Highly Fluorous Derivatives of 1,2-Bis(diphenylphosphino)ethane

Elwin de Wolf,[†] Bodo Richter,[†] Berth-Jan Deelman,^{*,‡} and Gerard van Koten[†]

Debye Institute, Department of Metal-Mediated Synthesis, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Elf Atochem Vlissingen B.V., P.O. Box 70, 4380 AB Vlissingen, The Netherlands

b.j.deelman@chem.uu.nl

Received March 6, 2000

Introduction

Since the first demonstration of catalyst recovery using the technique of fluorous biphasic separation,¹ several classes of ligands have been functionalized with perfluoroalkyl chains to increase solubility of these ligands and derived catalysts in fluorous solvents.² Published work concerning phosphorus ligands has been mainly focused on fluorous versions of monodentate tertiary phosphines which contain hydrocarbon spacers to insulate the phosphorus atom from the electron-withdrawing effect of the perfluoroalkyl tails.³ Triarylphosphines with perfluorotails directly connected to the aryl ring⁴ and through a -CH₂CH₂- spacer⁵ as well as perfluoroalkylated phosphinites, -phosphonites,⁶ and -phosphites⁷ have been prepared. However, performance of these ligands in catalysis is often lower compared with conventional nonfluorous ligands.

To counteract this drop in activity upon fluorotail functionalization, we introduced the -CH2CH2SiR2spacer ($R = Me \text{ or } -CH_2CH_2C_mF_{2m+1}$) to prepare fluorous 2.6-bis[(dimethylamino)methyl]arylnickel- and platinum-,⁸ fluorous triarylphosphine rhodium,⁹ and chiral arenethiolate zinc complexes¹⁰ containing perfluoroalkyl tails. All of these catalysts displayed similar activity as their nonfluorous counterparts. The weakly electrondonating character of the silyl substituent, which compensates for the electron-withdrawing effect of the perfluoroalkyl tail, is most probably responsible for this retention of catalytic activity. An additional advantage of the -CH₂CH₂SiR₂-spacer is the possibility to connect multiple (up to three) perfluorotails per aryl ring via the Si-center through straightforward synthetic methodologies.^{9,11} This latter characteristic allows the synthesis of ligands and derived transition metal complexes with high fluorphase affinity. Application of these ligands in fluorous biphasic metal-catalyzed organic synthesis is expected to result in improved catalyst recycling.

The fact that monophosphines are known to dissociate easily from the metal center under catalytic conditions may result in leaching of the free fluorous ligand into the organic phase.9d To counteract this obvious disadvantage of the use of monophosphines in catalysis, chelating diphosphines have found widespread application in transition metal-based homogeneous catalysis.¹² Two fluorous examples of 1.2-bis(diphenylphosphino)ethane (dppe) containing four perfluorotails (1 and 2) were recently reported.^{4a,5} However, studies which employ 1 in fluorous biphasic catalysis have not been reported. Diphosphine 2 was applied in fluorous biphasic hydrogenation of styrene, using $[Rh(\mu-Cl)_2(2)]_2$ as catalyst.¹³ The activity of this system, however, was modest in comparison with the more commonly used [Rh(diene)-(diphosphine)]⁺ systems.^{12,14} Since diphosphine catalysts which combine high fluorous phase retention with high catalytic activity have not been reported yet, we have now employed silvl spacers to prepare highly fluorous derivatives of dppe, stimulated by the positive results obtained for fluorous triarylphosphines. The synthetic results along with some quantitative solubility studies of the diphosphines are presented below.

Results and Discussion

Starting compound 1,2-bis[bis(4-bromophenyl)phosphinolethane (3) was easily obtained by addition of 1,2bis(dichlorophosphino)ethane to a suspension of p-BrC₆H₄-

[†] Debye Institute.

[‡] Elf Åtochem, currently based at the Debye Institute. Fax: +31 30 252 3615.

⁽¹⁾ Horváth, I. T.; Rábai, J. Science 1994, 266, 72-75.

^{(2) (}a) De Wolf, E.; Van Koten, G.; Deelman, B.-J. Chem. Soc. Rev. 1999, 28, 37-41. (b) Horváth, I. T. Acc. Chem. Res. 1998, 31, 641-650. (c) Curran, D. P. Angew. Chem., Int. Ed. 1998, 37, 1174-1196. (d) Cornils, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2057-2059. (e) Hope, E. G.; Stuart, A. M. J. Fluorine Chem. 1999, 100, 75-83.

^{(3) (}a) Horváth, I. T.; Kiss, G.; Cook, R. A.; Bond, J. E.; Stevens, P. A.; Rábai, J.; Mozelski, E. J. J. Am. Chem. Soc. 1998, 120, 3133-3143. (b) Sinou, D.; Pozzi, G.; Hope, E. G.; Stuart, A. M. *Tetrahedron Lett.* **1999**, 40, 849–852. (c) Alvey, L. J.; Rutherford, D.; Juliette, J. J. J.; Gladysz, J. A. J. Org. Chem. **1998**, 63, 6302–6308. (d) Klose, A.; Gladysz, J. A. *Tetrahedron: Asymmetry* **1999**, *10*, 2665–2674. (e) Juliette, J. J. J.; Rutherford, D.; Horváth, I. T.; Gladysz, J. A. J. Am. Chem. Soc. 1999, 121, 2696-2704.

^{(4) (}a) Bhattacharyya, P.; Gudmunsen, D.; Hope, E. G.; Kemmitt, R. D. W.; Paige, D. R.; Stuart, A. M. J. Chem. Soc., Perkin Trans. 1 1997, 3609–3612. (b) Betzemeier, B.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 2623-2624.

⁽⁵⁾ Kainz, S.; Koch, D.; Baumann, W.; Leitner, W. Angew. Chem., Int. Ed. Engl. 1997, 36, 1628-1630.

⁽⁶⁾ Haar, C. M.; Huang, J.; Nolan, S. P.; Petersen, J. P. Organome-tallics **1998**, *17*, 5018–5024.

⁽⁷⁾ Mathivet, T.; Monflier, E.; Castanet, Y.; Morteaux, A.; Couturier, J.-L. *Tetrahedron Lett.* **1998**, *39*, 9411–9414.
(8) Kleijn, H.; Jastrzebski, J. T. B. H.; Gossage, R. A.; Kooijman, H.; Spek, A. L.; Van Koten, G. *Tetrahedron* **1998**, *54*, 1145–1152.

^{(9) (}a) Richter, B.; De Wolf, A. C. A.; Van Koten, G.; Deelman, B. Y. PCT Int. Appl. WO 0018444, 2000, to Elf Atochem. (b) Richter, B.; Van Koten, G.; Deelman, B.-J. *J. Mol. Catal.(A), Chem.* **1999**, *145*, 317–321. (c) Richter, B.; De Wolf, E.; Van Koten, G.; Deelman, B.-J. *J. Org. Chem.* **2000**, *65*, 3385–3893. (d) Richter, B., Spek, A. L., Van Koten, G.; Deelman, B.-J. *J. Am. Chem. Soc.*, **2000**, *122*, 3945–3951.

⁽¹⁰⁾ Kleijn, H.; Rijnberg, E.; Jastrzebski, J. T. B. H.; Van Koten, G. *Org. Lett.* **1999**, *1*, 853–855.

Li in a 3:1 (v/v) mixture of hexane and ether (Scheme 1). The fluorinated dppe derivatives **4a**–**d** were formed after lithiation of **3** in THF at -90 °C followed by coupling with silyl halides ($R_fCH_2CH_2$)_nSiMe_{3-n}X ($R_f = C_6F_{13}$ or C_8F_{17} ; X = Cl or Br).⁹ The products were isolated as air-stable¹⁵ white solids (**4a** and **4d**) or colorless to yellow oils (**4b** and **4c**) in high yields. Using a similar synthetic route, nonfluorous 1,2-bis[bis{4-(trimethylsilyl)phenyl}-phosphino]ethane (**4e**) was synthesized for comparison.

The fluorous silyl bromides $(R_fCH_2CH_2)_nSiMe_{3-n}Br$ (n = 2, 3) often contain some Wurtz-coupling product, $(R_fCH_2CH_2)_2$.^{9c} Since this side product was difficult to remove, the crude fluorous silyl bromides were used without further purification. It appeared that once the fluorous silyl bromides had been converted to the diphosphines **4b** or **4c**, the Wurtz-coupling product was easily removed by Kugelrohr distillation (**4b**) or washing with pentane (**4c**). Since $R_fCH_2CH_2SiMe_2Cl$ ($R_f = C_6F_{13}$ or C_8F_{17}) was obtained by hydrosilylation, this extra purification procedure was not necessary in the synthesis of **4a** and **4d**.

The phosphines **3** and **4a**–**e** were identified by both ¹H and ³¹P NMR spectroscopy and elemental analyses. Compounds **4a** and **4d** were further characterized by their ¹⁹F NMR data and **3**, **4a**, and **4e** by ¹³C NMR spectroscopy. All spectral data corresponded to the proposed structures and no partly substituted products, bearing less than four SiMe_{3-n}(CH₂CH₂R_{1)n} groups, were observed. The PC*H*₂C*H*₂P signal, which usually appears as a pseudo or virtual triplet in the ¹H NMR spectrum, ^{4a,16} was observed as a shoulder on the $-CH_2CF_2$ - signal for **4a**–**d**.

The methylene carbons of the PCH₂CH₂P unit as well

as the *ipso*-, *o*-, and *m*-phenyl carbons (relative to phosphorus) of phosphines **3**, **4a**, and **4e** are observed as the X part of an ABX spin system in the ¹³C NMR spectrum.¹⁷ These observations are in close agreement with those for dppe itself.¹⁸

Comparison of the ³¹P chemical shifts of dppe ($\delta = -11.1$) and **4a**-**e** in C₆D₆/C₆F₆ (1:1 by volume) shows a small high field shift for **4a**-**e** ($\delta = -11.3$ to -11.4). With some caution, it can be concluded that this is mainly caused by the *p*-silyl substitution and that the silicon spacer is indeed a good insulator for the electron-withdrawing effect of the perfluorotail.⁹

Attaching *p*-SiMe₃ groups to the aryl rings of dppe, as in **4e**, results in a large increase of the melting point (Table 1). However, when four $CH_2CH_2C_6F_{13}$ or $CH_2-CH_2C_8F_{17}$ tails are connected (**4a** and **4d**), the diphosphines melt at lower temperature than **4e**. Compound **4d** melts at higher temperature than **4a**, possibly due to the higher molecular weight. Similar trends in melting points were observed for related fluorous triphenylphosphine derivatives.⁹ The dppe derivatives containing 8 or 12 fluorotails (**4b** and **4c**) did not solidify at room temperature.

Solubility data for the new perfluoroalkylated dppe derivatives were obtained in THF, toluene, and PFMCH (Table 1). A large difference in solubility between **4a** and **4d** was observed; the derivative with the shorter tail (**4a**) is soluble in both polar (THF, CH_2Cl_2) and aromatic organic solvents (toluene and benzene) whereas solubility in PFMCH is low. The phosphine containing the longer fluorotail (**4d**) is poorly soluble in both aromatic solvents and PFMCH. Interestingly, it is moderately soluble in amphiphilic media like $CF_3C_6H_5$ and mixtures of benzene and hexafluorobenzene of different ratios.¹⁹

From Table 1 it is clear that the solubility of dppe in

^{(11) (}a) Struder, A.; Curran, D. P. *Tetrahedron* **1997**, *53*, 6681–6696.
(b) Struder, A.; Jeger, P.; Wipf, P.; Curran, D. P. *J. Org. Chem.* **1997**, *62*, 2917–2924.

⁽¹²⁾ See for example: Brunner, H. In *Applied Homogeneous Catalysis with Organometallic Compounds*; Cornils, B., Herrmann W. A., Eds.; VCH: Weinheim, 1996; Chapter 2.2, pp 201–219.

⁽¹³⁾ Hope, E. G.; Kemmitt, R. D. W.; Paige, D. R.; Stuart, A. M. J. Fluorine Chem. **1999**, *99*, 197–200.

⁽¹⁴⁾ Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 4450-4455.

⁽¹⁵⁾ No oxidation products were observed after exposing a toluene solution of **4b** to air for 3 days.

⁽¹⁶⁾ See for example in (a) Casey, C. P.; Paulsen, E.; Beuttenmueller,
E. W.; Proft, B. R.; Petrovich, L. M.; Matter, B. A.; Powell, D. R. J.
Am. Chem. Soc. 1997, 119, 11817-11825. (b) Casey, C. P.; Bullock, R.
M.; Nief, F. J. Am. Chem. Soc. 1983, 105, 7574-7580. (c) Brunner,
H.; Janura, M.; Stefaniak, S. Synthesis 1998, 1742-1749.

⁽¹⁷⁾ For the methylene carbons the sum of ${}^{1}J_{PC}$ and ${}^{2}J_{PC}$ is close to zero, resulting in a singlet (**4a** and **4e**, ${}^{1}J_{PC} + {}^{2}J_{PC} < 1$ Hz) or a doublet (**3**, ${}^{1}J_{PC} + {}^{2}J_{PC} = 2$ Hz) for these carbon signals. The *ipso*- and *o*-phenyl carbons are observed as triplets. Satellites on the triplet of the *o*-carbons allowed the determination of ${}^{3}J_{PP}$ (36 Hz) by spectral simulation. No or little second-order effects were observed on the *m*-carbon signals of **4a** and **4e**, whereas a triplet was observed for **3**, indicating a smaller ${}^{3}J_{PC}$ for the former compounds.

⁽¹⁸⁾ King, R. B.; Cloyd, J. C. J. Chem. Soc., Perkin Trans 2 1975, 938-941.

⁽¹⁹⁾ Attemps to synthesize a $(C_8F_{17}CH_2CH_2)_2MeSi$ -substituted derivative of dppe (n = 2; $R_f = C_8F_{17}$) gave the desired product. Although its purification was severely hindered by the low solubility, the crude product showed a similar behavior in PFMCH as **4d**.

Table 1. Physical Properties of 4a-e and Dppe

							S0					
	compound				THF		toluene		PFMCH			
entry		$R_{ m f}$	n	wt % F	(g/L)	(mmol/L)	(g/L)	(mmol/L)	(g/L)	(mmol/L)	P^b	melting range (°C)
1	dppe	-	_	0	75	188	29	73	_c	_ <i>c</i>	_ <i>c</i>	134-138
2	4e	-	0	0	162	236	58	85	_ <i>c</i>	_ <i>c</i>	0.0^{d}	186 - 189
3	4a	$C_{6}F_{13}$	1	49.0	193	96	14	7	2	1	0.4^{e}	136 - 138
4	4b	$C_{6}F_{13}$	2	59.1	67	20	7	2	>300 ^f	>90 ^f	12	oil
5	4 c	$C_{6}F_{13}$	3	63.4	11	2	< 0.2	< 0.04	>300 ^f	$> 64^{f}$	>50g	oil
6	$4d^h$	C_8F_{17}	1	53.5	15	6	< 0.2	<0.08	1	0.4	_ <i>i</i>	155 - 159

^{*a*} Expressed as the amount of phosphine which can be dissolved in 1 L of pure solvent at 25 °C. Determined by gravimetric methods. (PFMCH = perfluoromethylcyclohexane) ^{*b*} In a 1:1 (ν/ν) mixture of PFMCH and toluene at 0 °C ($P = c_{\text{fluorous phase}}/c_{\text{organic phase}}$). Determined by gravimetric methods. The estimated error is ±1 in the last digit. ^{*c*} Not determined. ^{*d*} No residue was found in the fluorous layer. ^{*e*} Clear phase separation was achieved only after 15 h. ^{*f*} Both **4b** and **4c** are completely miscible with PFMCH. ^{*g*} No residue was found in the toluene layer. ^{*h*} Solubility in CF₃C₆H₅ = 14 g/L (5.8 mmol/L). ^{*i*} Could not be determined due to low solubility in both toluene and PFMCH.

THF and toluene increases upon trimethylsilyl functionalization (entries 1 and 2). Furthermore, the fluorous phase solubility of the diphosphines increases (entries 3-5, $R_f = C_6 F_{13}$) while the solubility in THF and toluene decreases (entries 4 and 5) upon attachment of more fluorotails to the phosphine. Compound **4a** has only low solubility in PFMCH, and compounds 4b and 4c dissolve well in this fluorous solvent even allowing their purification by fluorous phase extraction (see Experimental Section). Whereas compound 4a is still highly soluble in THF, 4b is only moderately soluble and 4c has low solubility in THF. Compared to the fluorous triphenylphosphine derivatives PAr_3 (Ar = C₆H₄-4-[SiMe_{3-n}(CH₂- $CH_2C_6F_{13})_n$; n = 0-3, ^{9c} the solubility of **4b** and **4c** in PFMCH (>300 g/L) is in the same range (n = 2: 615 g/L, n = 3: 502 g/L).

An important parameter for catalyst recycling by fluorous biphasic extraction is the partition coefficient P ($P = c_{\text{fluorous phase}}/c_{\text{organic phase}}$) of a particular catalytic complex and its fluorous ligands in fluorous biphasic systems. The partition coefficients of **4a**–**c** and **4e** were determined in a toluene/PFMCH biphasic system and reflect the same trend as their solubility data, i.e., attachment of more perfluoroalkyl tails to the diphosphine leads to an improved affinity for the fluorous phase, resulting in a maximum value for **4c** (P > 50 with n = 3). In this way, diphosphines differ from the monophosphines PAr₃ (Ar = C₆H₄-4-[SiMe_{3-n}(CH₂CH₂C₆F₁₃)_n]; n = 0-3), where an optimum for n = 2 was found.^{9c} This interesting phenomenon will be investigated further in future publications.

Conclusions

Highly fluorous dppe derivatives containing the $(CH_2-CH_2)_nSiMe_{3-n}$ spacer are readily accessible. The flexible synthetic protocol developed, using the Si atom as a branching point, makes this approach particularly useful for parallel synthesis procedures. ³¹P NMR data suggest that the electron density on the phosphorus atom is very similar to the parent compounds dppe and 1,2-bis[bis{4-(trimethylsilyl)phenyl}phosphino]ethane. Therefore, similar coordination chemistry with transition metals is to be expected.

The preferential fluorous phase solubility of the novel fluorous diphosphines increased with the number of tails connected to the silicon atom, resulting in a highest partition coefficient (P > 50, in favor of the fluorous phase) for **4c**. Hence, depending on the organic solvent used and the number of fluorous extractions employed,

the fluorous dppe derivatives containing 8 (59.1 wt % F) or 12 perfluoroalkyl tails (63.4 wt % F) (compounds **4b** and **4c**, respectively) are the preferred ligands for fluorous phase metal-catalyzed organic synthetic applications. This aspect is currently under investigation.

Experimental Section

General. All experiments were performed in a dry dinitrogen atmosphere using standard Schlenk techniques. Solvents were stored over sodium benzophenone ketyl and distilled before use. Fluorinated solvents (c-CF₃C₆F₁₁ (Lancaster), FC-72 and CF₃C₆H₅ (Acros)) were degassed and stored under dinitrogen atmosphere. Fluorous alkylsilyl halides were prepared according to previously reported procedures.^{9,11} Other chemicals were obtained from commercial suppliers (Acros, Aldrich, Lancaster) and used as delivered. Microanalyses were carried out by H. Kolbe, Mi-kroanalytisches Laboratorium, Mühlheim an der Ruhr. ¹⁹F NMR spectra were externally referenced against C₆F₆ ($\delta = -163$ relative to CFCl₃). The computer program gNMR, version 3.6, Cherwell Scientific Publishing Limited, Oxford, was used for simulation of ¹³C NMR spectra.

1,2-Bis[bis(4-bromophenyl)phosphino]ethane (3). p-Dibromobenzene (22.5 g, 95.3 mmol) was dissolved in a mixture of n-hexane (300 mL) and diethyl ether (100 mL). To this solution a solution of n-BuLi (1.64 M in pentane, 58.1 mL, 95.3 mmol) was added. After stirring for 5 min, the mixture was cooled to -78 °C followed by stirring for another 20 min. To the white suspension was added 1,2-bis(dichlorophosphino)ethane (5.53 g, 23.8 mmol). The reaction mixture was allowed to reach room temperature after 2 h. After stirring the reaction mixture for another 15 h at room temperature, a degassed, saturated aqueous NH₄Cl-solution was added, and the two layers were separated. The aqueous layer was washed with CH₂Cl₂ twice. and the combined organic layers were dried on MgSO₄. Volatiles were evaporated in vacuo to afford 3 (14.46 g, 85%) as a slightly yellow solid. Mp 176–179 °C. ¹H NMR (200 MHz, CDCl₃): δ 1.98 (ps t, J = 3.8 Hz, 4H), 7.12–7.43 (m, 16 H); ¹³C NMR (50.3 MHz, CDCl₃): δ 24.0 (d, ¹J_{PC} + ²J_{PC} = 2 Hz), 123.9 (s), 132.0 (t, ${}^{3}J_{PC} = 7$ Hz), 134.4 (t, ${}^{2}J_{PC} = 19$ Hz), 136.8 (t, ${}^{1}J_{PC} = 14$ Hz); ${}^{31}P$ NMR (81.0 MHz, CDCl₃): δ -13.8. Anal. Calcd for C₂₆H₂₀-Br₄P₂: C 43.74, H 2.82, P 8.68. Found: C 43.82, H 3.01, P 8.56.

General Procedure for *p*-Silyl-Substituted Dppe Derivatives 4a–e. 1,2-Bis[bis(4-bromophenyl)phosphino]ethane was dissolved in THF and cooled to -90 °C in an ethanol/liquid nitrogen bath. To this solution was added 8 equiv of a solution of *t*-BuLi in pentane. The reaction mixture was stirred for 30 min, while the temperature was kept below -60 °C. The green suspension was treated with 4 equiv of alkylsilyl halide, and the resulting solution was stirred below -60 °C for 1 h. The slightly yellow solution thus formed was warmed to room temperature in 6 h.

4a and 4e. After evaporating all solvents in vacuo, the white solid was dissolved in degassed water/ CH_2Cl_2 . The organic layer was separated, dried on MgSO₄ and evaporated to dryness. The products were isolated as white solids.

4b and 4c: The residue obtained after evaporating the solvent in vacuo was dissolved in a two-phase system consisting of methanol and FC-72. The fluorous layer was separated and evaporated to dryness, giving a clear yellow oil. The compound was further purified by Kugelrohr (120 °C, 0.1 mbar; **4b**) or washing with pentane (**4c**).

4d: The brownish-white solid, obtained after evaporation of all THF, was washed with degassed water. The suspension was filtered, washed with acetone, and dried in vacuo.

1,2-Bis[bis{4-((2-(perfluorohexyl)ethyl)dimethylsilyl)-phenyl}phosphino]ethane (4a). 3 (0.87 g; 1.22 mmol) in THF (20 mL), *t*-BuLi (6.5 mL 1.5 M; 9.8 mmol), and $C_6F_{13}CH_2CH_2$ -SiMe₂Cl (2.26 g; 5.12 mmol) yielded 2.08 g (85%) of a white solid: ¹H NMR (200 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ 0.25 (s, 24H), 0.96 (m, 8H), 2.01–2.12 (m, 12H), 7.22–7.29 (m, 16H); ¹³C NMR (75.5 MHz, toluene-d₈): δ –4.1 (s), 5.0 (s), 24.2 (s, ¹ J_{PC} + ² J_{PC} < 1 Hz), 26.0 (t, ² J_{FC} = 23.8 Hz), 132.5 (t, ² J_{PC} = 18.3 Hz), 133.6 (m), 137.8 (s), 140.2 (t, ¹ J_{PC} = 15.8 Hz); ¹⁹F NMR (282 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ –112.3 (m, 2F), –124.9 (m, 2F), –124.0 (m, 2F), –117.9 (m, 2F), –82.8 (m, 3F); ³¹P NMR (81.0 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ –11.3. Anal. Calcd for $C_{66}H_{60}F_{52}P_2Si_4$: C 39.33, H 3.00, P 3.07. Found: C 39.40, H 3.09, P 2.88.

1,2-Bis[bis{4-(di(2-(perfluorohexyl)ethyl)methylsilyl)phenyl}phosphino]ethane (4b). 3 (1.20 g; 1.68 mmol) in THF (30 mL), *t*-BuLi (9.0 mL 1.5 M; 13.5 mmol), and ($C_6F_{13}CH_2CH_2$)₂-SiMeBr (6.7 g; 6.72 mmol), containing approximately 20 mol % of ($C_6F_{13}CH_2CH_2$)₂ (determined by ¹H NMR) yielded 4.91 g (87%) of a colorless oil: ¹H NMR (200 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ 0.18 (s, 12H), 0.96 (m, 16H), 2.01 (m, 20H), 7.25 (m, 16H); ³¹P NMR (81.0 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ –11.4. Anal. Calcd for $C_{94}H_{64}F_{104}P_2Si_4$: C 33.77, H 1.93, P 1.85. Found: C 33.71, H 1.83, P 1.82.

1,2-Bis[bis{**4-(tri(2-(perfluorohexyl)ethyl)silyl)phenyl**}phosphino]ethane (4c). 3 (0.47 g; 0.66 mmol) in THF (15 mL), *t*-BuLi (3.5 mL 1.5 M; 5.3 mmol), and $(C_6F_{13}CH_2CH_2)_3SiBr$ (3.58 g; 2.64 mmol), containing approximately 30 mol % of $(C_6F_{13}CH_2-CH_2)_2$ (determined by ¹H NMR) yielded 1.60 g (55%) of a yellow oil: ¹H NMR (200 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ 1.01 (m, 24H), 1.95 (m, 28H), 7.23 (m, 16H); ³¹P NMR (81.0 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ -11.4. Anal. Calcd for $C_{122}H_{68}F_{156}P_2Si_4$: C 31.37, H 1.47, P 1.33. Found: C 31.46, H 1.38, P 1.44.

1,2-Bis[bis{4-((2-(perfluorooctyl)ethyl)dimethylsilyl)phenyl}phosphino]ethane (4d). 3 (1.15 g; 1.61 mmol) in THF (20 mL), *t*-BuLi (8.6 mL 1.5 M; 12.9 mmol), and $C_8F_{17}CH_2CH_2$ -SiMe₂Cl (3.49 g; 6.45 mmol) yielded 2.88 g (74%) of a brownish-white solid: ¹H NMR (200 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ 0.23 (s, 24H), 0.94 (m, 8H), 2.03–2.12 (m, 12H), 7.23–7.30 (m, 16H); ¹⁹F NMR (282 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ -127.6 (m, 2F), -124.4 (m, 2F), -124.0 (m, 2F), -123.2 (m, 6F), -117.4 (m, 2F), -82.8 (m, 3F); ³¹P NMR (81.0 MHz, C_6D_6/C_6F_6 1:1 (v:v)): δ -11.3. Anal. Calcd for $C_{74}H_{60}F_{68}P_2G_4$: C 36.80, H 2.50, P 2.56. Found: C 36.65, H 2.59, P 2.48.

1,2-Bis[bis{**4-(trimethylsilyl)phenyl**}**phosphino]ethane (4e). 3** (1.26 g; 1.76 mmol) in THF (30 mL), 9.4 mL of a 1.5 M (14.1 mmol) *t*-BuLi solution, and Me₃SiCl (0.80 g; 7.06 mmol) yielded 1.10 g (91%) of a white solid: ¹H NMR (200 MHz, CDCl₃): δ 0.25 (s, 36H), 2.13 (ps t, J = 4.4 Hz, 4H), 7.30–7.55 (m, 16H); ¹³C NMR (75.5 MHz, toluene- d_8): δ –1.5 (s), 24.6 (s, ¹ $J_{PC} + {}^2J_{PC} < 1$ Hz), 132.3 (t, ${}^2J_{PC} = 18.3$ Hz), 133.3 (s), 139.8 (t, ¹ $J_{PC} = 15.2$ Hz), 140.3 (s); ³¹P NMR (81.0 MHz, C₆D₆/C₆F₆ 1:1 (v:v)): δ –11.4. Anal. Calcd for C₃₈H₅₆P₂Si₄: C 66.42, H 8.21, P 9.01. Found: C 66.51, H 8.28, P 9.06.

Solubility Studies of 4a–**e and dppe.** Saturated solutions were prepared by stirring the fluorous diphosphine in the appropriate solvent for 30 min at 25 °C. A sample (2.000 ± 0.002 mL) was taken after allowing the mixture to settle, and the mass of this sample was determined. All solvent was removed in vacuo, and the residue was kept under vacuum (0.1 mbar) for 15 h upon which the weight was constant within \pm 1 mg, and the weight of the residue was determined.

Determination of Partition Coefficients. A known amount of diphosphine (between 12 and 84 μ mol) was dissolved in a biphasic system containing PFMCH (2.000 \pm 0.002 mL) and toluene (2.000 \pm 0.002 mL). The mixture was stirred until all of the compound had dissolved and then equilibrated in at 0 °C. When two clear layers were obtained, an aliquot (500 \pm 2 μ L) was removed from each layer by syringe. This was evaporated to dryness, and the residue was kept under vacuum (0.1 mbar) for 15 h upon which the weight was constant within \pm 1 mg. Subsequently, the weight of the residue was determined.

Acknowledgment. We thank Elf Atochem Vlissingen B.V. and the Dutch Ministry for Economic Affairs (SENTER/BTS) for financial support.

JO000312K