ChemComm

Accepted Manuscript

ChemComm

Chemical Communications

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm

Published on 16 October 2012 on http://pubs.rsc.org | doi:10.1039/C2CC36286D

Downloaded by North Carolina State University on 17 October 2012

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Poly(ethylene glycol) as reaction medium for mild Mizoroki-Heck reaction in a ball-mill

Valérie Declerck,^{a,b} Evelina Colacino,^a Xavier Bantreil,^a Jean Martinez^a and Frédéric Lamaty^a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Phosphine-free palladium-catalyzed Mizoroki-Heck reaction was performed using ball-milling in polyethylene glycol under mild conditions. Good to excellent yields of coupling products were obtained. This activation technique also allowed the 10 concomitant formation of round shape Pd/PEG nanoparticles that were characterized by TEM analysis.

Grinding, dry mixing or ball-milling have proved their efficiency as unconventional techniques in the field of organic chemistry in solid state.¹ These techniques have been applied to a large number of organic transformations, but with limited use in the case of C-C bond formation, to aldol and Knoevenagel condensations, Michael additions, Baylis-Hillman and Wittig reactions, and asymmetric alkylation of Schiff bases.² Transition metal-catalyzed coupling reactions, especially with palladium, are very efficient and well ²⁰ developed C-C bond formation reactions.³ Such reactions performed in a ball-mill have been limited to a small number of examples of transformations, mainly the Suzuki-Miyaura⁴ and Mizoroki-Heck⁵ cross couplings.

- In the last years we have developed a metal-based catalytic system ²⁵ using solid PEGs [poly(ethylene glycols)] as solvent and stabilizing/precipitating agent to separate the organic product from the metallic catalytic system.⁶ We questioned whether the use of solid PEG would be adapted to the development of a useful catalytic system to perform Pd-catalyzed reactions in a ball-mill.
- ³⁰ As a model reaction, the Mizoroki-Heck arylation⁷ of *tert*-butyl acrylate to produce cinnamate was chosen. A mixture of PhI, *tert*-butyl acrylate, PEG, Pd(OAc)₂ and an inorganic base was reacted in a high energy stainless steel vibratory ball mill for 1h at 30 Hz together with additives in some cases. Under traditional heating
- ³⁵ and microwave irradiation, PEG has already been shown to reduce Pd(OAc)₂ to Pd(0).^{8,6d} However, under ball-milling conditions, it was found necessary to add sodium formate as reducing agent for the activation of Pd(OAc)₂ (67 % yield). This was the best from a practical point of view, as sodium formate is easy to handle, as
- ⁴⁰ well as from the results obtained with reducing agents such as H₂ (28%) or NaBH₄ (59%). At the end of the reaction, the mixture was dissolved in a small amount of CH₂Cl₂ and precipitated in ether, filtered, evaporated and analyzed by ¹H NMR using CH₂Br₂ as an internal standard. Integration of the signal corresponding to
- ⁴⁵ the H of the ester group of *tert*-butylcinnamate measured against the unique signal of the standard (CH₂Br₂) provided the yield of the product. Results are presented in Table 1.

Table 1 Optimization	of ball-milling	Mizoroki-Heck	reaction ^a
----------------------	-----------------	---------------	-----------------------

Ph—I + ∕⊂CO ₂ ^t Bu	Pd(OAc) ₂ (5 mol%) K_2CO_3 (3 equiv) HCO ₂ Na (0.2 equiv) PEG Ball-mill, 30 Hz, 1h
Entry PEG	Acrylate (equiv) Additive Yield $(\%)^b$

1	PEG-3400-OH	1.2	NaCl	0.4
2	PEG-3400-OH	1.2	-	67
3 ^c	PEG-3400-OH	1.2	-	2
4	PEG-2000-OH	1.2	-	88
5^d	PEG-2000-OH	1.2	-	0
6	PEG-2000-OH	5	-	100
7	MeO-PEG-2000-OMe	5	-	46
8	MeO-PEG-2000-OH	5	-	27
9	PEG-1100-OH	5	-	74
10	-	1.2	-	0

⁵⁰ ^a Reaction conditions: phenyl iodide (0.1 mmol), *tert*-butyl acrylate, Pd(OAc)₂ (5 mol%), HCO₂Na (0.2 equiv), K₂CO₃ (3 equiv), PEG (110 mg). ^b Yield were determined by ¹H NMR using CH₂Br₂ as an internal standard. ^c Na₂CO₃ was used instead of K₂CO₃. ^d 1 mol% Pd(OAc)₂.

55 It was shown previously that solid additive like sodium chloride could be valuable for the Mizoroki-Heck arylation reaction.⁵ In our study, when PEG-3400-OH was used, adding NaCl was found detrimental to the reaction and barely any conversion was observed whilst 67% yield was obtained in the absence of NaCl 60 (entries 1-2). Attempt to change the inorganic base by switching from K₂CO₃ to Na₂CO₃ (entry 3) resulted in a lower conversion most probably because the PEG-K⁺ interaction is stronger than the corresponding PEG-Na⁺ thus enhancing the base activity. When triethylamine was used, substrates also remained unchanged. We 65 realized that during the course of the reaction, it appeared that PEG melted due to the slight heating of the ball-mill.⁹ As the viscosity of the PEG used might have an influence on the reaction, we turned our attention to shorter polymers having a lower melting point. As a result, the yield increased by 20% by using PEG-2000-70 OH (entry 4). While reducing catalyst loading to 1 mol% resulted in no conversion (entry 5), increasing the quantity of acrylate from 1.2 to 5 equivalents resulted in total conversion (entry 6). The exact excess amount of acrylate needed for completion of the reaction was not studied in detail. Several PEGs were then tested 75 under these conditions. The use of mono- and di-methylated PEG-2000 was detrimental as the yields dropped down (entries 7-8).

Finally, shorter PEG-1100-OH gave a 74% yield (entry 9). It is worth noting that due to the stabilizing effect of oxygen atoms in PEG, no phosphine ligand was necessary for the catalysis. In the absence of PEG, no reaction occurred (entry 10). In addition, Mizoroki-Heck coupling generally requires elevated temperatures, unfriendly

Table 2 Exemplification of the ball-milling Mizoroki-Heck reaction^a

Ar—X	+ //	CO ₂ ′Bu	Pd((K ₂ C HCC PEC Ball	DAc) ₂ (5 mc O ₃ (3 equiv O ₂ Na (0.2 e G-2000-OH ∙mill, 30 Hz,	ol%)) quiv) ────	Ar	[∕] CO ₂ ^t Bu
-	Entry	ArX		Additive	Yi	eld $(\%)^b$	
	1	PhI		-		100	
	2	4-MeO-C ₆ H	1-I	-		73	
	3	4-NC-C ₆ H ₄ -	-I	-		62	
	4	4-Br-C ₆ H ₄ -	I	-		68	
	5	4-OHC-C ₆ H	4-I	-		100	
	6	4-NO ₂ -C ₆ H ₄	-I	-		35	
	7	3-F-C ₆ H ₄ -I	[-		100	
	8	2-Me-C ₆ H ₄ -	-I	-		29	
	9	PhBr		-		0	
	10	PhBr		NaI		0	
	11	PhCl		-		0	
	12	PhCl		NaI		0	

^a Reaction conditions: phenyl iodide (0.1 mmol), *tert*-butyl acrylate (0.5 mol), Pd(OAc)₂ (5 mol%), HCO₂Na (0.2 equiv), K₂CO₃ (3 equiv), PEG-2000-OH (110 mg). ^b Yield were determined by ¹H NMR using CH₂Br₂ as an internal standard.

solvent and inert atmosphere. In our study, the use of PEG in a ¹⁵ vibratory ball-mill allowed the reaction to proceed in air under mild conditions.

The scope of the reaction was first explored by varying the olefin part. Unfortunately, the reaction was efficient only with *tert*-butyl ²⁰ acrylate. Either no reaction was observed or a very poor yield was obtained with acrylonitrile (0%), acrylamide (0%), methyl methacrylate (5%) or styrene (13%). The aromatic partner was then evaluated (Table 2). Different substituents could be used on the aryl moiety.¹⁰ Electron-donating as well as withdrawing groups ²⁵ were well tolerated in *para* position as *p*-MeO, *p*-CN, *p*-Br gave

- satisfactory yields (entries 2-4) and *p*-CHO was converted quantitatively (entry 5). Surprisingly, *p*-NO₂ substitution resulted in poor yield (entry 6). This is maybe due to a physico-chemical characteristic of the starting 4-iodo nitrobenzene than an electronic ³⁰ effect of the substituent. A fluorine atom in meta position allowed
- ³⁰ effect of the substituent. A hadrine atom in fleta position anowed quantitative conversion (entry 7). However, having a methyl group in ortho position reduced the yield to 29% (entry 8). Finally, the influence of the halide leaving group (I vs. Br, Cl) was explored. Only the iodine atom was reactive enough to provide the expected ³⁵ product, even when sodium iodide was added to the reaction
- mixture (entries 9-12).

It has already been demonstrated that palladium salts in the presence of polyethylene glycol are transformed in nanoparticles ⁴⁰ under classical activation. Because the order of the reduction potentials of the polyol and noble metals is not favorable at rt, this method requires high temperatures to reduce the noble metals.¹¹

This was confirmed by our previous work, using convection^{6g} or microwave heating.^{6d} Furthermore, when a long chain PEG (PEG-45 2000-OH or PEG-4000-OH) in the presence of Pd(OAc)₂ but no substrate was stirred a temperature of 80-120°C, nanoparticles of 5 nm were observed.⁸ When using PEG-400-OH, phenantroline as reducing agent was necessary to observe formation of 2-6 nm particles.¹² However, under vibrating ball-milling conditions, since

Figure 1. TEM images of PEG/Pd nanoparticles obtained after Mizoroki-Heck reaction (left column) and without substrates (right column) in different PEG: a-b) PEG-1100-OH; c-d) PEG-2000-OH; e-f) PEG-3400-OH; g-h) MeO-PEG-2000-OH; i-j) MeO-PEG-2000-OMe.

⁶⁰ the reaction temperature was mild,⁹ an external reducing agent such as sodium formate was required for activation of Pd(OAc)₂. According to these results, we questioned whether formation of nanoparticles would also occur in the ball mill during the course of the reaction, knowing that physical and chemical properties would ⁶⁵ depend on the size and shape of the particles. Transition Electron Microscopy (TEM) analysis of the precipitates obtained after reactions reported in table 1 with various PEGs was performed (Figure 1, left column). In order to compare, experiments were run under the same reaction conditions but in the absence of phenyl iodide and *tert*-butyl acrylate (Figure 1, right column). In all cases, light yellow Pd(OAc)₂ was transformed into a deep brown solid, indicating formation of Pd/PEG nanoparticles. TEM analysis ⁵ confirmed this experimental assumption (Figure 1). To our

- knowledge, this represents the first example of generation of Pd/polymer nanoparticles using a ball-mill.¹³ In the absence of substrates, the reaction led to significant particle aggregation, regardless of the PEG used. When substrates were present, the
- ¹⁰ aggregation was less important and nice round-shape nanoparticles could be obtained. The size of nanoparticles is directly connected to the size of the polymer. Indeed, average size of the nanoparticles observed was 6-8 nm, 8-11 nm and 7-13 nm with PEG-1100-OH, PEG-2000-OH and PEG-3400-OH, respectively
- ¹⁵ (Figure 1 a, c and e). In addition, with PEG-3400-OH, particles were found to be slightly more elliptical than with other polymers. Surprisingly, when PEG-2000-OH was mono- or di-methylated, the particle size changed to 7-13 nm and 5-7 nm, respectively (Figure 1 g and i).
- ²⁰ Formation of palladium nanoparticles in PEG after a Mizoroki-Heck reaction activated by microwave irradiation and TEM analysis had already been reported. In PEG-400-OH, which is a liquid polymer, particles of 5-8 nm were obtained.¹⁴ In PEG-3400-OH, following benzazepine synthesis, TEM analysis of the ²⁵ catalytic system revealed aggregated particles of 5-7 nm.^{6d} The particle aspect was quite different from those shown in figure 1 (left column). Thus, the activation method seems to have a strong influence on the size and aggregation state of the nanoparticles.

Conclusions

Published on 16 October 2012 on http://pubs.rsc.org | doi:10.1039/C2CC36286D

Downloaded by North Carolina State University on 17 October 2012

³⁰ We reported herein a solvent-free/phosphine-free palladiumcatalyzed Mizoroki-Heck procedure in a ball mill. Under mild conditions, quantitative yields were obtained using the appropriate polymer PEG-2000-OH, with a correct tolerance toward functional groups on the aryl moiety. Nanoparticles formed during these ³⁵ reactions were characterized by TEM and were found sizedependent on the PEG used. In addition, activation using ballmilling yielded nanoparticles different from those obtained previously under convection or microwave heating.

Acknowledgement

⁴⁰ We are grateful to the "Service Commun de Microscopie Electronique et Analytique" of the University Montpellier 2 for TEM analysis and fruitful discussions.

Notes and references

- ^a Institut des Biomolécules Max Mousseron (IBMM), CNRS-Universités
- 45 Montpellier 1 et 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. Fax: +33 (0) 4 67 14 48 66; E-mail: frederic.lamaty@univmontp2.fr

 ^b Present address: Laboratoire de Synthèse Organique et Méthodologie, ICMMO (UMR 8182-CNRS), Université Paris–Sud 11, 15 rue Georges
 ⁵⁰ Clemenceau, 91405 Orsav cedex, France.

- *This article is part of the *ChemComm* 'Mechanochemistry' web themed issue.
- 55 1 K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025-1074.

- 2 a) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, *Chem. Soc. Rev.*, 2012, **41**, 413-447; b) R. B. N. Baig
- and R. S. Varma, *Chem. Soc. Rev.*, 2012, 41, 1559-1584; c) P. Nun, V.
 Pérez, M. Calmès, J. Martinez and F. Lamaty, *Chem. Eur. J.*, 2012, 18, 3773-3779; d) B. Rodríguez, A. Bruckmann, T. Rantanen and C.
 Bolm, *Adv. Synth. Catal.*, 2007, 349, 2213-2233; e) F. Alonso, I. P.
 Beletskaya and M. Yus, *Tetrahedron*, 2005, 61, 11771-11835.
- 65 3 a) S. Bräse and A. De Meijere, in *Handbook of Organopalladium Chemistry for Organic Synthesis*, John Wiley & Sons, Inc., 2002; Vol 1, 1223-1254; b) M. Larhed and A. Hallberg, in *Handbook of Organopalladium Chemistry for Organic Synthesis*, John Wiley & Sons, Inc., 2002; Vol 1, 1133-1178.
- a) F. Schneider, A. Stolle, B. Ondruschka and H. Hopf, *Org. Process Res. Dev.*, 2008, 13, 44-48; b) J.-H. Li, C.-L. Deng and Y.-X. Xie, *Synth. Commun.*, 2007, 37, 2433-2448; c) S. F. k. Nielsen, D. Peters and O. Axelsson, *Synth. Commun.*, 2000, 30, 3501-3509; d) L. M. Klingensmith and N. E. Leadbeater, *Tetrahedron Lett.*, 2003, 44, 765-75
- a) E. Tullberg, F. Schacher, D. Peters and T. r. Frejd, *Synthesis*, 2006, 1183-1189; b) E. Tullberg, D. Peters and T. r. Frejd, *J. Organomet. Chem.*, 2004, 689, 3778-3781.
- 6 a) E. Colacino, J. Martinez, F. Lamaty, L. S. Patrikeeva, L. L.
 Khemchyan, V. P. Ananikov and I. P. Beletskaya, *Coord. Chem. Rev.*, 2012, DOI: 10.1016/j.ccr.2012.05.027; b) X. Bantreil, M. Sidi-Ykhlef, L. Aringhieri, E. Colacino, J. Martinez and F. Lamaty, *J. Catal.*, 2012, in press; c) E. Colacino, L. Villebrun, J. Martinez and F. Lamaty, *Tetrahedron*, 2010, **66**, 3730-3735; d) V. Declerck, P. Ribiere, Y.
 Nedellec, H. Allouchi, J. Martinez and F. Lamaty, *Eur. J. Org. Chem.*, 2007, 201-208; e) E. Colacino, L. Daich, J. Martinez and F. Lamaty, *Synlett*, 2006, 3029-3032; g) P. Ribiere, V. Declerck, Y. Nedellec, N. Yadav-Bhatnagar, J. Martinez and F. Lamaty, *Tetrahedron*, 2006, **62**, 10456-10466.
- 7 I. P. Beletskaya and A. V. Cheprakov, *Chem. Rev.*, 2000, 100, 3009-3066.
- 8 C. Luo, Y. Zhang and Y. Wang, J. Mol. Catal. A: Chem., 2005, 229, 7-12.
- 95 9 E. Colacino, P. Nun, F. M. Colacino, J. Martinez and F. Lamaty, *Tetrahedron*, 2008, **64**, 5569-5576.
- 10 Typical procedure for the ball-mill Mizoroki-Heck reaction: in a 10 mL stainless steel ball-mill reactor were added Pd(OAc)₂ (1.1 mg, 0.005 mmol), K₂CO₃ (41.4 mg, 0.3 mmol), HCO₂Na (1.4 mg, 0.02 mmol) and PEG-2000-OH (110 mg). Phenyl iodide (11.2 μL, 0.1 mmol), *tert*-butyl acrylate (73.2 μL, 0.5 mmol) and two stainless steel balls with a 7 mm diameter were then added. The mixture was then submitted to high speed vibration milling for 1h at 30 Hz on a Retsch MM200. A minimum of CH₂Cl₂ was then added and the mixture was filtered and the filtrate concentrated *in vacuo*. After addition of 20 μL of CH₂Br₂ as internal standard, ¹H NMR analysis allowed measurement of a quantative yield.
- 11 F. Bonet, C. Guéry, D. Guyomard, R. Herrera Urbina, K. Tekaia-Elhsissen and J. M. Tarascon, *Int. J. Inorg. Mater.*, 1999, **1**, 47-51.
 - 12 U. R. Pillai and E. Sahle-Demessie, J. Mol. Catal. A: Chem., 2004, 222, 153-158.
 - 13 A. L. Garay, A. Pichon and S. L. James, *Chem. Soc. Rev.*, 2007, 36, 846-855.
- 115 14 Z. Du, W. Zhou, L. Bai, F. Wang and J.-X. Wang, Synlett, 2011, 369-372.