/z 

709.15. 

1H NMR, δ 7.35-7.27 (m, 5H, Ph), 5.28 (s, CH2Cl2), 4.58-4.27 [m, 24H, CH2(pta)], 

4.07 [d, 2H, CH2(hippurate), 3
JPt-H 19]. 31P{1H} NMR, δ -67.0 [d, PA(trans N), 

1
JPt-P 2800, 2

JP-P 

22], -67.4 [d, PB(trans O), 
1
JPt-P 3484, 2

JP-P 22]. 

 

Synthesis of [Pt{N(COPh)CH2COO}(dppf)] 1e 

Complex 1e was prepared by a ligand substitution reaction, using a similar procedure to 1b. 

A mixture of dppf (55.0 mg, 0.099 mmol) and [Pt{N(COPh)CH2COO}(cod)] 1a (46.0 mg, 

0.096 mmol) was used in the same process as for 1b, however additional petroleum spirits 

(10 mL) was added to further precipitate the product overnight. Reduction of volume by 

one third followed by addition of extra petroleum spirits (ca. 1 mL) was repeated once 

more. After removal of the supernatant, the yellow product was washed with petroleum 

spirits (ca. 2 mL) and dried under vacuum for 3 h to give 1e (69.5 mg, 77%). Found: C 

55.8; H 4.4; N 1.4%. C42H35NPtO3FeP2 requires C 55.7; H 3.8; N 1.5%. M.p. 204.5-210 °C 

(decomp.). IR: ν(C=O) 1654(s) cm-1. ESI MS (added NaCl, capillary exit voltage 160 V): 

[M + Na]+, m/z 949.10, calculated for C42H35NFeO3P2PtNa m/z = 949.10. 

1H NMR (CDCl3), δ 7.91-6.58 (m, 20H, Ph), 5.00 (br s, 2H, C5H4), 4.46 (s, 2H, 

C5H4), 4.18 (s, 2H, C5H4), 3.96 (d, 2H, H9a & H9b, 
3
JPt-H 20), 3.58 (d, 2H, C5H4). 

31P{1H} 

NMR (CDCl3), δ 9.44 [d, PA(trans N), 
1
JPt-P 3131, 2

JP-P 22], 6.47 [d, PB(trans O), 
1
JPt-P 4102, 2

JP-P 
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23]. 13C{1H} NMR (DMSO), δ 182.1 (d, C10), 171.6 (s, C11), 138.4-127.2 (m, Ph), 76.8 (s, 

C5H4), 75.1 (d, C5H4), 74.8 (d, C5H4), 73.7 (d, C5H4), 56.5 (s, C9, 
2
JPt-C 47). 

The atom numbering of 1e is shown in Scheme 5. 

 

Synthesis of [Pd{OC(O)CH2N(COPh)}(bipy)] 2 

A mixture of [PdCl2(bipy)] (210 mg, 0.63 mmol) with hippuric acid (113 mg, 0.63 mmol) 

and silver(I) oxide (600 mg) in dichloromethane (30 mL) was refluxed for 3.5 h. Methanol 

(30 mL) was added, and the mixture filtered to give a clear yellow solution. The solid 

residue was extracted with an additional 40 mL of dichloromethane-methanol (1:1 v/v), and 

the filtrates combined. The solution was evaporated to dryness, redissolved in 

dichloromethane (40 mL) and the product precipitated by addition of petroleum spirits (40 

mL). The solid was filtered, washed with petroleum spirits (10 mL) and dried under vacuum 

to give 2 as an orange solid (192 mg, 69%). Found: C 50.2; H 3.45; N 9.1. C18H15N3O3Pd 

requires C 50.5; H 3.5; N 9.8%. 

1H NMR, δ 9.12-6.91 (m, bipy and Ph), 4.26 (s, CH2). ESI MS (added NaHCO2, 

capillary exit voltage 140 V): [M + Na]+ m/z 461.88 (100%), calculated for 

C19H15N3O3PdNa m/z 462.00. 

 

Synthesis of [Pt{OC(O)C6H4NPh}(cod)] 3 

Complex 3 was prepared using a similar procedure to the preparation of 1a. Silver(I) oxide 

(1529.8 mg, excess) was added to a stirred mixture of [PtCl2(cod)] (500.4 mg, 1.337 mmol) 

and N-phenylanthranilic acid (295.2 mg, 1.384 mmol) in dichloromethane (30 mL), and the 

mixture was refluxed for 3.5 h giving a dark green-yellow suspension. After cooling to room 

temperature the mixture was filtered twice through glass fibre filter paper to remove silver(I) 
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oxide, and the filter paper washed with dichloromethane (ca. 2 mL) each time. The resulting 

brown-yellow solution was reduced in volume (rotary evaporator) to ca. 5 mL. Petroleum 

spirits (ca. 95 mL) was added and the mixture allowed to crystallise overnight, giving green-

yellow crystals which were filtered, washed with petroleum spirits (5 mL) and dried under 

vacuum overnight to give 3 (351 mg, 51%). Found: C 48.3; H 4.2; N 2.6%. C21H21NPtO2 

requires C 49.0; H 4.1; N 2.7%. M.p. 155-157 °C (decomp.). IR ν(C=O) 1616(vs) cm-1. 

ESI MS (capillary exit voltage 160 V) [M + H]+ m/z 515.17 (25%), calculated for 

C21H21NO2PtH m/z 515.12. 

1H NMR, δ 8.26-5.90 (m, 9H, H12-H15 & H22-H26), 5.42 (m, 2H, H5/H6, 
2
JPt-H 54), 

4.42 (m, 2H, H1/H2, 
2
JPt-H 65), 2.70-2.56 (m, 4H, H3a, H4a, H7a & H8a), 2.27-2.11 [m, 4H, 

H3b, H4b, H7b & H8b]. 
13C{1H} NMR, δ 166.2 (s, C9), 153.1 (s, C11), 150.2 (s, C21),  133.9 (s, 

C15), 131.5 (s, C13), 130.0 (s, C22/C26), 129.7 (s, C23/C25), 126.1 (s, C24), 116.4 (s, C14), 

116.1 (s, C12), 114.7 (s, C10), 98.4 [s, C5/C6A(trans N), 
1
JPt-C 139], 93.7 [s, C1/C2B(trans O), 

1
JPt-C 

198], 31.0 (s, C3/C8), 28.4 (s, C4/C7). 

The atom numbering of the complex is shown in Scheme 4. 

 

X-ray structure determination on [Pt{N(COPh)CH2COO}(cod)] 1a 

Crystals were obtained by vapour diffusion of diethyl ether into a dichloromethane solution, 

at room temperature. Data were acquired on a SuperNova, Single source at offset, Atlas 

diffractometer using a colourless block crystal of dimensions 0.19 × 0.11 × 0.06 mm. 

Empirical absorption corrections were made using spherical harmonics. Using Olex2 [44], 

the structure was solved with the olex2.solve [45] structure solution program using Charge 

Flipping and refined with the olex2.refine [45] refinement package using Gauss-Newton 

minimisation. All non-hydrogen atoms were refined as anisotropic except for C(1), C(5) and 
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C(6), which are close to the platinum atom, and for which unrealistic ellipsoids were 

obtained. All hydrogens were placed in calculated positions. Crystal data: C17H19NO3Pt; Mr 

= 480.42 g mol-1; monoclinic; space group P21/n; a = 12.30576(8) Å; b = 9.41089(6) Å; c = 

12.54508(7) Å; β = 94.5941(6)°, V = 1448.154(16) Å3; Z = 4; T = 100(1) K; λ(Cu-Kα) = 

1.54178 Å; µ(Cu-Kα) = 18.236 mm-1; dcalc = 2.203 g cm-3; 27883 reflections collected; 2913 

unique (Rint = 0.0480) giving R1 = 0.0243, wR2 = 0.0623 for data with [I>2σ(I)], and R1 = 

0.0246, wR2 = 0.0627 for all data. 

 

Theoretical calculations 

Density functional theory (DFT) calculations were completed using Gaussian 09.[46] Unless 

specified, all calculations were completed using the B3LYP functional and the 6-

311++G(2d,2p) basis set for all atoms excluding Pt, for which the LANL2DZ basis set and 

effective core potential was used instead. Geometry optimisations were completed for all 

structures. For those structures whose NMR shifts were calculated, geometry optimisations 

were carried out using chloroform as the solvent (unless otherwise specified). NMR 

chemical shifts were calculated using the GIAO approach with TMS as a reference. The 

geometrical optimisation and NMR chemical shifts of 1e were calculated using DMSO as 

the solvent. 

 

Supplementary material 

 Crystallographic data for the structure described in this paper have been deposited 

with the Cambridge Crystallographic Data Centre, CCDC No. 1465339. Copies of the data 

can be obtained free of charge on application to The Director, CCDC, 12 Union Road, 
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Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail deposit@ccdc.cam.ac.uk or 

www:  http://www.ccdc.cam.ac.uk). 
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Table 1 Selected bond lengths (Å) and angles ( ̊) for [Pt{N(COPh)CH2COO}(cod)] 1a 

 

Pt(1)-N(1)   2.014(3)   Pt(1)-C(1)   2.157(4) 

Pt(1)-C(2)   2.171(4)   Pt(1)-C(5)   2.181(4) 

Pt(1)-C(6)   2.187(4)  C(1)-C(2)   1.392(5) 

C(5)-C(6)   1.408(5)   C(9)-N(1)   1.469(5)  

C(9)-C(10)   1.521(4)  C(10)-O(1)   1.215(5) 

C(10)-O(2)   1.322(4)  C(11)-O(3)   1.232(5) 

C(11)-N(1)   1.360(5)  C(11)-C(21)   1.511(5) 

 

 

O(2)-Pt(1)-N(1)  81.81(11)  N(1)-C(9)-C(10)  111.0(3) 

O(1)-C(10)-O(2)  122.4(3)  O(1)-C(10)-C(9)  121.5(3) 

O(2)-C(10)-C(9)  116.0(3)  O(3)-C(11)-N(1)  123.8(3) 

O(3)-C(11)-C(21)  117.83)  N(1)-C(11)-C(21)  118.4(3) 

C(11)-N(1)-C(9)  120.0(3)  C(11)-N(1)-Pt(1)  127.3(3) 

C(9)-N(1)-Pt(1)  112.6(2)  C(10)-O(2)-Pt(1)  116.2(2) 
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Table 2 Summary of 1
JPt-P NMR data for the phosphine-substituted hippurate complexes 1b-

1e 

 

Complex              
1
JPt-P (Hz) 

PPh3 trans N  PPh3 trans O 

1b  3058   4031 

1c  3085   3876 

1d  2800   3484 

1e  3131   4102 
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+
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Scheme 1 Synthesis of the platinum(II) hippurate complexes 1a – 1e 
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Scheme 2 The atom numbering scheme of [Pt{N(COPh)CH2COO}(cod)] 1a. 
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Scheme 3 Synthesis of the platinum(II) N-phenylanthranilate complex 

[Pt{OC(O)C6H4NPh}(cod)] 3  
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Scheme 4 The atom numbering scheme of the N-phenylanthranilate complex 

[Pt{OC(O)C6H4NPh}(cod)] 3 
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Scheme 5 The atom numbering scheme of 1e, using the same numbering of the hippurate 

moiety as for 1a. For simplicity, the dppf phenyl rings are not labelled. 
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Figure 1 X-ray structure of the complex [Pt{N(COPh)CH2COO}(cod)] 1a, showing the 

atom numbering scheme 
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m/z

920900 940 960

[M + H]+

[M + K]+

[M + Na]+

880  

 

Figure 2 Positive ion ESI mass spectrum of the complex [Pt{N(COPh)CH2COO}(PPh3)2] 

1b 
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Figure 3 1H NMR spectrum of the complex [Pt{N(COPh)CH2COO}(cod)]. The inset 

shows an expansion of the aromatic proton region, and the peaks marked * are due to 

solvent (δ 5.3 CH2Cl2, δ 7.28 CHCl3) 
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The new organoplatinum derivatives [Pt{N(COPh)CH2COO}(cod)] and 

[Pt{N(Ph)C6H4COO}(cod)] (cod = cyclo-octa-1,5-diene) were synthesised by reaction of 

[PtCl2(cod)] with hippuric acid [PhC(O)NHCH2COOH] or N-phenylanthranilic acid (ortho-

PhNHC6H4COOH). Ligand substitution reactions of the cod ligand in 

[Pt{N(COPh)CH2COO}(cod)] provided a facile route to a selection of phosphine-substituted 

analogues. The complexes were characterised using NMR spectroscopy, IR spectroscopy, 

and ESI mass spectrometry. The X-ray structure of [Pt{N(COPh)CH2COO}(cod)]  is also 

reported. 

  



  

Highlights 
 
• New platinum complexes with hippurate and N-phenylanthranilate ligands 
• X-ray structure of cyclo-octadiene complex [Pt{N(COPh)CH2COO}(cod)] 
• Phosphine platinum hippurate complexes synthesised by ligand substitution 
 


