Accepted Manuscript

Title: Interrupted Reduction of CF₃SO₂Cl Using Tricyclohexylphosphine Allows for Electrophilic Trifluoromethylsulfinylation

Author: Hélène Chachignon Dominique Cahard

PII:	S0022-1139(16)30297-4
DOI:	http://dx.doi.org/doi:10.1016/j.jfluchem.2016.11.020
Reference:	FLUOR 8907
To appear in:	FLUOR
Received date:	3-10-2016
Revised date:	29-11-2016
Accepted date:	29-11-2016

Please cite this article as: Hélène Chachignon, Dominique Cahard, Interrupted Reduction of CF3SO2Cl Using Tricyclohexylphosphine Allows for Electrophilic Trifluoromethylsulfinylation, Journal of Fluorine Chemistry http://dx.doi.org/10.1016/j.jfluchem.2016.11.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Interrupted Reduction of CF₃SO₂Cl Using Tricyclohexylphosphine Allows for Electrophilic Trifluoromethylsulfinylation

Hélène Chachignon,^a Dominique Cahard^{a,*}

a) UMR 6014 COBRA, CNRS, Université de Rouen et INSA de Rouen, 1 Rue Tesnière, F-76821 Mont-Saint-Aignan Cedex, France

* Corresponding author

E-mail address: dominique.cahard@univ-rouen.fr

Graphical abstract

& pyrroles, other azaarenes, amines, phenols $R = F, CO_2Me$

Highlights

- A new use of trifluoromethane sulfonyl chloride $\rm CF_3SO_2Cl$ is described for the transfer of $\rm CF_3S(O)^+$ cation.

• A new method is presented for direct electrophilic trifluoromethylsulfinylation.

• We performed the trifluoromethylsulfinylation of indoles, pyrroles, other azaarenes, amines, and phenols.

• The reaction mechanism involves a reductive monodeoxygenation of CF₃SO₂Cl by means of tricyclohexylphosphine initiated by halogen bonding.

Abstract: The monoreduction of trifluoromethanesulfonyl chloride by an appropriate phosphine, preferentially tricyclohexylphosphine, generates the reactive trifluoromethanesulfinyl chloride CF₃SOCl as donor of CF₃S(O)⁺ cation. The direct trifluoromethylsulfinylation of indoles, pyrroles, other azaarenes, amines, and phenols was successfully achieved in moderate to high yields.

Keywords: Sulfur; Fluorine; Phosphine; Indole; Halogen bond

1. Introduction

A substantial number of molecules bearing the CF₃S(O) group have been synthesized for applications in the pharmaceutical and agrochemical fields. The introduction of the $CF_3S(O)$ motif into organic molecules modifies and often enhances their biological properties. For example, the broadly used insecticide Fipronil and several analogues feature a trifluoromethanesulfinyl moiety that is responsible for increased lipid solubility favouring the transport of the molecule across lipid membranes [1,2]. The CF₃S(O) group stands between its lower and higher oxidation state congeners CF₃S and CF₃SO₂, respectively, in terms of Hammett substituent constants [3] and Taft's σ^* parameters [4]. The synthesis of trifluoromethanesulfoxides was achieved mainly by two approaches: (i) the monooxidation of the corresponding trifluoromethyl sulfides by means of a wide variety of oxidants (ii) the nucleophilic trifluoromethylation of sulfinyl halides or sulfinic esters with TMSCF₃ [5]. The direct introduction of the CF₃S(O) group using trifluoromethanesulfinyl halides CF₃S(O)F or CF₃S(O)Cl has seldom been reported because of the toxicity, the volatility and the poor stability of these reagents [6]. Alternatively, few direct trifluoromethylsulfinylation methods were described on (het)arenes with the aid of sodium or potassium triflinates CF_3SO_2M (M = Na, K) in the presence of triflic acid [7] or phosphoryl chloride [8], or with N-SOCF₃

succinimide as $CF_3S(O)^+$ donor source [9, 10]. The electrophilic *O*-trifluoromethylthiolation of allylic alcohols followed by a [2,3]-sigmatropic rearrangement is also a route to prepare allylic trifluoromethyl sulfoxides [11]. As part of our ongoing research on the synthesis of SCF₃ compounds, we recently reported a novel use of trifluoromethanesulfonyl chloride, CF₃SO₂Cl, as a new source of electrophilic SCF₃ in the presence of a phosphine as the reducing agent. The complete reduction of CF₃SO₂Cl generates the highly reactive CF₃SCl that reacts in situ with various nucleophiles [12]. We now report that tuning the nature of the phosphine and the ratio substrate / CF₃SO₂Cl / phosphine allows for the controlled monoreduction of CF₃SO₂Cl into CF₃S(O)Cl for the direct *C*-trifluoromethylsulfinylation of indoles, pyrroles, other azaarenes and phenols as well as the *N*-trifluoromethylsulfinylation of amines.

2. Results and discussion

As mentioned earlier in the text, we recently developed an innovative methodology allowing the C-trifluoromethylthiolation of a variety of nucleophiles by reacting them with the in situ generated CF₃SCl from a combination of CF₃SO₂Cl / trimethylphosphine in a ratio 1:2 in THF at -78°C to room temperature [12]. During the experiments carried out as part of this work with indole as substrate, an interesting side product was invariably observed: the trifluoromethylsulfinylated derivative featuring the CF₃S(O) group, which resulted from the reaction between said substrate and monodeoxygenated sulfonyl chloride. The formation of this a priori undesired side product was however greatly disfavoured compared to the trifluoromethylthiolated analogue, and it was consequently isolated in very poor yields (Table 1, entries 1, 2). Yet, interestingly enough, it was obtained in particularly higher proportions (62% NMR yield) when using tricyclohexylphosphine as the reducing agent, instead of trimethylphosphine or triphenylphosphine (Table 1, entry 3). This phenomenon can be explained by a subtle variation of the nucleophilicity of phosphines, making the sulfinyl chloride reduction process slower than its reaction with indole [13]. Steric hindrance appeared to be less influential, considering the important difference between the yields reached using PPh₃ and PCy₃. Trimethyl phosphite, P(OMe)₃, failed to generate CF₃S(O)Cl under our reaction conditions [14].

To further exploit this unique property of tricyclohexylphosphine, we conducted a series of experiments on indole aimed at maximizing the yield of the trifluoromethylsulfinylation reaction. To this end, we first screened different solvents (Table 1, entries 3-6). However, it was soon found out that their influence on the yield of the reaction was quite negligible. Indeed, the use of DCM only allowed to slightly increase the yield from 62 to 67%. On the other hand, the ratio CF_3SO_2Cl / PCv_3 proved to be a much more significant parameter: quite intuitively, decreasing it to 1:1 lead to the formation of fewer SCF₃ by-product, and consequently to an improved yield of 79% (Table 1, entries 7, 8). The yield was ultimately increased to 89% when reducing the equivalents of CF₃SO₂Cl and PCy₃ from 1.8 to 1.5 (Table 1, entries 9, 10), which was an appreciable result in a perspective of reagent economy. Any attempt to perform the reaction at higher temperatures resulted in lower yields, especially above -20°C (Table 1, entries 11-14). Similarly, diluting or concentrating any further the reaction medium appeared to be detrimental to the formation of the desired product (Table 1, entries 15, 16). It is noteworthy to report that when raising the concentration to 0.9 M, tricyclohexylphosphine was no more properly soluble in DCM at -78°C, which caused the freezing of the reaction mixture, making its stirring impossible until the temperature had increased enough to reverse the phenomenon.

derivatives Α variety of indole were then submitted to the optimized trifluoromethylsulfinylation reaction conditions. The reaction proceeded smoothly with most of them, regardless of the carried functional groups or their positions. Indeed, electronwithdrawing and electron-donating substituents in positions 2, 4, 5, 6 and 7 were equally well tolerated, even though it was necessary to increase the quantities of CF₃SO₂Cl and PCy₃ to 1.8 equivalents for the less reactive brominated indoles in order to achieve full conversion of the starting material (Table 2, entries 2, 3). N-Methylated indoles appeared to be compatible as well with the selected reaction conditions (Table 1, entries 8, 9). 7-Azaindole showed the least satisfying results (Table 1, entry 10), which was however predictable considering the deactivating effect of its electron-deficient pyridine moiety.

Considering the encouraging results obtained with indole derivatives, we decided to submit other azaarenes to our reaction conditions. We first examined pyrrole derivatives, which afforded their trifluoromethylsulfinylated analogues in moderate to good yields (Table 3, entries 1–5). Pyrrole itself provided product **3a** in 52% yield, as the starting material was involved in side polymerisation reactions (Table 3, entry 1). Despite their very similar structures, 2,4-dimethylpyrrole gave access to a lower yield than 2,5-dimethylpyrrole (Table 3, entries 2, 3). This is due to partial consumption of product **3b** by bis-functionalisation, whereas product **3c** remained untouched, its available C3 position being more hindered. As for *N*-methylpyrrole, formation of product **3e** was observed in good yield by ¹⁹F NMR, but it however appeared to be unstable and could not be isolated in a pure form. The CF₃S(O) group was also successfully introduced in moderate yields on methyl indolizine-1-carboxylate and pyrazolone after slight adjustment of the reaction conditions (Table 3, entries 6, 7); on the other hand the CF₃S(O)-substituted imidazo[1,2-a]pyridine **6** could only be obtained with a disappointing 9% yield, mostly due to steric hindrance issues (Table 3, entry 8).

Moreover, azaarenes were not the only substrates worth considering: a variety of aryl and aliphatic amines were also readily converted to the corresponding sulfinamides using our CF_3SO_2Cl / PCy_3 system via regioselective *N*-trifluoromethylsulfinylation. Aniline derivatives in particular showed a great reactivity toward our reagent; however, degradation of the obtained products occurred invariably in the reaction medium, which lead to moderate yields despite the full consumption of the starting materials and the absence of trifluoromethylthiolated side product (Table 4, entries 1–5). It is noteworthy to specify that the isolated products were stable yet, except for the *N*-methylsulfonamide **7d** that could not be isolated in a pure form. Benzylamine and isopropyl amine were more difficultly consumed, and consequently afforded products **7f** and **7g** in lower yields. Sulfinamide **7g** was also unstable and underwent degradation during its purification.

The reaction was finally performed on two phenol derivatives, 1-naphthol and resorcinol, which gave access to the corresponding *C*-trifluoromethylsulfinylated products albeit in poor yields (Table 5). An interesting phenomenon was nonetheless observed during the reaction realised on 1-naphthol: formation of a species with a ¹⁹F NMR chemical shift of –79.5 ppm, which could corresponds to the *O*-trifluoromethylsulfinylated product. This product was then consumed, as the quantity of the *C*-trifluoromethylsulfinylated product ($\delta = -74.1$ ppm) increased. This could suggest that the reaction mechanism involves a Thia-Fries rearrangement. Even if this kind of process usually requires a Lewis acid [15] or a strong base

[16, 17] to proceed, which doesn't match our conditions, some examples of similar photocatalyzed reactions were also reported [18, 19], making our hypothesis conceivable.

Additionnally, the direct transfer of the difluoromethylsulfinyl motif $S(O)CF_2R$ in which R is a functional group would be of great interest allowing rapid generation of molecular complexity. In this context, we performed the reductive selective monodeoxygenation of methyl 2-(chlorosulfonyl)-2,2-difluoroacetate MeO₂CCF₂SO₂Cl [20]. The reaction proceeded smoothly and the reaction with indole provided the expected product **9**, which was isolated in a good yield of 65% (Scheme 1).

The mechanism of the reductive monodeoxygenation consists in the heterolytic cleavage of the covalent S–Cl bond triggered by the halogen bond that forms between the positive electrostatic potential on the outer side of the chlorine atom in RCF_2SO_2Cl and the lone pair of phosphorus atom in PCy_3 . The chlorophosphonium sulfinate is then converted into the *O*-sulfinatophosphonium chloride, which undergo Arbuzov collapse to sulfinyl chloride $RCF_2S(O)Cl$ and tricyclohexylphosphine oxide, as confirmed by ³¹P NMR spectroscopy. Then, the electrophilic $RCF_2S(O)Cl$ reacts with indole or other nucleophiles with release of HCl (Scheme 2). The addition of an inorganic or an organic base to the reaction mixture lowered the reaction yield and favored the trifluoromethanesulfonylation at the nitrogen atom of indole.

3. Conclusion

During our investigation of the reductive deoxygenation-trifluoromethylthiolation reaction, we discovered that tuning the nature of the phosphine and the ratio substrate / CF_3SO_2Cl / phosphine allows for the controlled monoreduction of CF_3SO_2Cl into $CF_3S(O)Cl$ as donor of $CF_3S(O)^+$ cation. A number of reactions were carried out that include the direct *C*-trifluoromethylsulfinylation of indoles, pyrroles, other azaarenes and phenols as well as the *N*-trifluoromethylsulfinylation of aryl- and alkylamines. Moreover, methyl 2-(chlorosulfonyl)-2,2-difluoroacetate was also selectively monodeoxygenated allowing the direct transfer of the electrophilic difluoromethylsulfinyl motif MeO_2CCF_2S(O).

4. Experimental

4.1. General remarks

The reactions were monitored by thin-layer chromatography (TLC) performed with 0.20 mm silica gel 60 with fluorescent indicator UV₂₅₄. The TLC plates were visualized with UV light (254 nm). Column chromatography was performed on a column packed with silica gel 60M spherical neutral size 40-63 μ m. ¹H (300 MHz), ¹³C (75.5 MHz) and ¹⁹F (282 MHz) NMR spectra for solution in CDCl₃ or DMSO-d₆ were recorded on Bruker Avance 300. Chemical shifts (δ) for ¹H and ¹³C NMRs are expressed in ppm downfield from tetramethylsilane using the residual protonated solvent as an internal standard (CDCl₃, ¹H 7.26 ppm and ¹³C 77.16 ppm; DMSO-d₆ ¹H 2.50 ppm and ¹³C 39.52 ppm) or, for ¹⁹F NMR, upfield from CFCl₃ as the internal standard (¹⁹F 0.00 ppm). The following abbreviations were used to show the multiplicities: s: singlet, d: doublet, t: triplet, q: quadruplet, dd: doublet of doublets, td: triplet of doublets, dt: doublet of triplets, m: multiplet, b: broad. High resolution mass spectrometry (HRMS) was carried out on an electrospray ionization mass spectrometer with a micro-TOF analyzer. Unless otherwise noted, all reagents were purchased from commercial sources and

were used without further purification. 2-Phenylpyrrole [21], 2-phenylimidazo[1,2-a]pyridine [22], methyl indolizine-1-carboxylate [23] and methyl 2-(chlorosulfonyl)-2,2-difluoroacetate [20] were prepared referring to previously reported procedures.

4.2. Representative procedure for the trifluoromethylsulfinylation

To a solution of substrate (0.85 mmol) and tricyclohexylphosphine (Procedure A: 1.5 equiv or Procedure B: 1.8 equiv) in DCM (5 mL) was added trifluoromethanesulfonyl chloride (Procedure A: 1.5 equiv or Procedure B: 1.8 equiv) at -78 °C. The reaction mixture was stirred until the full consumption of the starting material (TLC monitored), as the temperature was let to increase to room temperature. The reaction mixture was quenched with water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over magnesium sulfate, and concentrated under vacuum. The crude product was purified by flash chromatography (cyclohexane/ethyl acetate).

3-((Trifluoromethyl)sulfinyl)-1H-indole (**2a**) [12]. CAS [1909315-34-9]. Procedure A. White solid. 176 mg, 88% yield. ¹H NMR (CDCl₃): δ 9.64 (s, 1H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.84 (d, *J* = 2.6 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.35 (qt, *J* = 7.7 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 136.8, 130.79, 125.6 (q, *J* = 334.5 Hz), 124.5, 124.1, 122.8, 120.2 (q, *J* = 1.7 Hz), 112.5, 108.4 (q, *J* = 2.2 Hz) ppm; ¹⁹F NMR (CDCl₃): δ –73.6 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3103, 1502, 1415, 1176, 1127, 1038, 748. HRMS (ESI): Calculated for C₉H₁₀N₂OF₃S [M+NH₄]⁺: 251.0461; Found: 251.0466.

4-Bromo-3-((trifluoromethyl)sulfinyl)-1H-indole (**2b**). Procedure B. White solid. 212 mg, 80%. ¹H NMR (CDCl₃): δ 9.58 (s, 1H), 8.07 (s, 1H), 7.48 (t, *J* = 8.5 Hz, 2H), 7.21 (t, *J* = 7.9 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆): δ 137.9, 132.3, 125.5, 125.1 (q, *J* = 337.8 Hz), 124.7, 124.3, 112.8, 111.0, 107.8 (q, *J* = 2.2 Hz) ppm; ¹⁹F NMR (CDCl₃): δ -75.6 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3132, 1735, 1631, 1171, 1123, 1038, 775, 732, 607. HRMS (ESI): Calculated for C₉H₆NOF₃SBr [M+H]⁺: 311.9304; Found: 311.9306.

5-Bromo-3-((trifluoromethyl)sulfinyl)-1H-indole (**2c**). Procedure B. White solid. 241 mg, 91%. ¹H NMR (CDCl₃): δ 9.69 (s, 1H), 8.11 (s, 1H), 7.78 (d, *J* = 2.1 Hz, 1H), 7.44 (d, *J* = 8.7 Hz, 1H), 7.36 (d, *J* = 8.7 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 135.4, 131.3, 127.8, 125.7, 125.5 (q, *J* = 334.5 Hz), 122.9 (q, *J* = 2.2 Hz), 116.2, 113.9, 108.4 (q, *J* = 2.2 Hz) ppm; ¹⁹F NMR (CDCl₃): δ -73.8 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3208, 2931, 1450, 1411, 1295, 1178, 1128, 1039, 802, 611. HRMS (ESI): Calculated for C₉H₉N₂OF₃SBr [M+NH₄]⁺: 328.9565; Found: 328.9571.

5-Methoxy-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2d**). Procedure B. White solid. 192 mg, 85% yield. ¹H NMR (CDCl₃): δ 8.92 (s, 1H), 7.75 (d, *J* = 2.6 Hz, 1H), 7.38 (d, *J* = 9.1 Hz, 2H), 7.00 (d, *J* = 8.9 Hz, 1H), 3.87 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 156.1, 131.5, 130.7, 125.7 (q, *J* = 334.5 Hz), 125.0, 115. 3, 113.3, 107.9, 101.5 (q, *J* = 1.7 Hz), 55.7 ppm; ¹⁹F NMR (CDCl₃): δ -73.6 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3117, 3000, 2958, 1588, 1488, 1293, 1213, 1178, 1030, 811. HRMS (ESI): Calculated for C₁₀H₁₂N₂O₂F₃S [M+NH₄]⁺: 281.0569; Found: 281.0572.

6-Fluoro-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2e**). Procedure A. White solid. 184 mg, 86% yield. ¹H NMR (CDCl₃): δ 9.76 (s, 1H), 7.89 (dd, J = 8.5, 5.3 Hz, 1H), 7.76 (d, J = 2.8 Hz, 1H), 7.14 (dd, J = 8.9, 1.7 Hz, 1H), 7.06 (td, J = 9.1, 1.9 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 160.8 (d, J = 242.6 Hz), 137.1 (d, J = 12.7 Hz), 131.2, 125.5 (q, J = 334.5 Hz), 121.4 (dq, J = 10.5, 2.2 Hz), 120.4, 111.8 (d, J = 24.8 Hz), 108.7 (q, J = 2.2 Hz), 99.0 (d, J = 2.2 Hz), 90.0 (d,

26.4 Hz) ppm; ¹⁹F NMR (CDCl₃): δ –73.4 (s, 3F), –117.1 (s, 1F) ppm. ATR-FTIR (cm⁻¹): 3125, 3002, 2920, 1616, 1511, 1419, 1242, 1187, 1132, 1040, 809. HRMS (ESI): Calculated for C₉H₉N₂OF₄S [M+NH₄]⁺: 269.0372; Found: 269.0370.

7-Methyl-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2f**). Procedure B. Beige solid. 128 mg, 61% yield. ¹H NMR (CDCl₃): δ 9.36 (s, 1H), 7.85–7.71 (m, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 7.0 Hz, 1H), 2.53 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 136.3, 130.0, 125.5 (q, *J* = 334.5 Hz), 125.0, 123.9, 122.9, 121.7, 117.9, 109.3 (q, *J* = 1.9 Hz), 16.5 ppm; ¹⁹F NMR (CDCl₃): δ –73.7 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3207, 2929, 1435, 1167, 1134, 1042, 784, 736. HRMS (ESI): Calculated for C₁₀H₁₂N₂OF₃S [M+NH₄]⁺: 265.0622; Found: 265.0619.

2-Methyl-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2g**). Procedure A. White solid. 183 mg, 87% yield. ¹H NMR (CDCl₃): δ 8.88 (s, 1H), 7.97 (d, *J* = 7.0 Hz, 1H), 7.41–7.34 (m, 1H), 7.32–7.20 (m, 2H), 2.60 (s, 3H) ppm; ¹³C NMR (DMSO-d₆): δ 144.8, 135.8, 126.2 (q, *J* = 337.3 Hz), 124.9, 122.9, 121.6, 119.2 (q, *J* = 2.2 Hz), 112.1, 102.2 (q, *J* = 2.2 Hz), 11.8 ppm; ¹⁹F NMR (CDCl₃): δ –72.8 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3096, 1519, 1457, 1171, 1129, 1050, 741. HRMS (ESI): Calculated for C₁₀H₉NOF₃S [M+H]⁺: 248.0357; Found: 248.0359.

1-Methyl-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2h**). Procedure A. Pale yellow solid. 167 mg, 79% yield. ¹H NMR (CDCl₃): δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.69 (s, 1H), 7.48–7.29 (m, 3H), 3.90 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 137.7, 133.8, 125.6 (q, *J* = 335.0 Hz), 125.1, 124.1, 122.5, 120.5, 110.5, 107.2 (q, *J* = 2.2 Hz), 33.8 ppm; ¹⁹F NMR (CDCl₃): δ –74.1 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3097, 2922, 1519, 1457, 1174, 1128, 1061, 740. HRMS (ESI): Calculated for C₁₀H₉NOF₃S [M+H]⁺: 248.0357; Found: 248.0357.

1,2-Dimethyl-3-((trifluoromethyl)sulfinyl)-1*H*-indole (**2i**). Procedure A. Pink solid. 163 mg, 73% yield. ¹H NMR (CDCl₃): δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.41–7.22 (m, 3H), 3.74 (s, 3H), 2.61 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 143.8, 137.3, 126.1 (q, *J* = 335.6 Hz), 124.9, 123.2, 122.4, 120.2, 109.7, 103.6 (q, *J* = 2.8 Hz), 30.0, 11.1 ppm; ¹⁹F NMR (CDCl₃): δ –73.0 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 1477, 1404, 1315, 1165, 1129, 1064, 749. HRMS (ESI): Calculated for C₁₁H₁₁NOF₃S [M+H]⁺: 262.0513; Found: 262.0517.

3-((Trifluoromethyl)sulfinyl)-1*H*-pyrrolo[2,3-*b*]pyridine (**2j**). Procedure A. White solid. 70 mg, 35% yield. ¹H NMR (CDCl₃): δ 8.52 (d, *J* = 4.2 Hz, 1H), 8.40 (d, *J* = 7.9 Hz, 1H), 8.03 (s, 1H), 7.35 (dd, *J* = 7.9, 4.7 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆): δ 137.9, 132.3, 125.0 (q, *J* = 337.3 Hz), 124.7, 124.4, 112.8, 111.0, 107.8 (q, *J* = 2.2 Hz) ppm; ¹⁹F NMR (CDCl₃): δ – 73.9 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3123, 2928, 2855, 1581, 1410, 1281, 1159, 1131, 1067, 769. HRMS (ESI): Calculated for C₈H₆N₂OF₃S [M+H]⁺: 235.0153; Found: 235.0145.

2-((Trifluoromethyl)sulfinyl)-1*H*-pyrrole (**3a**) [24]. CAS [62665-45-6]. Procedure A. Colourless oil. 81 mg, 52% yield. ¹H NMR (CDCl₃): δ 10.88 (s, 1H), 7.23–7.17 (m, 1H), 6.95–6.89 (m, 1H), 6.39–6.32 (m, 1H) ppm; ¹³C NMR (CDCl₃): δ 127.3, 124.5 (q, *J* = 334.5 Hz), 119.0 (d, *J* = 1.7 Hz), 118.7 (d, *J* = 1.1 Hz), 110.4 ppm; ¹⁹F NMR (CDCl₃): δ –74.2 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3242, 2960, 1176, 1126, 1029, 743. HRMS (ESI): Calculated for C₅H₃NOF₃S [M-H]⁻: 181.9887; Found: 181.9889.

3,5-Dimethyl-2-((trifluoromethyl)sulfinyl)-1*H*-pyrrole (**3b**). Procedure A. Beige solid. 111 mg, 61% yield. ¹H NMR (CDCl₃): δ 9.52 (s, 1H), 5.89 (s, 1H), 2.30 (s, 3H), 2.20 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 137.9, 132.2, 124.9 (q, *J* = 335.1 Hz), 114.0 (q, *J* = 1.7 Hz), 111.0, 13.2, 10.9 ppm; ¹⁹F NMR (CDCl₃): δ -74.2 (s, 3F). ATR-FTIR (cm⁻¹): 3219, 3170, 1390, 1169,

1123, 1036, 801. HRMS (ESI): Calculated for $C_7H_9NOF_3S$ [M+H]⁺: 212.0357; Found: 212.0354.

2,5-Dimethyl-3-((trifluoromethyl)sulfinyl)-1*H*-pyrrole (**3c**). Procedure A. Beige solid. 149 mg, 83% yield. ¹H NMR (CDCl₃): δ 8.68 (s, 1H), 6.23 (s, 1H), 2.38 (s, 3H), 2.23 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 134.8, 129.6, 125.3 (q, *J* = 332.9 Hz), 112.1 (q, *J* = 2.2 Hz), 104.4, 12.7, 11.3 ppm; ¹⁹F NMR (CDCl₃): δ -74.6 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3253, 1404, 1167, 1132, 1046, 807. HRMS (ESI): Calculated for C₇H₉NOF₃S [M+H]⁺: 212.0357; Found: 212.0360.

2-Phenyl-5-((trifluoromethyl)sulfinyl)-1*H*-pyrrole (**3d**). Procedure A. Purple solid. 136 mg, 62% yield. ¹H NMR (CDCl₃): δ 10.58 (s, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 6.96 (dd, *J* = 4.0, 2.7 Hz, 1H), 6.63 (dd, *J* = 3.8, 2.6 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 141.2, 130.6, 129.0, 128.4, 125.3, 125.6 (q, *J* = 335.6 Hz), 120.0 (d, *J* = 1.1 Hz), 119.9 (q, *J* = 2.2 Hz), 107.9 ppm; ¹⁹F NMR (CDCl₃): δ -73.8 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3240, 1459, 1179, 1132, 1034, 800, 763. HRMS (ESI): Calculated for C₁₁H₉NOF₃S [M+H]⁺: 260.0357; Found: 260.0358.

Methyl 3-((trifluoromethyl)sulfinyl)indolizine-1-carboxylate (**4**). Procedure B. Yellow solid. 134 mg, 54% yield. ¹H NMR (CDCl₃): δ 8.93 (d, *J* = 7.0 Hz, 1H), 8.38 (d, *J* = 9.1 Hz, 1H), 7.83 (s, 1H), 7.40 (t, *J* = 8.7 Hz, 1H), 7.00 (t, *J* = 6.8 Hz, 1H), 3.92 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 163.6, 140.8, 127.6 (q, *J* = 2.7 Hz), 127.0, 125.7 (q, *J* = 338.4 Hz), 125.5, 120.3, 114.8, 111.4 (q, *J* = 2.2 Hz), 106.3, 51.4 ppm; ¹⁹F NMR (CDCl₃): δ -70.7 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3118, 1696, 1510, 1185, 1163, 1125, 1048, 775, 753. HRMS (ESI): Calculated for C₁₁H₉NO₃F₃S [M+H]⁺: 292.0255; Found: 292.0260.

3-Methyl-1-phenyl-4-((trifluoromethyl)sulfinyl)-1*H*-pyrazol-5-ol (**5**). Procedure B. Yellow solid. 115 mg, 46% yield. ¹H NMR (CDCl₃): δ 7.70 (d, *J* = 7.7 Hz, 2H), 7.23 (t, *J* = 7.0 Hz, 2H), 7.08 (t, *J* = 7.2 Hz, 1H), 2.12 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 162.6, 147.4, 139.1, 128.4, 125.4 (q, *J* = 335.6 Hz), 124.6, 120.6, 120.4, 13.0 ppm; ¹⁹F NMR (CDCl₃): δ -74.3 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 2927, 2856, 1603, 1574, 1358, 1170, 1126, 1008, 757, 728. HRMS (ESI): Calculated for C₁₁H₁₀N₂O₂F₃S [M+H]⁺: 291.0415; Found: 291.0419.

2-Phenyl-3-((trifluoromethyl)sulfinyl)imidazo[1,2-a]pyridine (**6**). Procedure B. Dark brown oil. 24 mg, 9% yield. ¹H NMR (CDCl₃): δ 8.98 (d, *J* = 6.8 Hz, 1H), 7.83 (d, *J* = 9.1 Hz, 1H), 7.79–7.71 (m, 2H), 7.59–7.43 (m, 4H), 7.07 (t, *J* = 7.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 155.5, 149.1, 131.2, 130.2, 130.0 (q, *J* = 337.8 Hz), 129.6, 129.3, 128.9, 128.5 (q, *J* = 3.3 Hz), 118.2, 114.6, 108.6 (q, *J* = 2.8 Hz) ppm; ¹⁹F NMR (CDCl₃): δ –68.7 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3041, 2921, 2851, 1461, 1440, 1350, 1172, 1122, 1066, 765, 689. HRMS (ESI): Calculated for C₁₄H₁₀N₂OF₃S [M+H]⁺: 311.0466; Found: 311.0461.

1,1,1-Trifluoro-*N*-phenylmethanesulfinamide (**7a**) [8]. CAS [108530-14-9]. Procedure B. Yellow solid. 124 mg, 70% yield. ¹H NMR (CDCl₃): δ 7.37 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 2H), 6.48 (bs, 1H) ppm; ¹³C NMR (CDCl₃): δ 138.0, 129.9, 125.5, 123.6 (q, *J* = 333.4 Hz), 120.4 ppm; ¹⁹F NMR (CDCl₃): δ -78.4 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3167, 1482, 1186, 1083, 906, 753. HRMS (ESI): Calculated for C₇H₅NOF₃S [M-H]⁻: 208.0040; Found: 208.0044.

1,1,1-Trifluoro-N-(4-methoxyphenyl)methanesulfinamide (**7b**) [25]. CAS [868395-06-6]. Procedure A. Brown solid. 95 mg, 47%. ¹H NMR (CDCl₃): δ 7.11 (dt, J = 8.9, 2.1 Hz, 2H),

6.89 (dt, J = 8.9, 2.1 Hz, 2H), 6.25 (s, 1H), 3.81 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 158.2, 130.2, 124.5, 123.6 (q, J = 333.9 Hz), 115.0, 55.5 ppm; ¹⁹F NMR (CDCl₃): δ -78.4 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3172, 2846, 1509, 1303, 1180, 1076, 1029, 903, 826. HRMS (ESI): Calculated for C₈H₇NO₂F₃S [M-H]⁻: 238.0150; Found: 238.0147.

1,1,1-Trifluoro-*N*-(*m*-tolyl)methanesulfinamide (**7c**). Procedure A. Brown solid. 65 mg, 34% yield. ¹H NMR (CDCl₃): δ 7.23 (t, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.92 (s, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.63 (s, 1H), 2.35 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 140.0, 138.0, 129.6, 126.2, 123.6 (q, *J* = 333.4 Hz), 120.9, 117.3, 21.3 ppm; ¹⁹F NMR (CDCl₃): δ -78.4 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3218, 2926, 1609, 1472, 1149, 1170, 1091, 773. HRMS (ESI): Calculated for C₈H₇NOF₃S [M-H]⁻: 222.0200; Found: 222.0204.

1,1,1-Trifluoro-*N*-(naphthalen-1-yl)methanesulfinamide (**7e**). Procedure A. Beige solid. 138 mg, 62% yield. . ¹H NMR (CDCl₃): δ 8.04 (d, *J* = 7.4 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 6.2 Hz, 1H), 7.59 (qt, *J* = 3.8 Hz, 2H), 7.53–7.41 (m, 2H), 6.55 (s, 1H) ppm; ¹³C NMR (CDCl₃): δ 134.4, 133.1, 128.9, 128.6, 128.2 (q, *J* = 334.0 Hz), 127.8, 127.2, 126.9, 125.5, 121.8, 121.5 ppm; ¹⁹F NMR (CDCl₃): δ –78.3 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3236, 1403, 1162, 1148, 1086, 784, 765. HRMS (ESI): Calculated for C₁₀H₁₂N₂O₂F₃S [M-H]⁻: 258.0194; Found: 258.0200.

N-Benzyl-1,1,1-trifluoromethanesulfinamide (**7f**) [26]. CAS [868395-10-2]. Procedure A. Colourless oil. 61 mg, 32% yield. ¹H NMR (CDCl₃): δ 7.45–7.29 (m, 5H), 4.77 (s, 1H), 4.48 (dd, *J* = 14.0, 6.2 Hz, 1H), 4.32 (dd, *J* = 14.0, 5.3 Hz, 1H) ppm; ¹³C NMR (CDCl₃): δ 136.5, 128.9, 128.3, 128.1, 123.7 (q, *J* = 334.5 Hz), 46.4 ppm; ¹⁹F NMR (CDCl₃): δ –77.3 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3208, 1456, 1169, 1148, 1079, 1027, 741, 696. HRMS (ESI): Calculated for C₈H₇NOF₃S [M-H]⁻: 222.0200; Found: 222.0192.

Naphthalen-1-yl trifluoromethanesulfinate (**8a**) [15]. CAS [655226-96-3]. Procedure B. Brown solid. 37 mg, 16% yield. ¹H NMR (DMSO-d₆): δ 8.30 (d, *J* = 7.9 Hz, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.69 (td, *J* = 8.3, 1.1 Hz, 1H), 7.61 (td, *J* = 8.1, 0.9 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆): δ 159.2, 131.7, 128.7, 126.1, 125.5 (q, *J* = 337.8 Hz), 124.6, 123.2, 121.8, 118.7, 108.2 ppm; ¹⁹F NMR (CDCl₃): δ -74.1 (s, 3F) ppm. ATR-FTIR (cm⁻¹): 3240, 2924, 1571, 1346, 1172, 1123, 1042, 826, 757. HRMS (ESI): Calculated for C₁₁H₆O₂F₃S [M-H]⁻: 259.0041; Found: 259.0038.

4-((Trifluoromethyl)sulfinyl)benzene-1,3-diol (**8b**). Procedure A. Colourless oil. 46 mg, 24% yield. . ¹H NMR (DMSO-d₆): δ 7.49 (d, *J* = 8.9 Hz, 1H), 6.54 (dd, *J* = 8.7, 2.1, 1H), 6.44 (d, *J* = 2.1 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆): δ 163.9, 158.6, 127.6, 125.3 (q, *J* = 337.8 Hz), 109.9 (q, *J* = 1.7 Hz), 108.9, 102.7 ppm; ¹⁹F NMR (DMSO-d₆): δ -75.1 (s, 3F) ppm. HRMS (ESI): Calculated for C₇H₄O₃F₃S [M-H]⁻: 224.9833; Found: 224.9830.

Methyl 2-((1*H*-indol-3-yl)sulfinyl)-2,2-difluoroacetate (**9**). Procedure A. Beige solid. 153 mg, 65% yield. ¹H NMR (CDCl₃): δ 9.72 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 3.0 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.36–7.21 (m, 2H), 3.72 (s, 3H) ppm; ¹³C NMR (CDCl₃): δ 160.1 (t, *J* = 29.2 Hz), 136.5, 129.9, 124.7, 124.2, 122.4, 120.0, 118.6 (t, *J* = 301.5 Hz), 112.5, 108.3 (t, *J* = 3.8 Hz), 54.1 ppm; ¹⁹F NMR (CDCl₃): δ –109.9 (d, *J* = 225.8 Hz, 1F), -110.9 (d, *J* = 225.8 Hz, 1F) ppm. ATR-FTIR (cm⁻¹): 3204, 2930, 1753, 1419, 1318, 1164, 1124, 1048, 742, 701. HRMS (ESI): Calculated for C₁₀H₁₂N₂O₂F₃S [M+H]⁺: 274.0349; Found: 274.0349.

Acknowledgments

This research was supported by the Centre National de la Recherche Scientifique CNRS, University of Rouen, INSA Rouen, and Labex SynOrg (ANR-11-LABX-0029). H.C. thanks the French "Ministère de la Recherche et de l'Enseignement Supérieur" for a doctoral fellowship.

References

- [1] A. S. Moffat, Science 261 (1993) 550–551.
- [2] I. G. Buntain, L. R. Hatton, D. W. Hawkins, C. J. Pearson, D. A. Roberts, Eur. Patent 0,295,117 A1 (1988).
- [3] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 91 (1991) 165–195.
- [4] A. Brändström, J. Chem. Soc., Perkin Trans. 2 (1999) 1855–1857.
- [5] X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 115 (2015) 731-764.
- [6] C. A. Burton, J. M. Shreeve, Inorg. Chem. 16 (1977) 1039–1042.
- [7] C. Wakselman, M. Tordeux, C. Freslon, L. Saint-Jalmes, Synlett (2001) 550-552.
- [8] T. Billard, A. Greiner, B. R. Langlois, Tetrahedron 55 (1999) 7243–7250.
- [9] V. D. Romanenko, C. Thoumazet, V. Lavallo, F. S. Tham, G. Bertrand, Chem. Commun. (2003) 1680–1681.
- [10] G. Bertrand, V. D. Romanenko, B. Raynier, G. Derrieu, Eur. Patent 1,331,222 A1 (2003).
- [11] M. Maeno, N. Shibata, D. Cahard, Org. Lett. 17 (2015) 1990–1993.
- [12] H. Chachignon, M. Maeno, H. Kondo, N. Shibata, D. Cahard, Org. Lett. 18 (2016) 2467– 2470.
- [13] W. A. Henderson, S. A. Buckler, J. Am. Chem. Soc. 82 (1960) 5794–5800.
- [14] S. Braverman, T. Pechenick, Y. Zafrani, Tetrahedron Lett. 42 (2001) 1391–1393.
- [15] X. Chen, M. Tordeux, J.-R. Desmurs, C. Wakselman, J. Fluorine Chem. 123 (2003) 51– 56.
- [16] J. P. H. Charmant, M. Dyke, G. C. Lloyd-Jones, Chem. Commun. (2003) 380–381.
- [17] X.-H. Xu, X. Wang, G.-K. Liu, E. Tokunaga, N. Shibata, Org. Lett. 14 (2012) 2544– 2547.
- [18] J. L. Stratenus, E. Havinga, Recl. Trav. Chim. Pays-Bas. 85 (1966) 434-436.
- [19] L. K. Crevatín, S. M. Bonesi, R. Erra-Balsells, Helv. Chim. Acta. 89 (2006) 1147-1157.
- [20] X.-J. Tang, C. S. Thomoson, W. R. Dolbier Jr, Org. Lett. 16 (2014) 4594–4597.
- [21] C. J. Wood, G. H. Summers, E. A. Gibson, Chem. Commun. (2015) 3915–3918.
- [22] S. Santra, A. K. Bagdi, A. Majee, A. Hajra, Adv. Synth. Catal. 355 (2013) 1065–1070.
- [23] Y. Yang, K. Cheng, Y. Zhang, Org. Lett. 11 (2009) 5606–5909.
- [24] A. Haas, U. Niemann, Chem. Ber. 110 (1977) 67-77.
- [25] Z. Liu, R. C. Larock, J. Am. Chem. Soc. 127 (2005) 13112–13113.
- [26] M. Harmata, P. Zheng, C.-H. Huang, M. G. Gomes, W. Ying, K.-O. Ranyanil, G. Balan, N. L. Calkins, J. Org. Chem. 72 (2007) 683–685.

Scheme 1

Synthesis of methyl 2-((1H-indol-3-yl)sulfinyl)-2,2-difluoroacetate.

Scheme 2

Proposed monodeoxygenative sulfinylation mechanism.

Table 1Optimization of reaction conditions

Id

CF₃SO₂CI / Phosphine solvent, temperature, 6 h

Entry	Phosphine	Ratio 1a/CF ₃ SO ₂ Cl/phosphine	Solvent ^a	Temp. (°C)	Yield (%) ^b
1	PMe ₃	1:1.8:3.6	THF	-78 to rt	11
2	PPh ₃	1:1.8:3.6	THF	-78 to rt	5
3	PCy ₃	1:1.8:3.6	THF	-78 to rt	62
4	PCy ₃	1:1.8:3.6	toluene	-78 to rt	66
5	PCy ₃	1:1.8:3.6	DCM	-78 to rt	67

6	PCy ₃	1:1.8:3.6	MeCN	-78 to rt	65
7	PCy ₃	1:1.8:2.7	DCM	-78 to rt	73
8	PCy ₃	1:1.8:1.8	DCM	-78 to rt	79
9	PCy ₃	1:1.5:1.5	DCM	-78 to rt	89
10	PCy ₃	1:1.1:1.1	DCM	-78 to rt	85
11	PCy ₃	1:1.5:1.5	DCM	-40 to rt	85
12	PCy ₃	1:1.5:1.5	DCM	-20 to rt	84
13	PCy ₃	1:1.5:1.5	DCM	0 to rt	61
14	PCy ₃	1:1.5:1.5	DCM	rt	59
15	PCy ₃	1:1.5:1.5	DCM ^c	-78 to rt	77
16	PCy ₃	1:1.5:1.5	DCM ^d	-78 to rt	53

^a Concentration: 0.17 M. ^b Yields were determined by ¹⁹F NMR using trifluorotoluene as an internal standard. ^c Concentration: 0.09 M. ^d Concentration: 0.9 M.

[-

 $R^{1} \frac{1}{1}$

-R²

1a-j	DCM 0.17 M, -7	B °C to rt 2	a-j R ³	
Entry	Substrate 1	Time (h)	Product 2	Yield (%) ^a
1	Z H	6	SOCF ₃	88
2 ^b	Br N H	18	Br SOCF ₃	80
3 ^b	Br	18	Br SOCF ₃ N 2c	91
4	MeO	6	MeO SOCF ₃ N 2d	85
5	F	5	F H 2e	86
6 ^b		7	SOCF ₃ N H 2f	61
7		6	SOCF ₃	87
8	N	6	N 2h	79
9	N N	6	SOCF ₃	73

Table 2

 R^1

.

Scope of trifluoromethylsulfinylation of indole derivatives. SOCF₃

-R²

 $\begin{array}{c} \mathsf{CF_3SO}_2\mathsf{CI} \ (1.5 \ \text{equiv}) \\ \mathsf{PCy}_3 \ (1.5 \ \text{equiv}) \end{array}$

^a Isolated yields. ^b 1.8 equivalents of trifluoromethanesulfonyl chloride and tricyclohexyl phosphine were used.

Entry	Substrate	Time (h)	Product	Yield (%) ^a
1	N N H	2	3a N SOCF ₃	52
2	N H	2	3b N SOCF ₃	61
3	N H	2	SOCF ₃ 3c	83
4	N H	8	N SOCF ₃ H 3d	62
5 ^b	N I	24	N SOCF ₃ 3e	73°
6 ^b	OMe	8	SOCF ₃ 4 OMe	54
7 ^b		6	HO N-N 5	46
8 ^b		24	6 SOCF ₃	9

Table 3

Scope of trifluoromethylsulfinylation of pyrrole derivatives and other azaarenes.

^a Isolated yields. ^b 1.8 equivalents of trifluoromethanesulfonyl chloride and tricyclohexyl phosphine were used. ^c Yield was determined by ¹⁹F NMR using trifluorotoluene as an internal standard.

Entry	Substrate	Time (h)	Product	Yield (%) ^a
1	NH ₂	6	N ^N SOCF₃ 7a	70
2	MeO NH2	4	MeO The Market M	47
3	NH ₂	7	H SOCF₃ 7c	34
4 ^b	HN.	4	SOCF ₃ N 7d	42 ^c
5	NH ₂	6	HN ^{-SOCF₃ 7e}	62
6	NH ₂	6	N SOCF ₃ H 7f	32
7	NH ₂	7	N SOCF ₃ H 7g	28 ^c

Table 4

Scope of *N*-trifluoromethylsulfinylation of aryl- and alkylamines.

^a Isolated yields. ^b 1.8 equivalents of trifluoromethanesulfonyl chloride and tricyclohexyl phosphine were used. ^c Yields were determined by ¹⁹F NMR using trifluorotoluene as an internal standard.

Table 5

C-Trifluoromethylsulfinylation of phenol derivatives.

Entry	Substrate	Time (h)	Product	Yield (%) ^a
1 ^b	OH	24	OH SOCF ₃ 8a	16 ^{c,d}
2	ОН	24	HO H SOCF ₃	24 ^c

^a Isolated yields. ^b 1.8 equivalents of trifluoromethanesulfonyl chloride and tricyclohexyl phosphine were used ^c The starting material was partly recovered. ^d The corresponding trifluoromethylthiolated side-product was formed.