Efficient Rh(I)-Catalyzed Direct Arylation and Alkenylation of Arene C—H Bonds via Decarbonylation of Benzoic and Cinnamic Anhydrides

LETTERS 2009 Vol. 11, No. 6 1317–1320

ORGANIC

Weiwei Jin,^{†,‡} Zhengkun Yu,^{*,†} Wei He,[†] Wenjing Ye,[†] and Wen-Jing Xiao[‡]

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China, and Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R.China zkyu@dicp.ac.cn

Received January 17, 2009

ABSTRACT

Efficient rhodium(I)-catalyzed regioselective direct arylation and alkenylation of aromatic C-H bonds has been realized with aromatic carboxylic and cinnamic anhydrides as the coupling partners via decarbonylation and C-H activation under phosphine-free conditions.

Transition-metal-catalyzed functionalization of arene C–H bonds has recently been paid much attention.¹ *ortho*-Arylation, alkenylation, and alkylation of sp^2C-H bonds involving subsequent regioselective formation of new C–C or C–X bonds assisted by various directing groups under palladium,² rhodium,³ ruthenium,⁴ copper,⁵ nickel,⁶ and iron⁷

catalysis have attracted rapidly growing interest. Arenes and heterocycles usually undergo chelation-assisted C–H functionalization with organic or organometallic coupling partners such as aromatic halides,^{2c,3-5,8} sulfonate esters,^{4c,9} boronic acids,^{7a,10} alkynes,^{3c,5c,6} olefins,¹¹ alkyl acrylates,¹² arenes,¹³ cycloalkanes,¹⁴ arylsilanes,¹⁵ organotrifluoroborates,¹⁶ organotin,¹⁷ and arylzinc^{7b} reagents, producing the crosscoupling products. Peroxides,^{18a} diethyl azodicarboxylate,^{18b,c} arenediazonium salts,^{18d} PhI=NNs,^{18e} aldehydes,^{18f} di-*tert*butyldiaziridinone,^{18g} epoxides,^{18h} and unactivated aromatic

[†] Dalian Institute of Chemical Physics.

^{*} Central China Normal University.

⁽¹⁾ For recent reviews, see: Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.

⁽²⁾ For selected recent reports on palladium catalysis, see: (a) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. **2008**, 130, 14082. (b) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. **2008**, 130, 14058. (c) Stuart, D. R.; Fagnou, K. Science **2007**, 316, 1172.

⁽³⁾ For selected recent reports on rhodium catalysis, see: (a) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. *J. Am. Chem. Soc.* **2008**, *130*, 14926. (b) Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. *J. Am. Chem. Soc.* **2008**, *130*, 2493. (c) Li, L.; Brennessel, W. W.; Jones, W. D. *J. Am. Chem. Soc.* **2008**, *130*, 12414.

⁽⁴⁾ For selected recent reports on ruthenium catalysis, see: (a) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. **2008**, 130, 1156. (b) Ackermann, L.; Born, R.; Álvarez-Bercedo, P. Angew. Chem., Int. Ed. **2007**, 46, 6364. (c) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. **2006**, 45, 2619. (d) Cheng, K.; Yao, B. B.; Zhao, J. L.; Zhang, Y. H. Org. Lett. **2008**, 10, 5309.

⁽⁵⁾ For selected recent reports on copper catalysis, see: (a) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. **2008**, 130, 15185. (b) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. **2008**, 130, 1128. (c) Sun, Z. K.; Yu, S. Y.; Ding, Z. D.; Ma, D. W. J. Am. Chem. Soc. **2007**, 129, 9300.

⁽⁶⁾ For selected recent reports on nickel catalysis, see: (a) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872. (b) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448.

⁽⁷⁾ For selected recent reports on iron catalysis, see: (a) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. *Angew. Chem., Int. Ed.* 2008, *47*, 8897.
(b) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. *J. Am. Chem. Soc.* 2008, *130*, 5858.

⁽⁸⁾ For selected recent reports, see: (a) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. **2008**, 130, 3266. (b) Larivée, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. **2008**, 130, 52. (c) Lu, J. M.; Tan, X. H.; Chen, C. J. Am. Chem. Soc. **2007**, 129, 7768.

Table 1. Screening of Reaction Conditions^a

entry	cat./mol %	additive	base	T (°C)	time (h)	conversion ^{b} (%)
1	[Rh(COD)Cl] ₂ /5	MS	Na_2CO_3	145	16	$100 (92)^c$
2	[Rh(COD)Cl] ₂ /5	MS	Na_2CO_3	145	6	$>99 \ (93)^c$
3	[Rh(COD)Cl] ₂ /2.5	MS	Na_2CO_3	145	9	$>99 \ (92)^c$
4	[Rh(COD)Cl] ₂ /1	MS	Na_2CO_3	145	9	85
5	[Rh(COD)Cl] ₂ /2.5	MS	Na_2CO_3	130	9	90
6	[Rh(COD)Cl] ₂ /2.5		Na_2CO_3	145	9	70
7	[Rh(COD)Cl] ₂ /5		Na_2CO_3	145	13	97
8	[Rh(COD)Cl] ₂ /2.5	MS	K_3PO_4	145	9	>99
9	[Rh(COD)Cl] ₂ /2.5	MS	KF	145	9	97
10	[Rh(COD)Cl] ₂ /2.5	${ m MS}$	K_2CO_3	145	9	64
11	[Rh(CO) ₂ Cl] ₂ /2.5	MS	Na_2CO_3	145	9	88
12	[Rh(CO) ₂ Cl] ₂ /5	MS	Na_2CO_3	145	16	100
13	$Rh(COD)_2BF_4/2.5$	MS	Na_2CO_3	145	9	87
14	$Rh(COD)_2BF_4/5$	MS	Na_2CO_3	145	16	98
15	RhCl(PPh ₃) ₃ /5	MS	Na_2CO_3	145	16	8
16^d	[Rh(COD)Cl] ₂ /2.5	MS	Na_2CO_3	145	9	10
17^e	Pd(OAc) ₂ /2.5	${ m MS}$	Na_2CO_3	145	9	0

^{*a*} Conditions: 1, 0.5 mmol; 2a, 1.5 equiv; base, 2 equiv; MS = 4A molecular sieves, 0.600 g; *o*-xylene, 3 mL. ^{*b*} Conversion of 1 determined by GC analysis. ^{*c*} Isolated yield of 3a in parentheses. ^{*d*} 20 mol % of PPh₃ was added. ^{*e*} 1,4-Benzoquinone (1.0 equiv) was added.

rings^{2c,19} were also reported for this purpose. Although a variety of coupling partners were successfully explored, they have been applied in C–H functionalization with limited generality.^{1,20} Very recently, we reported Rh(I)-catalyzed decarbonylative C–H functionalization by using acid chlorides as the coupling partners.²¹ More recently, we found that benzoic anhydrides, as the coupling partners for Rh(I)-catalyzed aromatic C–H activation, are much more efficient

(9) (a) Altman, R. A.; Hyde, A. M.; Huang, X. H.; Buchwald, S. L. *J. Am. Chem. Soc.* **2008**, *130*, 9613. (b) Shi, Z. J.; He, C. *J. Am. Chem. Soc.* **2004**, *126*, 13596.

(11) (a) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
(b) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130, 11876.
(c) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858.
(d) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332.

(12) (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (b) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004. (c) Cai, G. X.; Fu, Y.; Li, Y. Z.; Wan, X. B.; Shi, Z. J. J. Am. Chem. Soc. 2007, 129, 7666. (d) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156.

(13) (a) Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew. Chem. Int Ed. **2008**, 47, 1301. (b) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z. J. Angew. Chem., Int. Ed. **2008**, 47, 1115. (c) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. **2007**, 129, 11904.

(14) Deng, G. J.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 6278.

(15) Yang, S. D.; Li, B. J.; Wan, X. B.; Shi, Z. J. J. Am. Chem. Soc. 2007, 129, 6066.

(16) (a) Ge, H. B.; Niphakis, M. J.; Georg, G. I. J. Am. Chem. Soc.
 2008, 130, 3708. (b) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc.
 2008, 130, 398. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109.

(17) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439.

than their benzoyl chloride analogues. Anhydrides are usually cheap and can be readily derived from their mother acids. Carboxylic acids can be decarbonylatively transformed by transition metals,²² but only scattered examples have been documented.²³ Herein, we report [Rh(COD)Cl]₂-catalyzed direct arylation and alkenylation of arene C–H bonds via decarbonylation of benzoic and cinnamic anhydrides.

First, we carried out the reactions of benzo[h]quinoline (1) with benzoic anhydride (2a) under the typical Rh(I) catalysis conditions for decarbonylative arylation of 1 with benzoyl chlorides.²¹ The [Rh(COD)Cl]₂-catalyzed reaction of 1 with 2a efficiently afforded the desired arylation product 3a in 92% isolated yield via decarbonylation of 2a (Table 1, entry 1). Within 6 h, the reaction was also complete to give 3a in a decent yield (93%, entry 2), suggesting that the present catalytic system is more efficient than that using benzoyl chloride for the same purpose. Lowering the catalyst amount to 2.5 mol %, the reaction also proceeded efficiently (entry 3). Further lowering the catalyst to 1 mol % or decreasing the reaction temperature to 130 °C (entries 4 and

(19) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(20) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285.

(21) Zhao, X. D.; Yu, Z. K. J. Am. Chem. Soc. 2008, 130, 8136.

(22) (a) Goossen, L. J.; Goossen, K.; Rodrı'guez, N.; Blanchot, M.; Linder, C.; Zimmermann, B. Pure Appl. Chem. 2008, 80, 1725.

⁽¹⁰⁾ For selected recent reports, see: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (b) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (c) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z. J. Angew. Chem., Int. Ed. 2008, 47, 1473. (d) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129. (e) Shi, Z. J.; Li, B. J.; Wan, X. B.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C. M.; Wang, Y. Angew. Chem. Int Ed. 2007, 46, 5554.

^{(18) (}a) Zhang, Y. H.; Feng, J. Q.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900. (b) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z. Y.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304. (c) Xu, X. L.; Li, X. N.; Ma, L.; Ye, N.; Weng, B. J. J. Am. Chem. Soc. 2008, 130, 14048. (d) Wetzel, A.; Ehrhardt, V.; Heinrich, M. R. Angew. Chem., Int. Ed. 2008, 47, 9130. (e) Li, Z. G.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058. (f) Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew. Chem., Int. Ed. 2007, 46, 6518. (g) Zhao, B. G.; Du, H. F.; Shi, Y. A. J. Am. Chem. Soc. 2008, 130, 7220. (h) Shi, Z. J.; He, C. J. Am. Chem. Soc. 2004, 126, 5964.

5) led to incomplete conversion of **1**. Surprisingly, in contrast to the Rh(I)/benzoyl chloride system,²¹ the present catalytic system worked well without molecular sieves, achieving 97% conversion for 1 with 5 mol % catalyst over a period of 13 h (entries 6 and 7), but it is obvious that 4A molecular sieves improved the transformation (entries 1-7). K₃PO₄ and KF also worked efficiently as the bases, while K₂CO₃ was less effective (entries 8-10). Both [Rh(CO)₂Cl]₂ and Rh(COD)₂-BF₄ can be used as the catalysts with a 5 mol % loading (entries 11-14). However, Wilkinson's catalyst RhCl(PPh₃)₃ only showed poor catalytic activity, which is similar to the result obtained in the presence of PPh₃ (entries 15 and 16). $Pd(OAc)_2$ did not effect the arylation reaction (entry 17), although palladium can catalyze the decarbonylative reactions of aroyl chlorides.²⁴ The reaction conditions were thus optimized as shown for entry 3: 2.5 mol % of [Rh(COD)Cl]₂ as the catalyst, Na₂CO₃ as the base, and 4A MS as the promoter in refluxing o-xylene for 9 h.

The reactions of **1** with other carboxylic anhydrides were then carried out to define the protocol scope (Table 2). When

Table 2. Direct Arylation of 1 via Decarbonylation of 2 and C-H Bond Activation ^a $\downarrow \downarrow \downarrow H + R + O = R + CO = I + CO + I + CO$								
entry	R	2	product	yield ^{b} (%)				
1	Ph	2a	3a	92				
2	$4-MeC_6H_4$	2b	3b	97				
3	$3-MeC_6H_4$	2c	3c	75				
4	3,4-Me ₂ C ₆ H ₃	2d	3d	95				
5	3,5-Me ₂ C ₆ H ₃	2e	3e	81				
6	$4-ClC_6H_4$	2f	3f	$62 \ (97)^c$				
7	$3-ClC_6H_4$	$2\mathbf{g}$	3g	$62 \ (76)^c$				
8	$4\text{-BrC}_6\text{H}_4$	2h	3h	$66 \ (76)^d$				
9	$3-BrC_6H_4$	2i	3i	$40 (74)^e$				
10	$4-NO_2C_6H_4$	2j	3j	23^e				
11	$3-NO_2-4-MeC_6H_3$	$2\mathbf{k}$	3k	72				
12	2-thiophenyl	21	31	64^e				
13	2-furanyl	2m	3m	57^e				
14	C ₆ H ₅ CH=CH	2n	3n	$60 \ (82)^d$				

^{*a*} Conditions: **1**, 0.5 mmol; **2**, 1.5 equiv; $[Rh(COD)Cl]_2$, 2.5 mol %; Na₂CO₃, 2 eq; MS, 0.600 g; *o*-xylene, 3 mL; 145 °C, 9 h. ^{*b*} Isolated yields. ^{*c*} 24 h. ^{*d*} 5.0 mol % of catalyst, 12 h. ^{*e*} 5.0 mol % catalyst, 24 h.

methyl-substituted benzoic anhydrides (2b-e) were used as the coupling partners, the products 3b-e were obtained in decent yields (75–97%, entries 2–5). The reactions of 1 with 4- and 3-chloro- or -bromobenzoic anhydrides 2f-i produced products 3f-i in 40–66% yields, but increasing the catalyst loading to 5 mol % and/or extending the reaction time to 12–24 h gave the same products in 74–97% yields, respectively (entries 6–9). The reaction of 1 with 4-nitrobenzoic anhydride (2j) was complicated, affording product 3j in 23% yield (entry 10), and no desired product was isolated from the reaction of 1 and 3-nitrobenzoic anhydride. However, the reaction of 1 with 3-nitro-4-methylbenzoic anhydride (2k) produced product 3k in 72% yield (entry 11), revealing that an electron-donating substituent in anhydride 2 facilitates the arylation reaction.

Unexpectedly, thiophene-2-carboxylic anhydride (2l) and furoic anhydride (2m) also underwent the direct decarbonylative arylation with 1, forming 3l and 3m in 64% and 57% yields, respectively (entries 12 and 13). Surprisingly, cinnamic anhydride (2n) underwent the same type of reaction to form the direct alkenylation product 3n in 82% yield (entry 14). It should be noted that the reactions of 1 with 2-chloro-, 2-bromo-, and 2-methylbenzoic anhydrides did not take place due to the *ortho*-steric hindrance from the substituents.

N-Heteroaromatic substrates were also applied to explore the generality of the direct arylation and alkenylation method. The reaction of 2-phenylpyridine (4a) with 2a was chosen as the model reaction to optimize the reaction conditions. Using 5.0–7.5 mol % of $[Rh(COD)Cl]_2$ as the catalyst, >1.0 equiv of 2a as the coupling partner, Na₂CO₃ as the base, and 4A MS as the promoter in refluxing o-xylene, >99% conversion was obtained for 4a, forming a mixture of monoand double arylation products. Both increasing the molar ratio of 2a to 4a and extending the reaction time favored formation of the double arylation product 5a. Eventually, the reaction of 4a (0.5 mmol) with 2a (3 equiv) was carried out using 5 mol % catalyst, 4 equiv of Na₂CO₃, and 4A MS in refluxing o-xylene at 145 °C for 12 h, affording a mixture of the mono- and double-arylation products (1:99) with >99% conversion for 4a. The desired double-arylation product 5a was then isolated in 79% yield (Table 3, entry 1). For 2-pyridine-substituted arenes 4b-f, their direct arylation with 2a gave the desired products 5b-f in 57-78% yields (entries 2-6). For 2-benzoylpyridine 4g and Nheterocycle 4h (entries 7 and 8), they were also efficiently arylated by 2a to form 5g (86%) and 5h (64%), respectively, as compared to the reported results (33-34% yields) by using Rh(I)/benzoyl chloride.²¹ A reactivity order of oxidative addition to Pd(0) has been established: PhI \gg (PhCO)₂O > PhOTf > PhBr,²⁵ which suggests that $(PhCO)_2O$ is a more reactive coupling reagent than PhOTf and PhBr. Thus, anhydrides (ArCO)₂O may be used as the more capable coupling partners than ArBr in C-H functionalization. With cinnamic anhydride (2n) as the coupling partner, the reactions of 4a-h efficiently produced the alkenylation products 6a-h in 64-97% yields (entries 9-16), suggesting a promising alternative to compounds of type 6 instead from Heck reactions of aryl halides and styrene.²⁶ Alkenylation of arenes and N-heterocycles via C-H bond activation usually utilize alkynes,⁶ olefins,¹¹ and alkyl acrylates¹² as the coupling reagents.

To investigate the reactivity of the substrates and coupling partners further, three competition reactions were explored

^{(23) (}a) Goossen, L. J.; Rodríguez, N. Chem. Commun. 2004, 724. (b) Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. (c) Jobashi, T.; Hino, T.; Maeyama, K.; Ozaki, H.; Ogino, K.; Yonezawa, N. Chem. Lett. 2005, 34, 860. (d) Goossen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721. (e) Goossen, L. J.; Paetzold, J. Adv. Synth. Catal. 2004, 346, 1665. (f) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 17226.

^{(24) (}a) Sugihara, T.; Satoh, T.; Miura, M. *Tetrahedron Lett.* **2005**, *46*, 8269. (b) Obora, Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. **1993**, *115*, 10414.

Table 3. Direct Arylation of 2-Arylpyridines (**4**) via Decarbonylation of **2a** or **2n** and C–H Bond Activation^{*a*}

entry	substrate	cond.	product	yield (%) ^b
1	()-{∩} _{4a}	A		79
2	-{\]-{\]-{\]	А		78
3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	А		71
4		в	k Ph 5d	67°
5		В	G → Se	63
6		в	⊂ [⊷] 5f	57
7		в	لان کې	86 ^d
8	8 ⊷ Ω 4h	В	5h	64 ^d
9	() → N 4a	Α	6a	91
10	-√>-√⊃ _{4b}	A		93
11	[−] °→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	A		84
12	\4d	в		77
13		в	Ph 6e	64
14	∽4f	В	K Short Short Sho	97
15	C → C 4g	в		79 (E/Z=96:4)
16		в		70 (E/Z=63:37)

^{*a*} Conditions: **4**, 0.5 mmol; $[Rh(COD)Cl]_2$, 5 mol %; MS, 0.600 g; *o*-xylene, 3 mL; 145 °C, 12 h. (A) **2a** or **2n**, 3.0 equiv; Na₂CO₃, 4 eq. (B) **2a** or **2n**, 1.5 equiv; Na₂CO₃, 2 equiv. ^{*b*} Isolated yields. ^{*c*} GC yield (100% conversion for **4d**, a mixture of 33:67 di- and monoarylation products was obtained). ^{*d*} 16 h.

under the typical conditions as shown in Tables 2 and 3 (eqs 3-5). A 1:1 molar ratio mixture of **2a** and **2b** was reacted with **1**, affording the arylation products **3a** and **3b** in a 45: 55 molar ratio (eq 3), which further demonstrates that an electron-donating substituent in the anhydride favors the arylation. Under the same conditions, using benzoyl chloride instead of benzoic anhydride **2a** led to less of **3a** (eq 4), revealing that benzoyl chloride is less reactive than benzoic anhydride in the Rh(I)-catalyzed decarbonylative arylation of **1**. Arene **1** exhibited a higher reactivity than 2-arylpyridine

A possible mechanism is proposed in Scheme 1. Anhydride $\mathbf{2}$ is oxidatively added to the Rh(I) species to form an

aroylcarboxylate metal complex [RCORh(III)Cl (OCOR)] (7) which undergoes decarbonylation to form aryl carboxylate-Rh(III) (8). Intermediate 8 reacts with arene 1 to generate complex 9 by C-H bond activation via intramolecular *ortho*-chelating assistance in the presence of Na₂CO₃ base. The desired product 3 is then produced via the reductive elimination of 9. This proton abstraction mechanism is plausible to explain functionalization of the aromatic C-H bonds by carboxylic anhydrides.^{4a,27}

In summary, efficient regioselective direct arylation and alkenylation of aromatic C–H bonds has been realized by Rh(I) catalysis using aromatic carboxylic and cinnamic anhydrides as the coupling partners via decarbonylative C–H bond activation with arene or *N*-heteroaromatic substrates under phosphine-free conditions. The present catalytic system is much more efficient than the Rh(I)/aroyl chloride system²¹ for the same purpose.

Acknowledgment. We are grateful to the National Natural Science Foundation of China (20772124) and the National Basic Research Program of China (2009CB825300) for support of this research.

Supporting Information Available: Experimental procedures, analytical data, and copies of NMR spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

OL9000729

⁽²⁵⁾ Jutand, A.; Negri, S.; de Vries, J. G. Eur. J. Inorg. Chem. 2002, 1711.

⁽²⁶⁾ Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651.

⁽²⁷⁾ Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.