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Bifunctionalized Allenes, VII: Two Methods
for One-Pot Synthesis of Sulfonyl-

Functionalized Allenecarboxylates and
Phosphorylated Allenes

Valerij C. Christov and Jordanka G. Ivanova

Department of Chemistry, University of Shumen, Shumen, Bulgaria

Abstract: Two new approaches to the synthesis of sulfonyl-functionalized allenecar-

boxylates and phosphorylated allenes are described. 2-Sulfonyl-alka-2,3-dienoates

were readily prepared in an one-pot reaction by [2,3]-sigmatropic rearrangement of

sulfinato-substituted 2-alkynoates, in situ generated from ethyl propynoate and sub-

sequent treatment with lithium diisopropyl (LDA), ketone, trimethylchlorosilane

(TMSCl), and the corresponding sulfinyl chlorides. Preparation of 1-sulfonyl-

alka-1,2-dienephosphonates and -1,2-dienyl phosphine oxides consists of the

reaction of the lithio compounds, in situ generated from phosphorylated allenes and

LDA, with the corresponding sulfonyl chlorides.

Keywords: [2,3]-Sigmatropic rearrangement, 1-sulfonyl-alka-1,2-dienephosphonates,

1-sulfonyl-alka-1,2-dienyl phosphine oxides, 2-sulfonyl-alka-2,3-dienoates, synthesis

Allenes are attractive starting points for synthesis, in large part because of the

high reactivity engendered by strain. In the past three decades, synthesis and

use[1] of allene derivatives have been expanded in preparative organic

chemistry.[2] An impressive number of heterocyclic systems has been

prepared from allenic starting materials. The electrophilic cyclization[3] of a

variety of monofunctionalized allenes such as alcohols,[4] carboxylic acids

and their esters,[5] sulfoxides,[6a] sulfinates,[6b] sulfones,[6b – d] phosphonates,[7]

phosphinates,[7] and phosphine oxides[6] to heterocyclic systems has received
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considerable attention because of its synthetic utility and remarkable

stereoselectivity.[3d,4,5b,5f,6c,6d,7]

Reaction of propargyl alcohols with halogen-containing reagents such as

sulfenyl halides[8] and sulfinyl chlorides[9] is a convenient method for prep-

aration of propargyl compounds (sulfenates or sulfinates), which usually

undergo [2,3]-sigmatropic rearangement to allenic products[8 – 11] (sulfoxides

or sulfones). Synthesis of alkyl 2,3-alkadienoates by the Wittig reaction[12]

and by other methods have been reviewed.[13] The synthesis of a-thioallene-

carboxylates by metallation of an allene sulfide, followed by treatment with

methyl chloroformate, was mentioned by H. G. Viehe[14a] without the exper-

imental datails. An alternative route that enables the preparation of thio-,[14b]

sulfinyl-,[14b,14c] and sulfonyl-substituted[14b] allenecarboxylates starts from

methyl 4-hydroxy-2-alkynoate.

On the other hand, a most important aspect for applications of 1-acceptor-

substituted allenes is the relatively high acidity of the hydrogen atom at C-1

atom, for examples, 1-alkoxyallenes,[15] a-allenic esters,[16] 1-allenyl

sulfide,[17a] sulfoxides,[17b] sulfineamides,[17c] and sulfone.[17d] The literature

data show that the proton at the C-1 atom from the allenic system is easy dis-

placeable with different electrophilic reagents. For example, a-metallation of

an allenyl phosphine oxide (introduction of deuterium in the a-position) has

been observed.[18a] Application of allenic phosphonates to the synthesis of

structurally interesting molecules was made by R. S. Macomber,[18b – d] as

shown in the construction of bicyclic cumulatriene as an elegant example.[18e]

As a part of our research program on the chemistry of the heteroatom-

functionalized polyenes, we required convenient methods to introduce

sulfonyl and phosphoryl groups in the a-position to the ester group of allene-

carboxylates. The previously mentioned groups attract increasing attention as

useful functionalities in organic synthesis. Of particular interest are the appli-

cations of these groups as temporary transformers of chemical reactivity of the

allenic system in the synthesis of eventually heterocyclic compounds.

In a continuation of our previous reports on the synthesis[19a,19b] and elec-

trophile-induced cyclization reactions[19c – f] of bifunctionalized allenes, we

have found two efficient methods for synthesis of 2-sulfonyl-alka-2,3-

dienoates as well as 1-sulfonyl-alka-1,2-dienephosphonates and 1,2-dienyl

phosphine oxides.

The first method for one-pot preparation[19b] of ethyl 2-sulfonyl-allene-

carboxylates 3a–c consists of the following cascade steps. Reaction of the

lithio compounds A, generated in situ from ethyl propynoate 1 and LDA,

with acetone or cyclohexanone and subsequent treatment with TMSCl and

after that with methane- or trichloromethanesulfinyl chloride, gives ethoxy-

carbonyl-substituted propargyl sulfinates 2a–c. These are surprisingly stable

and were isolated in 70–73% yield. Reflux of sulfinates 2a–c (which may

be or not be isolated) in toluene provokes a [2,3]-sigmatropic rearangement

to the expected 2-sulfonyl-2,3-alkadienoates 3a–c, according to the reaction

sequence outlined in Scheme 1 and Table 1.
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The starting materials in the synthesis of 1-sulfonyl-functionalized alka-

1,2-dienephosphonates 6a–f and 1,2-dienyl phosphine oxides 7a–d are the

phosphorylated allenes 5a–d. They are readily available by the reaction[20]

of the appropriate alkynols 4a, b with diethyl chlorophosphite or diphenyl

chlorophosphine in the presence of triethyl amine. In this case, in situ

generated alkynyl derivatives B cannot be isolated but rather undergo spon-

taneous [2,3]-sigmatropic rearrangement in the presence of 3 mol% hydro-

chloric acid to the desired allenephosphonates or allenyl phosphine oxides

5a–d (Scheme 2, Table 2).

We found that the phosphorylated allenes 5a–d can smoothly be depro-

tonated at the a-position by LDA in THF under an argon atmosphere. The in

situ resulting lithio compounds C can react with methane-, trichloromethane-,

or trimethylsilyloxy-sulfonyl chlorides, leading to 1-sulfonyl-substituted alle-

nephosphonates 6a– f and allenyl phosphine oxides 7a–d according to the

reaction sequence showed in Scheme 3 and Table 3.

In summary, two convenient and efficient methods for synthesis of a new

family of 1,1-diacceptor-substituted allenes have been described. Further

studies on these potentially important synthetic methodologies are currently

in progress. At the same time, the synthetic application of the prepared

2-sulfonyl-functionalized allenecarboxylates and 1-sulfonyl-functionalized

Scheme 1. Synthesis of 2-sulfonyl-substituted allenecarboxylates. Reagents and

conditions: a) LDA, THF, 21008C, 1 h; b) R1R2C55O [R1 ¼ R2 ¼ Me,

R1
þ R2 ¼22(CH2)522], THF, 21008C, 10 min; c) TMSCl, THF, 2100 to 2108C,

10 min; d) RS(O)Cl (R ¼ Me, CCl3), THF, 2108C to rt, 1 h; e) toluene, reflux, 3 h.

Table 1. Synthesis of 4-sulfinato-substituted 2-alkynoates 2a–c and 2-sulfonyl-

substituted allenecarboxylates 3a–c according to Scheme 1

Entry R R1 R2 Alkyne

Yielda

(%) Allene

Yielda,b

(%)

1 Me Me Me 2a 73 3a 49

2 Me 22(CH2)522 2b 70 3a 45

3 CCl3 Me Me 2c 72 3a 47

aIsolated yields by chromatographical purification on silica gel.
bOverall yields without isolation of the alkyne.
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allenephosphonates and allenyl phosphine oxides for preparation of different

heterocyclic compounds is now under investigation as a part of our general

synthetic strategy for investigation of the score and limitations of the electro-

philic cyclization reactions of bifunctionalized allenes. Results of these

investigations will be reported in due course.

EXPERIMENTAL

Method of Analysis

1H and 13C NMR spectra were obtained on a Brucker DRX-250 spectrometer

for solutions in CDCl3. Chemical shifts are in parts per million downfield from

internal TMS. IR spectra were recorded with an IR-72 spectrophotometer

(Carl Zeiss, Jena). Elemental analyses were carried out by the University of

Shumen Microanalytical Service Laboratory. The melting points were

measured in open capillary tubes and are uncorrected. The solvents were

purified by standard methods. Reactions were carried out in oven-dried

glassware under an argon atmosphere and exclusion of moisture. All

compounds were checked for their purity on TLC plates.

Starting Materials

The details of the preparation of the starting dimethyl 3-methyl-buta-1,2-di-

enylphosphonate (5a), dimethyl 2-cyclohexylidene-ethenylphosphonate

Scheme 2. Synthesis of phosphorylated allenes. Reagents and conditions: a) Y2PCl

(Y55MeO, Ph), Et3N, ether, 2128C; b) 3 mol % HCl, ether, 2128C to rt, 3–6 h.

Table 2. Synthesis of phosphorylated allenes 5a–d according to

Scheme 2

Entry Allene Y R1 R2 Yielda (%)

1 5a MeO Me Me 86

2 5b MeO 22(CH2)522 84

3 5c Ph Me Me 75

4 5d Ph 22(CH2)522 79

aIsolated yields by distillation in vacuo or crystallization.
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(5b), diphenyl (3-methyl-buta-1,2-dienyl) phosphine oxide (5c), and diphenyl

(2-cyclohexylidene-ethenyl) phosphine oxide (5d) have been described in

earlier articles.[20]

Synthesis of Ethoxycarbonyl-Substituted Propargyl Sulfinates

2a–c; General Procedure

To a solution of LDA, generated in situ from diisopropylamine (1.11 g,

11 mmol) and n-BuLi (1.6 M in hexane, 6.25 mL, 10 mmol), in THF

(20 mL), was added dropwise a solution of ethyl propynoate 1 (0.98 g,

10 mmol) in THF (10 mL) at 21008C. The reaction mixture was stirred at

this temperature for 1 h. After the addition of a solution of acetone (0.58 g,

10 mmol) (for preparation of 2a and 2c) or cyclohexanone (0.98 g,

10 mmol) (for preparation of 2b) in THF (10 mL) at 21008C, the mixture

was stirred at the same temperature for 10 min. TMSCl (1.09 g, 10 mmol) in

THF (10 mL) was added dropwise at 21008C. After the addition was

completed, the mixture was warmed to 2108C and stirred at the same

Scheme 3. Synthesis of 1-sulfonyl-substituted phosphorylated allenes. Reagents and

conditions: a) LDA, THF, 2788C, 1 h; b) RSO2Cl (R ¼ Me, CCl3, TMSO), THF,

2788C to rt, 1 h.

Table 3. Synthesis of 1-sulfonyl-substituted phosphorylated allenes 6a– f and 7a–d

according to Scheme 3

Entry Allene Y R R1 R2 Yielda (%)

1 6a MeO Me Me Me 53

2 6b MeO Me 22(CH2)522 55

3 6c MeO CCl3 Me Me 51

4 6d Ph Me Me Me 49

5 6e Ph Me 22(CH2)522 51

6 6f Ph CCl3 Me Me 54

7 7a MeO TMSO Me Me 50

8 7b MeO TMSO 22(CH2)522 55

9 7c Ph TMSO Me Me 48

10 7d Ph TMSO 22(CH2)522 52

aIsolated yield by chromatographical purification on silica gel.
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temperature for an additional 10 min. After that, a solution of methanesulfinyl

chloride (0.99 g, 10 mmol) (for preparation of 2a and 2b) or trichloromethane-

sulfinyl chloride (2.02 g, 10 mmol) (for preparation of 2c) in THF (20 mL)

was added dropwise to the reaction mixture at 2108C. The mixture was

stirred at rt for 1 h, quenched with 2 N HCl, extracted with Et2O or EtOAc,

washed with sat. NaCl, and dried over anhydrous Na2SO4. After evaporation

of the solvent, the residue was chromatographied on a column (silica gel,

Kieselgel Merck 60 F254) using a mixture of EtOAc and hexane (1:4) as an

eluent to give the pure propargyl sufinates 2a–c.

Data

Ethyl 4-methanesulfinyloxy-4-methyl-pent-2-ynoate (2a). Yield: 1.59 g

(7.28 mmol; 73%); light yellow oil. 1H NMR (CDCl3, 250 MHz): d ¼ 1.28

(t, 3H, J ¼ 7.1 Hz, MeCH2O), 1.64 (s, 6H, 2Me), 3.12 (s, 3H, MeSO2), 4.34

(m, 2H, MeCH2O). 13C NMR (CDCl3, 50 MHz): d ¼ 13.0 (CH3), 30.7

(CH3), 43.9 (CH3), 63.2 (C), 64.3 (CH2), 82.1 (C), 88.4 (C), 152.8 (C). IR

(film): 1137 (S55O); 1706 (C55O), 2243 (C;;C); 3286 (HC;;). Anal.

calcd. for C9H14O4S (218.27): C, 49.52; H, 6.46; S, 14.69. Found: C, 49.60;

H, 6.43; S, 14.65.

Ethyl 1-methanesulfinyloxy-cyclohexyl-prop-2-ynoate (2b). Yield: 1.81 g

(7.01 mmol; 70%); light yellow solid; mp 83–848C. 1H NMR (CDCl3,

250 MHz): d ¼ 1.18–2.03 (m, 10H, cyclohexyl), 1.32 (t, 3H, J ¼ 7.0 Hz,

MeCH2O), 3.14 (s, 3H, MeSO2), 4.28 (m, 2H, MeCH2O). 13C NMR

(CDCl3, 50 MHz): d ¼ 13.2 (CH3), 23.1 (CH2), 26.3 (CH2), 40.5 (CH2),

44.4 (CH3), 62.2 (CH2), 66.3 (C), 82.5 (C), 91.4 (C), 153.3 (C). IR (nujol):

1142 (S55O); 1712 (C55O), 2250 (C;;C); 3292 (HC;;). Anal. calcd. for

C12H18O4S (258.34): C, 55.79; H, 7.02; S, 12.41. Found: C, 55.68; H, 6.95;

S, 12.49.

Ethyl 4-methyl-4-trichloromethanesulfinyloxy-pent-2-ynoate (2c). Yield:

2.34 g (7.28 mmol; 72%); light yellow oil. 1H NMR (CDCl3, 250 MHz):

d ¼ 1.29 (t, 3H, J ¼ 7.0 Hz, MeCH2O), 1.65 (s, 6H, 2Me), 4.27 (m, 2H,

MeCH2O). 13C NMR (CDCl3, 50 MHz): d ¼ 14.1 (CH3), 28.4 (CH3), 62.5

(C), 64.3 (CH2), 81.6 (C), 94.41 (C), 129.6 (C), 154.2 (C). IR (film): 1140

(S55O); 1708 (C55O), 2240 (C;;C); 3287 (HC;;). Anal. calcd. for

C9H11Cl3O4S (321.61): C, 33.61; H, 3.45; Cl, 33.07; S, 9.97. Found: C,

33.68; H, 3.38; Cl, 33.14; S, 10.04.

Synthesis of 2-Sulfonyl-Substituted Allenecarboxylates 3a–c;
General Procedure

A solution of ethoxycarbonyl-substituted prorargyl sulfinate 2 in dried toluene

(10 mL) was refluxed for 1 h. After evaporation of the solvent, the crude

product was purified by column chromatography on silica gel (Kieselgel

V. C. Christov and J. G. Ivanova2236
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Merck 60 F254) (eluent: EtOAc–heptane, 1:5) to yield the corresponding

2-sulfonyl-substituted allenecarboxylates 3a–c.

Data

Ethyl 2-methanesulfonyl-4-methyl-penta-2,3-dienoate (3a). According to

the general procedure, propargyl sufinate 2a (1.59 g, 7.28 mmol) was

converted by [2,3]-sigmatropic rearrangement into the allenecarboxylate 3a.

Yield: 0.779 g (3.57 mmol; 49%); light yellow oil. 1H NMR (CDCl3,

250 MHz): d ¼ 1.39 (t, 3H, J ¼ 7.1 Hz, MeCH2O), 1.69 (s, 6H, 2Me), 3.00

(s, 3H, MeSO2), 4.30 (m, 2H, MeCH2O). 13C NMR (CDCl3, 50 MHz):

d ¼ 13.9 (CH3), 22.1 (CH3), 41.2 (CH3), 61.3 (CH2), 95.3 (C), 103.4 (C),

158.4 (C), 204.3 (C). IR (film): 1127, 1341 (SO2); 1706 (C55O), 1958

(C55C55C). Anal. calcd. for C9H14O4S (218.27): C, 49.52; H, 6.46;

S, 14.69. Found: C, 49.58; H, 6.54; S, 14.81.

Ethyl 3-cyclohexylidene-2-methanesulfonyl-acrylate (3b). According to the

general procedure, propargyl sufinate 2b (1.81 g, 7.01 mmol) was converted

by [2,3]-sigmatropic rearrangement into the allenecarboxylate 3b. Yield:

0.815 g (3.15 mmol; 45%); light yellow crystals; mp 71–738C. 1H NMR

(CDCl3, 250 MHz): d ¼ 1.37 (t, 3H, J ¼ 6.9 Hz, MeCH2O), 1.50–2.20

(m, 10H, cyclohexylidene), 3.18 (s, 3H, MeSO2), 3.74–4.18 (m, 2H,

MeCH2O). 13C NMR (CDCl3, 50 MHz): d ¼ 14.5 (CH3), 24.1 (CH2), 26.7

(CH2), 33.5 (CH2), 39.4 (CH3), 61.9 (CH2), 94.8 (C), 104.4 (C), 163.5 (C),

203.7 (C). IR (nujol): 1148, 1350 (SO2); 1711 (C55O), 1960 (C55C55C).

Anal. calcd. for C12H18O4S (258.34): C, 55.79; H, 7.02; S, 12.41. Found: C,

55.86; H, 7.15; S, 12.47.

Ethyl 4-methyl-2-trichloromethanesulfonyl-penta-2,3-dienoate (3c).

According to the general procedure, propargyl sufinate 2c (2.34 g,

7.28 mmol) was converted by [2,3]-sigmatropic rearrangement into the allene-

carboxylate 3c. Yield: 1.10 g (3.42 mmol; 47%); light yellow crystals; mp 91–

928C. 1H NMR (CDCl3, 250 MHz): d ¼ 1.34 (t, 3H, J ¼ 6.7 Hz, MeCH2O),

1.94 (s, 6H, 2Me), 3.68–4.29 (m, 2H, MeCH2O). 13C NMR (CDCl3,

50 MHz): d ¼ 14.4 (CH3), 21.4 (CH3), 61.8 (CH2), 95.7 (C), 103.2 (C),

110.8 (C), 157.0 (C), 204.3 (C). IR (nujol): 1146, 1345 (SO2); 1720

(C55O), 1956 (C55C55C). Anal. calcd. for C9H11Cl3O4S (321.61): C, 33.61;

H, 3.45; Cl, 33.07, S, 9.97. Found: C, 33.74; H, 3.39; Cl, 32.94; S, 10.06.

Synthesis of 1-Sulfonyl-Substituted Phosphorylated Allenes 6a–f,

7a–d; General Procedure

To a solution of LDA, generated in situ from diisopropylamine (1.11 g,

11 mmol) and n-BuLi (1.6 M in hexane, 6.25 mL, 10 mmol) in THF (20 ml),

was added dropwise a solution of dimethyl 3-methyl-buta-1,2-

Bifunctionalized Allenes VII 2237
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dienylphosphonate 5a (1.76 g, 10 mmol) (for preparation of 6a, 6c, and 7a),

dimethyl 2-cyclohexylidene-ethenylphosphonate 5b (2.16 g, 10 mmol) (for

preparation of 6b and 7b), diphenyl (3-methyl-buta-1,2-dienyl) phosphine

oxide 5c (2.68 g, 10 mmol) (for preparation of 6d, 6f, and 7c), or diphenyl

(2-cyclohexylidene-ethenyl) phosphine oxide 6d (3.08 g, 10 mmol) (for prep-

aration of 6e and 7d) in THF (10 mL) at 2788C. The reaction mixture was

stirred at this temperature for 1 h. A solution of methanesulfonyl chloride

(1.15 g, 10 mmol) (for preparation of 6a, 6b, 6d, and 6e), trichloromethanesul-

fonyl chloride (2.18 g, 10 mmol) (for preparation of 6c and 6f), or trimethylsi-

lylchlorosulfate (1.89 g, 10 mmol) (for preparation of 7a–d) in THF (10 mL)

was added dropwise to the reaction mixture at 2788C. After the addition was

completed, the mixture was warmed to rt and stirred for 1 h. Then the mixture

was quenched with 2N HCl, extracted with Et2O, washed with sat. NaCl, and

dried over anhydrous Na2SO4. After evaporation of the solvent, the residue

was chromatographied on column (silica gel, Kieselgel Merck 60 F254)

using a mixture of hexane, EtOAc, and Et2O (3:1:1) as an eluent to give the

pure phosphorylated allenes 6a– f and 7a–d.

Data

Dimethyl 1-methanesulfonyl-3-methyl-buta-1,2-dienyl phosphonate (6a).

Yield: 2.54 g (5.31 mmol; 53%); light yellow oil. 1H NMR (CDCl3,

250 MHz): d ¼ 1.73 (d, 6H, J ¼ 7.4 Hz, 2Me), 3.07 (s, 3H, MeSO2), 3.64

(d, 6H, J ¼ 12.3 Hz, 2MeO). 13C NMR (CDCl3, 50 MHz): d ¼ 21.5

(d, JCP ¼ 5.1 Hz, CH3), 44.0 (d, JCP ¼ 8.4 Hz, CH3), 51.8 (d, JCP ¼ 14.9 Hz,

CH3), 94.5 (d, JCP ¼ 184.8 Hz, C), 103.1 (d, JCP ¼ 14.8 Hz, C), 206.3

(d, JCP ¼ 4.7 Hz, C). IR (film): 1054 (P-O-Me); 1122, 1350 (SO2); 1256

(P55O), 1954 (C55C55C). Anal. calcd. for C8H15O5PS (254.24): C, 37.79; H,

5.95; P, 12.18; S, 12.61. Found: C, 37.68; H, 6.00; P, 12.24; S, 12.55.

Dimethyl 2-cyclohexylidene-1-methanesulfonyl-ethenyl phosphonate (6b).
Yield: 1.62 g (5.50 mmol; 55%); light yellow solid; mp 101–1028C. 1H

NMR (CDCl3, 250 MHz): d ¼ 1.40–2.29 (m, 10H, cyclohexylidene), 3.06

(s, 3H, MeSO2), 3.65 (d, 6H, J ¼ 12.4 Hz, 2MeO). 13C NMR (CDCl3,

50 MHz): d ¼ 23.7 (CH2), 24.5 (CH2), 27.1 (d, JCP ¼ 4.3 Hz, CH2),

43.6 (d, JCP ¼ 8.2 Hz, CH3), 52.1 (d, JCP ¼ 14.8 Hz, CH3), 93.9

(d, JCP ¼ 185.1 Hz, C), 104.5 (d, JCP ¼ 14.7 Hz, C), 205.1 (d, JCP ¼ 4.3 Hz,

C). IR (nujol): 1048 (P-O-Me); 1130, 1357 (SO2); 1261 (P55O), 1959

(C55C55C). Anal. calcd. for C11H19O5PS (294.31): C, 44.89; H, 6.51; P,

10.52; S, 10.90. Found: C, 44.92; H, 6.47; P, 10.47; S, 10.99.

Dimethyl 3-methyl-1-trichloromethanesulfonyl-buta-1,2-dienylphospho-

nate (6c). Yield: 1.83 g (5.12 mmol; 51%); light yellow oil. 1H NMR

(CDCl3, 250 MHz): d ¼ 1.75 (d, 6H, J ¼ 7.5 Hz, 2Me), 3.62 (d, 6H,

J ¼ 12.5 Hz, 2MeO). 13C NMR (CDCl3, 50 MHz): d ¼ 20.4

(d, JCP ¼ 5.0 Hz, CH3), 53.4 (d, JCP ¼ 15.1 Hz, CH3), 89.7
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(d, JCP ¼ 185.0 Hz, C), 102.5 (d, JCP ¼ 14.3 Hz, C), 107.5 (d, JCP ¼ 7.8 Hz,

C), 207.7 (d, JCP ¼ 4.3 Hz, C). IR (film): 1066 (P-O-Me); 1132, 1363

(SO2); 1265 (P55O), 1957 (C55C55C). Anal. calcd. for C8H12Cl3O5PS

(357.58): C, 26.87; H, 3.38; Cl, 29.74; P, 8.66; S, 8.97. Found: C, 26.76;

H, 3.40; Cl, 29.90; P, 8.56; S, 9.05.

Diphenyl (1-methanesulfonyl-3-methyl-buta-1,2-dienyl) phosphine oxide

(6d). Yield: 2.04 g (5.89 mmol; 59%); light yellow solid; mp 123–1248C.
1H NMR (CDCl3, 250 MHz): d ¼ 1.75 (d, 6H, J ¼ 6.5 Hz, 2Me), 2.97

(s, 3H, MeSO2), 7.88–8.20 (m, 10H, 2Ph). 13C NMR (CDCl3, 50 MHz):

d ¼ 20.7 (d, JCP ¼ 5.3 Hz, CH3), 42.4 (d, JCP ¼ 8.1 Hz, CH3), 100.7

(d, JCP ¼ 183.9 Hz, C), 106.5 (d, JCP ¼ 14.3 Hz, C), 130.2 (d, JCP ¼ 4.6 Hz,

CH), 132.7 (d, JCP ¼ 11.4 Hz, CH), 134.7 (d, JCP ¼ 7.8 Hz, CH), 135.6

(d, JCP ¼ 9.7 Hz, CH), 138.6 (d, JCP ¼ 98.5 Hz, C), 197.4 (d, JCP ¼ 4.1 Hz,

C). IR (nujol): 1140, 1363 (SO2); 1203 (P55O), 1952 (C55C55C). Anal.

calcd. for C18H19O3PS (346.38): C, 62.41; H, 5.53; P, 8.94; S, 9.26. Found:

C, 62.48; H, 5.49; P, 9.02; S, 9.32.

Diphenyl (2-cyclohexylidene-1-methanesulfonyl-ethenyl) phosphine oxide

(6e). Yield: 1.97 g (5.07 mmol; 51%); light yellow solid; mp 132–1338C. 1H

NMR (CDCl3, 250 MHz): d ¼ 1.41–2.47 (m, 10H, cyclohexylidene), 2.95

(s, 3H, MeSO2), 7.79–8.22 (m, 10H, 2Ph). 13C NMR (CDCl3, 50 MHz):

d ¼ 23.9 (CH2), 25.2 (CH2), 26.5 (d, JCP ¼ 4.5 Hz, CH2), 43.0

(d, JCP ¼ 8.1 Hz, CH3), 94.7 (d, JCP ¼ 187.7 Hz, C), 105.4 (d, JCP ¼ 14.8 Hz,

C), 129.5 (d, JCP ¼ 4.5 Hz, CH), 133.5 (d, JCP ¼ 11.1 Hz, CH), 133.8

(d, JCP ¼ 8.2 Hz, CH), 134.1 (d, JCP ¼ 9.3 Hz, CH), 139.4 (d, JCP ¼ 97.2 Hz,

C), 194.5 (d, JCP ¼ 4.4 Hz, C). IR (nujol): 1143, 1361 (SO2); 1198 (P55O),

1957 (C55C55C). Anal. calcd. for C21H23O3PS (386.45): C, 65.27; H, 6.00;

P, 8.02; S, 8.30. Found: C, 65.21; H, 6.14; P, 8.11; S, 8.21.

Diphenyl (3-methyl-1-trichloromethanesulfonyl-buta-1,2-dienyl) phosphine

oxide (6f). Yield: 2.43 g (5.40 mmol; 54%); light yellow oil. 1H NMR

(CDCl3, 250 MHz): d ¼ 1.75 (d, 6H, J ¼ 6.5 Hz, 2Me), 2.97 (s, 3H,

MeSO2), 7.88–8.20 (m, 10H, 2Ph). 13C NMR (CDCl3, 50 MHz): d ¼ 21.0

(d, JCP ¼ 5.2 Hz, CH3), 101.5 (d, JCP ¼ 185.1 Hz, C), 105.8

(d, JCP ¼ 14.7 Hz, C), 109.5 (d, JCP ¼ 8.4 Hz, C), 129.3 (d, JCP ¼ 4.5 Hz,

CH), 134.8 (d, JCP ¼ 7.9 Hz, CH), 135.1 (d, JCP ¼ 11.3 Hz, CH), 136.2

(d, JCP ¼ 10.8 Hz, CH), 142.4 (d, JCP ¼ 95.5 Hz, C), 200.5 (d, JCP ¼ 4.5 Hz,

C). IR (film): 1135, 1349 (SO2); 1199 (P55O), 1956 (C55C55C). Anal. Calcd.

for C18H16Cl3O3PS (449.72): C, 48.07; H, 3.59; Cl, 23.65; P, 6.89; S, 7.13.

Found: C, 48.15; H, 3.48; Cl, 23.78; P, 8.97; S, 7.31.

Dimethyl 3-methyl-1-trimethylsilyloxysulfonyl-buta-1,2-dienylphospho-

nate (7a). Yield: 1.64 g (4.99 mmol; 50%); light yellow oil. 1H NMR

(CDCl3, 250 MHz): d ¼ 0.23 (s, 9H, Me3SiO), 1.79 (d, 6H, J ¼ 7.8 Hz,

2Me), 3.59 (d, 6H, J ¼ 11.3 Hz, 2MeO). 13C NMR (CDCl3, 50 MHz):

d ¼ 6.9 (CH3), 18.2 (d, JCP ¼ 5.4 Hz, CH3), 51.5 (d, JCP ¼ 15.0 Hz, CH3),
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95.8 (d, JCP ¼ 186.7 Hz, C), 102.9 (d, JCP ¼ 14.7 Hz, C), 205.1 (d,

JCP ¼ 4.9 Hz, C). IR (film): 849 (Si-O-S); 1054 (P-O-Me); 1186, 1319

(SO2); 1274 (P55O), 1954 (C55C55C). Anal. calcd. for C10H21O6PSiS

(328.40): C, 36.57; H, 6.45; P, 9.43; S, 9.76. Found: C, 36.62; H, 6.39;

P, 9.54; S, 9.82.

Dimethyl 2-cyclohexylidene-1-trimethylsilyloxy-sulfonyl-ethenylphospho-

nate (7b). Yield: 2.02 g (5.48 mmol; 55%); light yellow solid; mp 97–988C.
1H NMR (CDCl3, 250 MHz): d ¼ 0.31 (s, 9H, Me3SiO), 1.41–2.49

(m, 10H, cyclohexylidene), 3.61 (d, 6H, J ¼ 11.5 Hz, 2MeO). 13C NMR

(CDCl3, 50 MHz): d ¼ 7.2 (CH3), 23.1 (CH2), 23.8 (CH2), 24.9 (d,

JCP ¼ 4.3 Hz, CH2), 52.0 (d, JCP ¼ 15.0 Hz, CH3), 94.3 (d, JCP ¼ 190.5 Hz,

C), 102.8 (d, JCP ¼ 14.9 Hz, C), 204.7 (d, JCP ¼ 5.0 Hz, C). IR (film): 852

(Si-O-S); 1047 (P-O-Me); 1183, 1324 (SO2); 1278 (P55O), 1956

(C55C55C). Anal. calcd. for C13H25O6PSiS (368.46): C, 42.38; H, 6.84;

P, 8.41; S, 8.70. Found: C, 42.44; H, 6.77; P, 8.53; S, 8.63.

Diphenyl (3-methyl-1-trimethylsilyloxysulfonyl-buta-1,2-dienyl) phosphine

oxide (7c). Yield: 2.02 g (4.80 mmol; 48%); light yellow oil. 1H NMR

(CDCl3, 250 MHz): d ¼ 0.23 (s, 9H, Me3SiO), 1.85 (d, 6H, J ¼ 7.7 Hz,

2Me), 7.55–7.83 (m, 10H, 2Ph). 13C NMR (CDCl3, 50 MHz): d ¼ 6.8

(CH3), 18.3 (d, JCP ¼ 5.0 Hz, CH3), 94.7 (d, JCP ¼ 185.9 Hz, C), 101.3

(d, JCP ¼ 14.6 Hz, C), 131.5 (d, JCP ¼ 11.1 Hz, CH), 133.2 (d,

JCP ¼ 7.8 Hz, CH), 133.9 (d, JCP ¼ 4.9 Hz, CH), 134.8 (d, JCP ¼ 9.8 Hz,

CH), 137.4 (d, JCP ¼ 93.8 Hz, C), 188.3 (d, JCP ¼ 4.7 Hz, C). IR (film): 853

(Si-O-S); 1131, 1347 (SO2); 1207 (P55O), 1958 (C55C55C). Anal. calcd for

C20H25O4PSiS (420.54): C, 57.12; H, 5.99; P, 7.37; S, 7.63. Found: C,

57.31; H, 6.09; P, 54; S, 7.82.

Diphenyl (2-cyclohexylidene-1-trimethylsilyloxy-sulfonyl-ethenyl) phos-

phine oxide (7d). Yield: 2.40 g (5.21 mmol; 52%); light yellow solid; mp

102–1038C. 1H NMR (CDCl3, 250 MHz): d ¼ 0.28 (s, 9H, Me3SiO), 1.51–

2.48 (m, 10H, cyclohexylidene), 7.68–8.09 (m, 10H, 2Ph). 13C NMR

(CDCl3, 50 MHz): d ¼ 6.7 (CH3), 23.7 (CH2), 24.9 (CH2), 26.0

(d, JCP ¼ 4.8 Hz, CH2), 96.5 (d, JCP ¼ 184.1 Hz, C), 109.5

(d, JCP ¼ 14.9 Hz, C), 129.9 (d, JCP ¼ 10.3 Hz, CH), 131.7

(d, JCP ¼ 7.8 Hz, CH), 132.0 (d, JCP ¼ 5.1 Hz, CH), 134.6 (d, JCP ¼ 9.9 Hz,

CH), 137.4 (d, JCP ¼ 95.0 Hz, C), 191.7 (d, JCP ¼ 4.9 Hz, C). IR (nujol):

858 (Si-O-S); 1137, 1351 (SO2); 1204 (P55O), 1953 (C55C55C). Anal.

calcd for C23H29O4PSiS (460.60): C, 59.97; H, 6.35; P, 6.72; S, 6.96.

Found: C, 60.06; H, 6.24; P, 6.81; S, 7.03.
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