Accepted Manuscript

Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents

N.S. El-Gohary, M.I. Shaaban

PII: S0223-5234(17)30175-7

DOI: 10.1016/j.ejmech.2017.03.018

Reference: EJMECH 9278

To appear in: European Journal of Medicinal Chemistry

Received Date: 27 January 2017

Revised Date: 6 March 2017

Accepted Date: 11 March 2017

Please cite this article as: N.S. El-Gohary, M.I. Shaaban, Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents, *European Journal of Medicinal Chemistry* (2017), doi: 10.1016/j.ejmech.2017.03.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The most active antimicrobial analogs

Comp. No.	R ¹	\mathbf{R}^2		IC ₅₀ (mM)	
			HepG2	HCT-116	MCF-7
3f	Н		0.032	0.031	0.037
3р	NO ₂	-N_N-{_F	0.022	0.014	0.015

The most potent antitumor analogs

Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents

N. S. El-Gohary^{*,a}, M. I. Shaaban^{b,c}

^aDepartment of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt ^bDepartment of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt ^cDepartment of Microbiology, Faculty of Pharmacy, Taibah University, Taibah 344, Saudi Arabia

> *Corresponding author: Tel.: +2 010 00326839, Fax: +2 050 2247496 <u>dr.nadiaelgohary@yahoo.com</u>

Abstract: New benzimidazole derivatives were synthesized and assessed for antimicrobial efficacy toward Escherichia coli, Bacillus cereus, Staphylococcus aureus, Candida albicans and Aspergillus fumigatus 293. Results indicated that compounds 3c and 3n have promising activity toward S. aureus, whereas 3i and 3j exhibited remarkable efficacy toward B. cereus. Moreover, compound 3c was proved to be the most active antifungal analog toward C. albicans. On the other hand, **3n** displayed the highest activity against A. fumigatus 293. Antiquorum-sensing activity of the same compounds was also tested against Chromobacterium violacium ATCC 12472, whereas compounds 3c-f, 3i-k and 3m-o showed acceptable activity. In vitro antitumor testing of these compounds toward liver cancer (HepG2), colon cancer (HCT-116) and breast cancer (MCF-7) cell lines revealed that compound **3p** has the highest potency against the three tested cell lines. Moreover, **3f**, **3m** and 3n displayed promising activity toward all tested cell lines. Compounds 3f, 3m, 3n and 3p were esteemed for their in vivo antitumor activity against EAC cells. The active antimicrobial and antitumor analogs, 3a, 3c, 3f, 3i-k, 3m, 3n and 3p were assessed for DNAbinding affinity, and results indicated that 3c, 3f, 3i, 3k and 3n have strong DNA-binding affinity. The computational studies affirmed that almost all of the inspected compounds meet the optimal requirements for good absorption and oral bioavailability.

Keywords: Synthesis, Benzimidazoles, Antimicrobial screening, Antiquorum-sensing screening, Antitumor screening, Cytotoxicity testing, DNA-binding assay, Computational studies

1. Introduction

High prevalence of antimicrobial resistance represents a serious concern worldwide [1]. The excessive use and misuse of antimicrobial drugs have contributed to a high extent in the development of microbial resistance, and hence the protective value of antimicrobial agents is decreased [2]. Therefore, new antimicrobial strategies are required to overcome pathogenesis and to prevent further development of drug resistance. A promising approach to combate bacterial resistance is through targeting virulence factors, e.g., quorum-sensing (QS). QS is a cell communication process, it controls different cellular activities like symbiosis, virulence, antibiotic production, motility and biofilm formation [3]. Therefore, it is an attractive target for treatment of bacterial pathogenicity [4]. QS inhibitors cause a significant reduction in the expression of QS-controlled genes without affecting cell growth and division, and hence the selective pressure for the evolution of resistance is minimized [5]. Based on these facts, many research groups are focused on the discovery of new antipathogenic drugs that inhibit QS.

In addition, cancer remains a major health threat, and it is considered to be the second leading cause of death globally after heart diseases [6]. It is characterized by the unregulated growth and metastasis of the abnormal cancer cells. Metastasis is the primary cause of death when cancer treatment fails [7]. Cancer therapeutics includes radiation therapy, cell based immunotherapy, gene therapy and chemotherapy. Ideal anticancer drugs would kill cancer cells and disrupt some aspects of cell division without harming normal tissues. Therefore, there is an imperious need for the development of new treatment approaches, especially the discovery of new potent chemotherapeutics with minimal adverse effects.

Compounds containing benzimidazole as a structural motif have been vastly utilized in medicinal chemistry and drug development. 2-Chloromethyl-1H-benzimidazoles are amongst the benzimidazole derivatives of considerable importance in biological chemistry. They are precious intermediates in the preparation of a wide variety of biologically active compounds such as antibacterial [8-12], antifungal [8-10,13-15], anthelmintic [10], antiviral [16], anti-inflammatory [17,18], analgesic [17] and anticancer agents [19,20]. In addition, literature survey revealed that substituted 2-(mercaptomethyl) benzimidazoles have been implemented as fungicidal [21] and anti-inflammatory agents [22]. Regarding these findings, and as a continuation to our previous work [23-27], a new series of benzimidazole derivatives 3a-p was designed and synthesized. Our design strategy was based on introducing substituted aminomethyl, substituted pyrazol-1-yl methyl, and substituted piperazin-1-yl methyl groups at the 2-position of benzimidazole nucleus to study their effect on antimicrobial, antitumor and cytotoxic activities. DNAbinding affinity of compounds 3a, 3c, 3f, 3i-k, 3m, 3n and 3p was also examined to investigate their possible mode of action. A detailed study of the structure-activity relationship (SAR) of the new analogs will pave the road toward the design of more potent compounds.

2. Results and Discussion

2.1. Chemistry

The reaction of 2-chloromethylbenzimidazoles with aromatic or heteroaromatic amines was reported in N,N-dimethylformamide (DMF) in presence of K₂CO₃ [8], in DMF in presence of K₂CO₃ and KI [13], in ethanol [16], in ethanol in presence of KOH [28], or in ethanol in presence of KOH and KI [14,15,17,20] to yield the 2-(aryl/heteroarylamino)methylbenzimidazoles. In the current study, a straightforward, efficient and reproducible method with simple work-up procedure was followed for the preparation of the new benzimidazoles **3a-p** using 2-chloromethyl-1*H*-benzimidazoles 2a,b [13] as starting materials (Scheme 1). This method involves the reaction of the appropriate 2-chloromethyl-1*H*-benzimidazole **2a**,**b** with the appropriate arylamine, ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylate [29], 3-methyl-1Hpyrazol-5(4H)-one [30] or 1-(4-fluorophenyl)piperazine in DMF in presence of triethylamine to produce 2-(arylamino)methyl-5-(un)substituted benzimidazoles 3a-l in moderate to good yields (55-85%), ethyl cyclohepta[b]thiophene-3-carboxylate analog 3m in reasonable yield (60%), pyrazol-5(4H)-one derivatives 3n,o in 50% and 65% yields, respectively, and benzimidazole derivative 3p in good yield (75%). The structures of the new benzimidazoles **3a-p** were ascertained by elemental analyses, ¹H & ¹³C NMR and mass spectroscopy. ¹H NMR spectra showed a characteristic singlet at δ 3.66-4.78 ppm integrated for two protons of CH_2 group at 2-position of benzimidazole. In addition, ¹³C NMR spectra displayed a significant signal at δ 40.4-56.0 ppm for CH₂ carbon at 2position of benzimidazole.

2.2. Biological evaluation

2.2.1. Antimicrobial and antiquorum-sensing evaluation

Compounds **3a-p** were estimated for *in vitro* antimicrobial efficacy toward Gram -ve bacterium (*Escherichia coli*), Gram +ve bacteria (*Bacillus cereus* and *Staphylococcus aureus*) and pathogenic fungi (*Candida albicans* and *Aspergillus fumigatus* 293) using amoxicillin as a standard antibacterial antibiotic and fluconazole as a standard antifungal agent.

The screening was done employing the two-fold serial dilution method [25,26,31-33] and the minimal concentrations of the compounds that inhibit microbial growth (MICs, μ g/mL and mM) was detected visually (no turbidity).

Results (Table 1) illustrated that *C. albicans* and *A. fumigatus* 293 are sensitive to majority of the tested compounds. Particularly, compound **3c** showed remarkable antifungal efficacy toward *C. albicans*, while **3n** displayed the highest efficacy toward *A. fumigatus*. It is noteworthy that compounds **3c** and **3n** have promising efficacy toward *S. aureus*, whereas **3i** and **3j** exhibited prominent efficacy toward *B. cereus*.

The same analogs were assessed for antiquorum-sensing efficacy toward *Chromobacterium violaceum* ATCC 12472 using catechin as a positive control [24,25,34]. QS system of *C. violaceum* releases violacein (a violet pigment) in response to signaling molecules known as acyl homoserine lactones [35,36]. Therefore, drugs that disrupt the activity of QS in *C. violaceum* will inhibit violacein production. QS inhibition was calculated by subtracting the radius of bacterial growth inhibition (r_1) from the total radius of both growth and pigment inhibition (r_2) ; therefore, QS inhibition = (r_2-r_1) in mm. Results illustrated that compounds **3c-f, 3i-k** and **3m-o** have anti-QS efficacy (Table 2).

2.2.1.1. Structure-activity relationship

Correlation of the obtained results of antimicrobial activity of compounds 3a-p and structure variations was studied and revealed that introduction of thiadiazol-2-yl moiety into the unsubstituted benzimidazole nucleus enhanced the efficacy toward E. coli, S. aureus and C. albicans compared to its counterpart 5-nitrobenzimidazole (3a versus 3b). incorporation of benzothiazol-2-yl moiety into the unsubstituted Moreover, benzimidazole nucleus led to an obvious increase in activity toward S. aureus, C. albicans and A. fumigatus compared to its counterpart 5-nitrobenzimidazole (3c versus 3d). In addition, replacement of thiadiazol-2-yl moiety in 3a with benzothiazol-2-yl counterpart led to improved activity toward S. aureus, C. albicans and A. fumigatus (compound 3c). On the other hand, replacing thiadiazol-2-yl moiety in 3b with benzothiazol-2-yl counterpart led to increased activity against A. fumigatus (compound 3d). Also, incorporation of 6-nitroquinolin-5-yl moiety into the unsubstituted benzimidazole nucleus 3i increased the activity toward all tested microorganisms compared to its 5-nitrobenzimidazole counterpart 3j. Similarly, incorporation of 3methyl-5-oxopyrazol-1-yl or 2,3-dimethyl-5-oxo-1-phenylpyrazol-4-yl moieties into the unsubstituted benzimidazole nucleus 3k and 3n, respectively resulted in remarkable activity against S. aureus, C. albicans and A. fumigatus compared to the corresponding 5nitrobenzimidazole derivatives 31 and 30, respectively. These results emphasized the significant contribution of the unsubstituted benzimidazole nucleus to the antimicrobial activity compared to the 5-nitrobenzimidazole counterpart. On contrary, incorporation of cyclohepta[b]thiophen-2-yl moiety into the unsubstituted benzimidazole nucleus did not contribute to the antimicrobial activity (compound 3m).

2.2.2. In vitro antitumor evaluation

Compounds **3a-p** were subjected to *in vitro* antitumor testing against three different cell lines; liver cancer (HepG2), colon cancer (HCT-116) and breast cancer (MCF-7) cell lines employing MTT assay [37-39]. The concentrations of the compounds and 5-fluorouracil (reference drug) required to inhibit 50% of cell viability (IC₅₀, mM) were calculated. Results (Table 3) indicated that compound **3p** has the highest potency against the three selected cell lines. Also, **3f**, **3m** and **3n** displayed promising activity toward all tested cell lines, whereas **3f** and **3m** were proved to be relatively more potent than 5-

fluorouracil against the three tested cell lines. In addition, **3g**, **3h**, **3k** and **3l** exhibited eminent efficacy toward HCT-116 cell line, while **3g** and **3k** showed reasonable activity toward MCF-7.

2.2.2.1. Structure-activity relationship

The distance between the benzimidazole nucleus and the aryl moiety is critical for antitumor activity. Extending the spacer length between the 5-nitrobenzimidazole nucleus and the aryl moiety enhances the antitumor activity, compound 3p that possesses five atoms spacer has optimal broad spectrum activity (higher than that of 5-fluorouracil) compared to the other members of the new series. Moreover, incorporation of thiadiazol-2-yl, benzothiazol-2-yl, 2,3-dihydronaphthalen-4-ylidene, 6-nitroquinolin-5-yl, 2,3dimethyl-5-oxo-1-phenylpyrazol-4-yl and 3-methyl-5-oxopyrazol-1-yl moieties into the unsubstituted benzimidazole nucleus increased the effectiveness toward all tested cell lines compared to the corresponding 5-nitrobenzimidazole analogs (compounds 3a, 3c, 3g, 3i, 3k and 3n versus 3b, 3d, 3h, 3j, 3l and 3o, respectively). This confirms the high contribution of the unsubstituted benzimidazole moiety to the antitumor activity compared to the 5-nitrobenzimidazole counterpart. Replacement of thiadiazol-2-yl moiety in compounds 3a and 3b with benzothiazol-2-yl counterpart led to decreased efficacy toward all tested cell lines (3c and 3d, respectively). In addition, incorporation of 1,3-dioxoisoindolin-2-yl, cyclohepta[b]thiophen-2-yl and 3-methyl-5-oxopyrazol-1-yl moieties into the unsubstituted benzimidazole nucleus boosted the activity toward all tested cell lines compared to the other moieties (compounds 3f, 3m and 3n versus 3a, 3c, 3g, 3i and 3k).

2.2.3. In vivo antitumor evaluation

Compounds **3f**, **3m**, **3n** and **3p** (exhibiting the highest *in vitro* antitumor activity) were evaluated for *in vivo* antitumor activity against EAC in mice and results are listed in Tables 4-6. Three important measures have been determined for assessment of antitumor efficacy of the active compounds and 5-fluorouracil (reference drug) [40-42]. % Increase in lifespan (%ILS) was determined by the equation, %ILS = [(MST of treated group/MST of positive control group)-1] x 100, where MST = days of each mouse in a group/total no. of mice. Compounds **3f** and **3p** exhibited an obvious ILS of mice inoculated with EAC cells (Table 4). The viable cell count of EAC was determined. Compounds **3f** and **3p** displayed prominent drop in viable tumor cell count (Table 5). Effects on blood profile, hemoglobin (Hb) content, total red blood cell (RBC) count and white blood cell (WBC) count were determined. Compounds **3f** and **3p** displayed higher Hb and RBC levels and lower WBC count than 5-fluorouracil (Table 6).

2.2.4. In vitro cytotoxicity testing

Compounds **3f**, **3m**, **3n** and **3p** were assessed for *in vitro* cytotoxicity toward human normal lung fibroblast (W138) cell line employing MTT assay [37-39] and utilizing 5-fluorouracil as a standard cytotoxic drug. IC_{50} values (mM) were calculated and listed in Table 7. The results disclosed that the four screened compounds are less cytotoxic than 5-fluorouracil.

2.2.5. DNA-binding assay

A wide variety of known antimicrobial and antitumor agents exert their effect through binding with DNA. Therefore, DNA-binding assay [43,44] was adopted for evaluation of DNA-binding affinity of the active analogs in this study.

2.2.5.1. DNA-binding assay on TLC-plates

It is well established that when DNA was applied to RP-18 TLC plates, it migrates using methanol/water (8:2) as an eluent. However, upon mixing DNA with compounds with which it binds (e.g., ethidium bromide), it forms a complex that remains at the baseline utilizing the same eluent. On contrary, compounds with no affinity to DNA did not cause the DNA to be remained at the baseline [44]. Results from DNA-binding assay of benzimidazoles **3a**, **3c**, **3f**, **3i-k**, **3m**, **3n** and **3p** are illustrated in Table 8 and revealed that **3c**, **3f**, **3i**, **3k** and **3n** have strong DNA-binding affinity. On the other hand, compounds **3a**, **3j** and **3p** displayed moderate affinity, whereas the complexes were migrated for short distances. Guided by these results, most of the tested active analogs have either strong or moderate DNA-binding affinity, and therefore they are predicted to exert their biological activity through interaction with DNA.

3. Computational tools

In silico techniques are utilized for studying the substantial parameters that assist medicinal chemists in estimating the physicochemical properties of a compound. The principal goal of *in silico* studies is to overcome the dispensable costs associated with biological screening of the compounds [45].

Lipophilicity and solubility are amongst the properties of drugs that influence their absorption. Thus, the new analogs **3a-p** were studied for the anticipation of Lipinski's rule [46] and other properties [47]. Results of computational studies are provided in the supplementary data.

4. Conclusion

In conclusion, an interesting series of benzimidazole derivatives **3a-p** bearing substituted aminomethyl, substituted pyrazol-1-yl methyl, and substituted piperazin-1-yl methyl groups at the 2-position of benzimidazole nucleus was prepared. Antimicrobial evaluation indicated different pharmacological profiles of these new compounds, the benzimidazoles 3c and 3n displayed promising efficacy toward S. aureus. Furthermore, compound 3c showed good antifungal efficacy toward C. albicans, whereas 3i demonstrated wonderful activity against B. cereus. Switching to the antitumor evaluation, SAR studies demonstrated the significance of the spacer length between the benzimidazole nucleus and the aryl moiety for the antitumor activity, whereas compound **3p** that possesses five atoms spacer exhibited the highest potency against all tested cell lines. Moreover, benzimidazoles 3f, 3m and 3n displayed promising activity toward all tested cell lines. In vivo antitumor evaluation showed that **3f** and **3p** have the highest activity. Cytotoxicity testing against W138 human normal cell line proved that the active antitumor analogs, 3f, 3m, 3n and 3p are less cytotoxic than 5-fluorouracil. Taken together, **3f** and **3p** have the highest *in vitro* and *in vivo* antitumor activities as well as the least cytotoxic activity. Results of DNA-binding assay confirmed that the active antimicrobial and/or antitumor compounds, 3c, 3f, 3i, 3j, 3k, 3n and 3p are thought to exert their biological activities through interaction with DNA. Referring to the computational studies, almost all the benzimidazoles prepared in the current work are foreseen to have good absorption and oral bioavailability. Inspired by these auspicious results, the active compounds, particularly 3c, 3f, 3i, 3n and 3p will be further examined against a variety of microbial strains and cancer cell lines to explore their broad spectrum antimicrobial and/or antitumor activities. In addition, these active compounds may serve as promising candidates for future design, modification, and investigation to obtain new potent antimicrobial and/or antitumor analogs.

5. Experimental

Fisher-Johns melting point apparatus was used for determining melting points °C. The IR spectra (KBr disc) were obtained on a Unicam SP 1000 IR spectrometer (v in cm⁻¹). Varian Gemini 300 MHz spectrometer was utilized for recording ¹H & ¹³C NMR spectra using DMSO- d_6 as solvent and TMS as internal standard. Mass spectra were recorded on JEOL JMS-600H spectrometer (70 eV). The new analogs were analyzed for C, H & N and agreed with the suggested structures, Microanalytical Center, Cairo University, Egypt. TLC plates precoated with silica gel 60 F₂₅₄ (E. Merck) were employed for controlling the progress of reactions, and UV (366 nm) was utilized for visualization of the spots. Chloroform/methanol (9:1) was utilized as an eluent. Benzimidazoles **2a,b** [13], ethyl 2-amino-5,6,7,8-tetrahydro-4*H*-cyclohepta[*b*]thiophene-3-carboxylate [29] and 2-methyl-1*H*-pyrazol-5(4*H*)-one [30] were synthesized following the literature procedures. *S. aureus, B. cereus, E. coli* and *C. albicans* were acquired from the Department of Microbiology, Faculty of Pharmacy, Mansoura University, Egypt. *A.*

fumigatus 293 was supplied by Prof. Nancy Keller, Department of Medical Microbiology and Immunology, Wisconsin-Madison University, USA. *C. violaceum* ATCC 12472 was provided by Prof. Bob Mclean, Department of Biology, Texas State University, USA. The cell lines and EAC cells were procured from NCI, Cairo, Egypt.

5.1. Chemistry

5.1.1. Preparation of 2-(arylamino)methyl-5-(un)substituted-1H-benzimidazoles 3a-m, 1-((un)substituted-1H-benzimidazol-2-yl)methyl-3-methyl-1H-pyrazol-5(4H)-ones 3n, o and 2-((2-(4-fluorophenyl)piperazin-1-yl)methyl)-5-nitro-1H-benzimidazole (3p)

A mixture of 2-chloromethyl-1*H*-benzimidazole derivative **2a,b** (0.002 mol), the appropriate arylamine, ethyl 2-amino-5,6,7,8-tetrahydro-4*H*-cyclohepta[*b*]thiophene-3-carboxylate, 2-methyl-1*H*-pyrazol-5(4*H*)-one or 1-(4-fluorophenyl)piperazine (0.002 mol) and triethylamine (0.3 mL) in DMF (10 mL) was refluxed for 6-12 hours. The mixture was poured onto ice and the precipitate formed was filtered, dried and crystallized from ethanol/water (2:1).

5.1.1.1. 2-[((5-Sulfamoyl-[1,3,4]thiadiazol-2-yl)amino)methyl]-1H-benzimidazole (**3a**) 65%, m.p. 173-175 °C. IR (KBr, ν, cm⁻¹): 3446, 3422 (NH₂, 2NH). ¹H NMR (DMSO- d_6 , δ ppm): 4.38 (s, 2H, CH₂), 7.14 (s, 3H, NH₂, NH), 7.22-7.60 (m, 2H, Ar-H), 7.67-7.91 (m, 2H, Ar-H), 15.05 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 46.7, 120.2, 124.0, 139.2, 140.2, 155.6, 168.0. MS m/z (%): 312 (4.81, M⁺+2), 311 (3.46, M⁺+1), 310 (5.26, M⁺), 63 (100.00). Anal. Calcd for C₁₀H₁₀N₆O₂S₂ (310.36): C, 38.70; H, 3.25; N, 27.08%. Found: C, 38.42; H, 3.16; N, 27.32%.

5.1.1.2. 5-Nitro-2-[((5-sulfamoyl-[1,3,4]thiadiazol-2-yl)amino)methyl]-1H-benzimidazole (3b)

70%, m.p. 147-148 °C. IR (KBr, v, cm⁻¹): 3383, 3102 (NH₂, 2NH). ¹H NMR (DMSO- d_6 , δ ppm): 4.32 (s, 2H, CH₂), 7.20 (d, 1H, Ar-H), 7.50 (d, 1H, Ar-H), 7.75 (s, 1H, Ar-H), 8.15 (s, 2H, NH₂), 11.25 (s, 1H, NH), 12.70 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 43.4, 111.8, 115.3, 118.7, 139.3, 139.5, 143.4, 152.7, 156.0, 172.9. MS m/z (%): 357 (3.09, M⁺+2), 356 (1.99, M⁺+1), 355 (10.60, M⁺), 193 (100.00). Anal. Calcd for C₁₀H₉N₇O₄S₂ (355.35): C, 33.80; H, 2.55; N, 27.59%. Found: C, 33.71; H, 2.79; N, 27.26%.

5.1.1.3. 2-[((6-Fluorobenzothiazol-2-yl)amino)methyl]-1H-benzimidazole (3c)

60%, m.p. 197-198 °C. IR (KBr, *v*, cm⁻¹): 3420 (2NH). ¹H NMR (DMSO-*d*₆, δ ppm): 4.32 (s, 2H, CH₂), 7.02-7.13 (m, 2H, Ar-H), 7.29-7.39 (m, 5H, Ar-H), 8.51 (s, 1H, NH), 9.59 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆, δ ppm): 46.0, 111.6, 111.9, 116.8, 118.7, 120.6, 128.2, 136.4, 138.2, 148.4, 148.8, 160.7, 169.6. MS *m*/*z* (%): 298 (0.87, M⁺), 297 (0.36, M⁺-1), 91 (100.00). Anal. Calcd for C₁₅H₁₁FN₄S (298.34): C, 60.39; H, 3.72; N, 18.78%. Found: C, 60.11; H, 3.95; N, 18.43%.

5.1.1.4. 2-[((6-Fluorobenzothiazol-2-yl)amino)methyl]-5-nitro-1H-benzimidazole (**3d**) 68%, m.p. 121-122 °C. IR (KBr, v, cm⁻¹): 3448 (2NH). ¹H NMR (DMSO- d_6 , δ ppm): 4.78 (s, 2H, CH₂), 7.01-8.52 (m, 7H, Ar-H, NH), 12.36 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 45.5, 113.4, 116.6, 118.3, 121.4, 123.4, 128.7, 129.0, 129.3, 139.3, 139.8, 151.4, 164.4, 165.5, 165.6. MS m/z (%): 345 (0.6, M⁺+2), 344 (1.05, M⁺+1), 343 (3.07, M⁺), 216 (100.00). Anal. Calcd for C₁₅H₁₀FN₅O₂S (343.34): C, 52.47; H, 2.94; N, 20.40%. Found: C, 52.74; H, 2.62; N, 20.73%.

5.1.1.5. 5-Nitro-2-[((4-phenylthiazol-2-yl)amino)methyl]-1H-benzimidazole (3e)

65%, 106-107 °C. IR (KBr, *v*, cm⁻¹): 3420 (2NH). ¹H NMR (DMSO-*d*₆, δ ppm): 4.35 (s, 2H, CH₂), 6.61 (s, 1H, C₄-H of thiazole), 7.10-7.38 (m, 5H, Ar-H), 7.45-7.68 (m, 3H, Ar-H), 8.85 (s, 1H, NH), 9.75 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆, δ ppm): 46.7, 110.4, 115.6, 118.6, 120.1, 128.9, 129.0, 129.2, 130.7, 137.9, 139.3, 140.1, 148.5, 151.6, 153.4. MS *m*/*z* (%): 352 (10.61, M⁺+1), 351 (18.54, M⁺), 55 (100.00). Anal. Calcd for C₁₇H₁₃N₅O₂S (351.38): C, 58.11; H, 3.73; N, 19.93%. Found: C, 58.36; H, 3.98; N, 20.21%.

5.1.1.6. 2-((1H-Benzimidazol-2-yl)methylamino)isoindoline-1,3-dione (3f)

70%, m.p. 185-186 °C. IR (KBr, v, cm⁻¹): 3398, 3301 (2NH), 1652 (2C=O). ¹H NMR (DMSO- d_6 , δ ppm): 3.98 (s, 2H, CH₂), 7.19-7.67 (m, 8H, Ar-H), 8.86 (s, 1H, NH), 13.00 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 47.9, 114.4, 119.4, 122.7, 130.9, 133.3, 138.8, 142.1, 166.5. MS m/z (%): 294 (37.79, M⁺+2), 293 (6.50, M⁺+1), 263 (100.00). Anal. Calcd for C₁₆H₁₂N₄O₂ (292.29): C, 65.75; H, 4.14; N, 19.17%. Found: C, 65.47; H, 4.46; N, 19.38%.

5.1.1.7. 1-((1H-Benzimidazol-2-yl)methyl)-2-(2,3-dihydro-7-methoxynaphthalen-4(1H)ylidene)hydrazine (**3g**)

55%, m.p. 182-183 °C. IR (KBr, *v*, cm⁻¹): 3421 (2NH). ¹H NMR (DMSO-*d*₆, δ ppm): 1.28-1.35 (m, 2H, CH₂), 1.57 (t, 2H, CH₂), 1.81 (t, 2H, CH₂), 3.96 (s, 3H, OCH₃), 4.52 (s, 2H, CH₂), 6.82-7.08 (m, 3H, Ar-H), 7.14-7.28 (m, 2H, Ar-H), 7.38-7.52 (m, 2H, Ar-H), 7.68 (s, 1H, NH), 11.45 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆, δ ppm): 26.0, 26.1, 31.7, 51.5, 52.2, 114.5, 116.8, 120.6, 123.7, 124.2, 126.0, 131.7, 139.8, 143.2, 147.1, 164.6. MS *m*/*z* (%): 321 (6.67, M⁺+1), 320 (65.00, M⁺), 64 (100.00). Anal. Calcd for C₁₉H₂₀N₄O (320.39): C, 71.23; H, 6.29; N, 17.49%. Found: C, 71.56; H, 6.52; N, 17.13%.

5.1.1.8. 2-(2,3-Dihydro-7-methoxynaphthalen-4(1H)-ylidene)-1-((5-nitro-1H-benzimidazol-2-yl)methyl)hydrazine (**3h**)

62%, m.p. 142-143 °C. IR (KBr, v, cm⁻¹): 3419 (2NH). ¹H NMR (DMSO- d_6 , δ ppm): 1.65-2.16 (m, 6H, 3CH₂), 3.79 (s, 3H, OCH₃), 4.35 (s, 2H, CH₂), 6.74-6.90 (m, 2H, Ar-H), 7.08-7.35 (m, 2H, Ar-H), 7.52-7.70 (m, 2H, Ar-H), 8.61 (s, 1H, NH), 9.78 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 22.4, 22.8, 32.2, 46.0, 56.0, 106.7, 111.6, 111.9, 116.8, 117.4, 120.7, 130.4, 136.4, 138.2, 146.0, 150.1, 153.2, 154.6, 168.9. MS m/z (%): 366 (1.83, M⁺+1), 365 (2.75, M⁺), 64 (100.00). Anal. Calcd for C₁₉H₁₉N₅O₃ (365.39): C, 62.46; H, 5.24; N, 19.17%. Found: C, 62.71; H, 5.43; N, 18.89%.

5.1.1.9. 5-Amino-N-((1H-benzimidazol-2-yl)methyl)-6-nitroquinoline (3i)

85%, m.p. 214-215 °C. ¹H NMR (DMSO-*d*₆, δ ppm): 3.66 (s, 2H, CH₂), 6.92-7.05 (m, 2H, Ar-H), 7.26-7.51 (m, 3H, Ar-H), 7.60-7.72 (m, 2H, Ar-H), 8.05-8.20 (m, 2H, Ar-H), 8.82 (s, 1H, NH), 11.20 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆, δ ppm): 43.9, 117.3, 119.6, 121.5, 125.4, 125.7, 133.6, 135.7, 138.6, 138.8, 141.1, 146.4, 151.6, 153.9. MS *m*/*z* (%): 321 (60.19, M⁺+2), 320 (63.11, M⁺+1), 319 (79.61, M⁺), 55 (100.00). Anal. Calcd for C₁₇H₁₃N₅O₂ (319.32): C, 63.94; H, 4.10; N, 21.93%. Found: C, 63.67; H, 3.79; N, 21.67%.

5.1.1.10. 5-Amino-N-((5-nitro-1H-benzimidazol-2-yl)methyl)-6-nitroquinoline (3j)

80%, m.p. 229-230 °C. ¹H NMR (DMSO- d_6 , δ ppm): 4.11 (s, 2H, CH₂), 7.15 (d, 1H, Ar-H), 7.55 (d, 1H, Ar-H), 8.22 (d, 1H, Ar-H), 8.46 (s, 1H, Ar-H), 8.68-8.80 (m, 2H, Ar-H), 8.95-9.05 (m, 2H, Ar-H), 10.74 (s, 1H, NH), 13.05 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 49.1, 108.5, 114.3, 118.8, 120.5, 123.0, 127.9, 128.9, 134.1, 137.6, 145.8, 146.0, 154.2, 156.8, 156.9, 160.2, 163.0. MS m/z (%): 365 (9.68, M⁺+1), 364 (14.71, M⁺), 55 (100.00). Anal. Calcd for C₁₇H₁₂N₆O₄ (364.32): C, 56.05; H, 3.32; N, 23.07%. Found: C, 56.39; H, 3.56; N, 22.77%.

5.1.1.11. 4-((1H-Benzimidazol-2-yl)methylamino)-1,2-dihydro-2,3-dimethyl-1phenylpyrazol-5-one (**3k**)

55%, m.p. 210-212 °C. IR (KBr, v, cm⁻¹): 3422 (2NH), 1649 (C=O). ¹H NMR (DMSOd₆, δ ppm): 1.76 (s, 3H, CH₃), 2.48 (s, 3H, NCH₃), 4.08 (s, 2H, CH₂), 7.00-7.18 (m, 2H, Ar-H), 7.25-7.58 (m, 3H, Ar-H), 7.62-7.96 (m, 4H, Ar-H), 8.10 (s, 1H, NH), 8.70 (s, 1H, NH). ¹³C NMR (DMSO-d₆, δ ppm): 12.6, 37.0, 48.9, 111.1, 112.5, 113.3, 120.5, 121.7, 128.5, 132.0, 133.6, 144.1, 145.6, 166.1. MS m/z (%): 335 (4.95, M⁺+2), 334 (4.91, M⁺+1), 333 (6.78, M⁺), 291 (100.00). Anal. Calcd for C₁₉H₁₉N₅O (333.39): C, 68.45; H, 5.74; N, 21.01%. Found: C, 68.61; H, 5.51; N, 21.33%.

5.1.1.12. 1,2-Dihydro-2,3-dimethyl-4-((5-nitro-1H-benzimidazol-2-yl)methylamino)-1-phenylpyrazol-5-one (**3l**)

60%, m.p. 220-222 °C. IR (KBr, v, cm⁻¹): 3446, 3420 (2NH), 1680 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 1.65 (s, 3H, CH₃), 2.74 (s, 3H, NCH₃), 4.32 (s, 2H, CH₂), 7.13-7.65 (m, 8H, Ar-H), 8.51 (s, 1H, NH), 9.56 (s, 1H, NH). MS m/z (%): 380 (19.39, M⁺+2), 379 (23.81, M⁺+1), 69 (100.00). Anal. Calcd for C₁₉H₁₈N₆O₃ (378.38): C, 60.31; H, 4.79; N, 22.21%. Found: C, 60.11; H, 4.63; N, 22.57%.

5.1.1.13. Ethyl 2-[((1H-benzimidazol-2-yl)methyl)amino]-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylate (**3m**)

60%, m.p. 75-76 °C. IR (KBr, v, cm⁻¹): 3420 (2NH), 1742 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 1.30 (t, 3H, CH₂CH₃), 1.55-1.75 (m, 6H, 3CH₂), 2.55-2.90 (m, 4H, 2CH₂), 3.80 (s, 2H, CH₂), 4.25-4.29 (q, 2H, CH₂CH₃), 7.05-7.21 (m, 2H, Ar-H), 7.36-7.58 (m, 2H, Ar-H), 7.69 (s, 1H, NH), 10.65 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 14.6, 25.8, 26.9, 27.9, 30.5, 32.1, 40.4, 61.1, 112.4, 113.6, 127.3, 128.2, 137.8, 139.5, 140.8, 152.1, 163.3. MS m/z (%): 370 (48.57, M⁺+1), 369 (38.57, M⁺), 80 (100.00). Anal. Calcd for C₂₀H₂₃N₃O₂S (369.48): C, 65.02; H, 6.27; N, 11.37%. Found: C, 65.36; H, 5.91; N, 11.53%.

5.1.1.14. 1-((1H-Benzimidazol-2-yl)methyl)-3-methyl-1H-pyrazol-5(4H)-one (*3n*)

50%, m.p. 191-192 °C. IR (KBr, v, cm⁻¹): 3308 (NH), 1657 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 1.56 (s, 3H, CH₃), 2.31 (s, 2H, C₄-H of pyrazolone), 4.25 (s, 2H, CH₂), 7.29-7.39 (m, 4H, Ar-H), 9.25 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 20.9, 37.2, 50.8, 114.5, 120.7, 139.8, 147.1, 164.6, 195.6. MS m/z (%): 229 (70.76, M⁺+1), 91 (100.00). Anal. Calcd for C₁₂H₁₂N₄O (228.25): C, 63.15; H, 5.30; N, 24.55%. Found: C, 63.41; H, 5.63; N, 24.76%.

5.1.1.15. 3-Methyl-1-((5-nitro-1H-benzimidazol-2-yl)methyl)-1H-pyrazol-5(4H)-one (**3o**) 65%, m.p. 189-190 °C. IR (KBr, v, cm⁻¹): 3412 (NH), 1622 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 1.35 (s, 3H, CH₃), 2.15 (s, 2H, C₄-H of pyrazolone), 4.45 (s, 2H, CH₂), 7.39 (d, 1H, Ar-H), 7.70 (d, 1H, Ar-H), 8.10 (s, 1H, Ar-H), 11.15 (s, 1H, NH). ¹³C NMR (DMSO-

 d_6 , δ ppm): 22.5, 43.3, 56.0, 119.0, 121.0, 124.9, 140.3, 149.9, 152.1, 159.0, 167.6, 176.4. Anal. Calcd for C₁₂H₁₁N₅O₃ (273.25): C, 52.75; H, 4.06; N, 25.63%. Found: C, 52.42; H, 4.38; N, 25.27%.

5.1.1.16. 2-((4-(4-Fluorophenyl)piperazin-1-yl)methyl)-5-nitro-1H-benzimidazole (**3p**) 75%, m.p. 217-219 °C. IR (KBr, v, cm⁻¹): 3421 (NH). ¹H NMR (DMSO- d_6 , δ ppm): 2.66 (s, 4H, 2CH₂), 3.18 (s, 4H, 2CH₂), 3.75 (s, 2H, CH₂), 6.92 (d, 2H, Ar-H), 7.38 (d, 2H, Ar-H), 7.62-7.72 (m, 3H, Ar-H), 10.04 (s, 1H, NH). MS m/z (%): 357 (0.48, M⁺+2), 356 (0.68, M⁺+1), 355 (1.69, M⁺), 93 (100.00). Anal. Calcd for C₁₈H₁₈FN₅O₂ (355.37): C, 60.84; H, 5.11; N, 19.71%. Found: C, 60.53; H, 5.36; N, 19.46%.

5.2. Biology

5.2.1. Antimicrobial and antiquorum-sensing screening

5.2.1.1. Antibacterial screening

The new derivatives were assessed for *in vitro* antibacterial efficacy as reported [25,26,31].

5.2.1.2. Antifungal screening

The new analogs were examined for *in vitro* antifungal activity following the literature procedure [25,26,32,33].

5.2.1.3. Antiquorum-sensing screening

Antiquorum-sensing efficacy of the new compounds was esteemed employing the literature method [25,26,34].

5.2.2. In vitro antitumor screening

In vitro antitumor screening of the new derivatives was done adopting the reported method [37-39].

5.2.3. In vivo antitumor assay

The detailed procedure of *in vivo* antitumor assay is provided in the supplementary data.

5.2.4. In vitro cytotoxicity testing

In vitro cytotoxicity testing of **3f**, **3m**, **3n** and **3p** was performed adopting the MTT assay [37-39].

5.2.5. DNA-binding assay on TLC-plates

DNA-binding assay was performed adopting the literature procedure [43].

Acknowledgments

Great appreciation to Mr. Ahmed Abbas, Faculty of Pharmacy, Mansoura University, Egypt, for assessment of antitumor and cytotoxic activities.

References

B. Walker, S. Barrett, S. Polasky, V. Galaz, C. Folke, G. Engström, F. Ackerman, K. Arrow, S. Carpenter, K. Chopra, G. Daily, P. Ehrlich, T. Hughes, N. Kautsky, S. Levin, K. G. Mäler, J. Shogren, J. Vincent, T. Xepapadeas, A. de Zeeuw A, Environment. Looming global-scale failures and missing institutions. Science 325 (2009) 1345-1346.

[2] R. M. Klevens, M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati, J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, S. K. Fridkin, Invasive methicillin-resistant *Staphylococcus aureus* infections in the United States. JAMA 298 (2007) 1763-1771.

[3] M.B. Miller, B.L. Bassler, Quorum sensing in bacteria. Annu. Rev. Microbiol. 55 (2001) 165-199.

[4] L. Cegelski, G.R. Marshall, G.R. Eldridge, S.J. Hultgren, The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6 (2008) 17-27.

[5] T. B. Rasmussen, M. Givskov, Quorum sensing inhibitors: a bargain of effects. Microbiology 152 (2006) 895-904.

[6] A. Jemal, M. M. Center, C. DeSantis, E. M. Ward, Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomarkers Prev. 19 (2010) 1893-1907.

[7] C. M. Bagi, Summary-cancer cell metastasis session. J. Musculoskel. Neuron Interact. 2 (2002) 579-580.

[8] C.M. Mahalakshmi, V. Chidambaranathan, Synthesis, spectral characterization and antimicrobial studies of novel benzimidazole derivatives. Int. J. Chem. Sci. 13 (2015), 205-212.

[9] P.M. Madalageri, O. Kotresh, Synthesis, DNA protection and antimicrobial activity of some novel chloromethyl benzimidazole derivatives bearing dithiocarbamates. J. Chem. Pharm. Res. 4 (2012) 2697-2703.

[10] S. Lingala, R. Nerella, K.R.S.S. Rao, Synthesis, antimicrobial and anthelmintic activity of some novel benzimidazole derivatives. Int. J. Pharm. Sci. Rev. Res. 10 (2011) 100-105.

[11] B.N.B. Vaidehi, K.G. Deepika, R.V. Satya, R.R. Bangaramma, R.H. Kumar, Y.R. Sudha, T.R. Kumar, Synthesis, characterization and antibacterial activity of 2-substituted benzimidazole derivatives. Int. J. Res. Pharm. Chem. 2 (2012) 322-326.

[12] J. Gowda, A. M. A. Khader, B. Kalluraya, S. Hidayathulla, Synthesis, characterization and antibacterial activity of benzimidazole derivatives carrying quinoline moiety. Indian J. Chem. 50B (2011) 1491-1495.

[13] K. Petkar, P. Parekh, P. Mehta, A. Kumari, A. Baro, Synthesis & evaluation of 2-chloromethyl-1*H*-benzimidazole derivatives as antifungal agents. Int. J. Pharm. Pharm. Sci. 5 (2013) 115-119.

[14] H.M.F. Madkour, A.A. Farag, S.S. Ramses, N.A.A. Ibrahiem, Synthesis and fungicidal activity of new imidazoles from 2-(chloromethyl)-1*H*-benzimidazole. Phosphorus Sulfur Silicon Relat. Elem. 181 (2006) 255-265.

[15] H.M.F. Madkour, A.A. Farag, S.S. Ramses, N.A.A. Ibrahiem, Synthesis and fungicidal activity of some new imidazoles from 2-(chloromethyl)-1*H*-benzimidazole. Egyptian Journal of Chemistry 49 (1) (2006) 35-45.

[16] N.S. Nara, H.K. Mukoh, M.A. Ikeda, 2-(4-Pyridylaminomethyl)benzimidazole derivatives having antiviral activity. US patent, 4,818,761, Apr. 4 (1989).

[17] C.K. Achar, K.M. Hosamani, H.R. Seetharamareddy, *In-vivo* analgesic and antiinflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem. 45 (2010) 2048-2054.

[18] A. Rathore, M.-Ur-Rahman, A. A. Siddiqui, A. Ali, M. S. Yar, Synthesis and evaluation of benzimidazole derivatives as selective COX-2 inhibitors. Med. Chem. 11 (2015) 188-199.

[19] S. M. Abu-Bakr, N. M. Fawzy, M. Bekheit, H. M. Roaiah, M. S. Aly, Synthesis of novel benzimidazole derivatives with expected antitumor activities. Int. J. Pharm. Sci. Rev. Res. 35 (2015) 202-212.

[20] M. Rashid, A. Husain, R. Mishra, S. Karim, S. Khan, M. Ahmad, N. Al-wabel, A. Husain, A. Ahmad, S. A. Khan, Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolo-thiadiazines as a source of new anticancer agents. Arab. J. Chem. (2015), doi:10.1016/j.arabjc.2015.08.019.

[21] R.M. Mamedov, A. Ya. Malkina, B.P. Fedorov, Fungicidal activity of some *S*-substituted 2-(mercaptomethyl)benzimidazoles. Azerb. Khim. Zh. 3 (1965) 61-63.

[22] M. Samudrala, L. Thallada, P. K. Thallada, P. C. Veerati, Synthesis and antiinflammatory activity of 2-[(1*H*-benzimidazol-2-ylmethyl)sulfanyl]-*N*-(phenylmethylidine)acetohydrazide derivatives. Int. J. Res. Pharm. Chem. 1 (2011) 148-155.

[23] N. S. El-Gohary, M. I. Shaaban, Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of fused [1,3,4]thiadiazoles. Eur. J. Med. Chem. 63 (2013) 185-195.

[24] N. S. El-Gohary, M. I. Shaaban, Antimicrobial and antiquorum-sensing studies. Part 2: Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of fused [1,3,4]thiadiazole and [1,3]benzothiazole derivatives. Med. Chem. Res. 23 (2014) 287-299.

[25] N. S. El-Gohary, M. I. Shaaban, Antimicrobial and antiquorum-sensing studies. Part 3: Synthesis and biological evaluation of new series of [1,3,4]thiadiazole and fused [1,3,4]thiadiazole derivatives. Arch. Pharm. Chem. Life Sci. 348 (2015) 283-297.

[26] N. S. El-Gohary, M. I. Shaaban, Synthesis, antimicrobial, antiquorum-sensing, and cytotoxic activities of new series of isoindoline-1,3-dione, pyrazolo[5,1-*a*]isoindole and pyridine derivatives. Arch. Pharm. Chem. Life Sci. 348 (2015) 666-680.

[27] M. T. Gabr, N. S. El-Gohary, E. R. El-Bendary, M. M. El-Kerdawy, N. Ni, M. I. Shaaban, Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of benzothiazole derivatives. Chin. Chem. Lett. 26 (2015) 1522-1528.

[28] A. Tiwari, A. Singh, V. Tiwari, Synthesis of aniline substituted benzimidazole derivatives. Asian J. Chem. 23 (2011) 2823-2824.

[29] M. Perrissin, L. Duc, G. Narcisse, F. Bakri-Logeais, F. Huguet, 4,5,6,7-Tetrahydrobenzo[*b*] and 5,6,7,8-tetrahydro-4*H*-cyclohepta[*b*]thiophenes. Eur. J. Med. Chem. 15 (1980) 413-418.

[30] C. Sharma, B. Thadhaney, G. Pemawat, G. L. Talesara, Synthesis of some novel ethoxyphthalimide derivatives of pyrazolo[3,4-*c*]pyrazoles. Indian J. Chem. 47B (2008) 1892-1897.

[31] Clinical Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2015) M100-S25.

[32] Clinical Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2008) M27-A3.

[33] Clinical Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Edition. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2008) M38-A2,

[34] K. H. McClean, M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. Stewart, P. Williams, Quorum sensing and *Chromobacterium violaceum*: exploitation of violacein production and inhibition for the detection of *N*-acyl homoserine lactones. Microbiology 143 (1997) 3703-3711.

[35] R. McClean, L. S. Pierson, C. Fuqua, A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 58 (2004) 351-360.

[36] W. Cha, D. A. Vattem, V. Maitin, M. B. Barnes, R. J. Mclean, Bioassays of quorum sensing compounds using *Agrobacterium tumefaciens* and *Chromobacterium violaceum*. Methods Mol. Biol. 692 (2011) 3-19.

[37] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55-63.

[38] F. Denizot, R. Lang, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89 (1986) 271-277.

[39] D. Gerlier, T. Thomasset, Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods 94 (1986) 57-63.

[40] C. Oberling, M. Guerin, The role of viruses in the production of cancer. Adv. Cancer Res. 2 (1954) 353-423.

[41] K. R. Sheeja, G. Kuttan, R. Kuttan, Cytotoxic and antitumour activity of Berberine. Amala Res. Bull. 17 (1997) 73-76.

[42] B. D. Clarkson, J. H. Burchenal, Preliminary screening of antineoplastic drugs. Prog. Clin. Cancer 1 (1965) 625-629.

[43] J. M. Pezzuto, S. K. Antosiak, W. M. Messmer, M. B. Slaytor, G. R. Honig, Interaction of the antileukemic alkaloid, 2-hydroxy-3,8,9-trimethoxy-5methylbenzo[c]phenanthridine (fagaronine), with nucleic acids. Chem. Biol. Interact. 43 (1983) 323-339.

[44] J. M. Pezzuto, C. T. Che, D. D. McPherson, J. P. Zhu, G. Topcu, C. A. J. Erdelmeier, G. A. Cordell, DNA as affinity probe useful in the detection and isolation of biologically active natural products. J. Nat. Prod. 54 (1991) 1522-1530.

[45] R. U. Kadan, N. Roy, Recent trends in drug likeness prediction: a comprehensive review of *in silico* methods. Ind. J. Pharm. Sci. 69 (2007) 609-615.

[46] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (2001) 3-26.

[47] A. Jarrahpour, J. Fathi, M. Mimouni, T. Ben Hadda, J. Sheikh, Z. H. Chohan, A. Parvez, Petra, Osiris and molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res. 19 (2011) 1-7.

Captions of Tables and Scheme

Table 1. Antibacterial and antifungal activities of compounds 3a-p

Table 2. Antiquorum-sensing activity of compounds 3a-p

Table 3. *In vitro* antitumor activity of compounds **3a-p** toward HepG2, HCT-116 and MCF-7 cancer cell lines

Table 4. Effect of compounds **3f**, **3m**, **3n** and **3p** on mean survival time and % increasein lifespan of mice inoculated with EAC cells

Table 5. Effect of compounds **3f**, **3m**, **3n** and **3p** on tumor volume and viable tumor cellcount of mice inoculated with EAC cells

 Table 6. Effect of compounds 3f, 3m, 3n and 3p on blood profile of mice inoculated with EAC cells

 Table 7. In vitro cytotoxic activity of compounds 3f, 3m, 3n and 3p toward W138 human normal cell line

Table 8. DNA-binding affinity of compounds 3a, 3c, 3f, 3i-k, 3m, 3n and 3p

Scheme 1. Synthesis of compounds 3a-p

Comp. No.	MIC, μg/mL <mark>(mM)</mark> ^a				
	E. coli	B. cereus	S. aureus	C. albicans	A. fumigatus
3 a	625 <mark>(2.01)</mark>	-	625 <mark>(2.01)</mark>	312.5 <mark>(1.007)</mark>	-
3 b	-	-		625 <mark>(1.76)</mark>	-
3c	-	-	156.25 <mark>(0.524)</mark>	78.125 <mark>(0.262)</mark>	1250 <mark>(4.19)</mark>
3d	-	-	-	625 <mark>(1.82)</mark>	1250 <mark>(3.64)</mark>
3e	-	-	-	625 <mark>(1.78)</mark>	1250 <mark>(3.56)</mark>
3f	-	-	-	625 <mark>(2.14)</mark>	1250 <mark>(4.28)</mark>
3g	-	-	1250 <mark>(3.90)</mark>	1250 <mark>(3.90)</mark>	-
3h	-	-	-	1250 <mark>(3.42)</mark>	2500 <mark>(6.84)</mark>
3i	625 <mark>(1.96)</mark>	156.25 <mark>(0.489)</mark>	1250 <mark>(3.91)</mark>	1250 <mark>(3.91)</mark>	1250 <mark>(3.91)</mark>
3ј	1250 <mark>(3.43)</mark>	312.5 <mark>(0.858)</mark>	2500 <mark>(6.86)</mark>	2500 <mark>(6.86)</mark>	2500 <mark>(6.86)</mark>
3k	2500 <mark>(7.50)</mark>	1250 <mark>(3.75)</mark>	312.5 <mark>(0.937)</mark>	625 <mark>(1.87)</mark>	625 <mark>(1.87)</mark>
31	2500 <mark>(6.60)</mark>	1250 <mark>(3.30)</mark>	625 <mark>(1.65)</mark>	2500 <mark>(6.60)</mark>	2500 <mark>(6.60)</mark>
3m	-	-	-		-
3n	-	1250 <mark>(5.48)</mark>	156.25 <mark>(0.684)</mark>	625 <mark>(2.74)</mark>	312.5 <mark>(1.37)</mark>
30	-	1250 <mark>(4.57)</mark>	2500 <mark>(9.15)</mark>	1250 <mark>(4.57)</mark>	625 <mark>(2.29)</mark>
3p	2500 <mark>(7.03)</mark>	2500 <mark>(7.03)</mark>	1250 <mark>(3.52)</mark>	2500 <mark>(7.03)</mark>	2500 <mark>(7.03)</mark>
Ampicillin	19.53 <mark>(0.056)</mark>	1250 <mark>(3.58)</mark>	312.5 <mark>(0.894)</mark>	nt	nt
Fluconazole	nt	nt	nt	2500 <mark>(8.16)</mark>	-

Table 1. Antibacterial and antifungal activities of compounds 3a-p

Bold values refer to the best results. MICs (mM) are shown between parentheses. ^a -, MIC > $2500 \mu g/mL$.

nt, not tested.

Comp. No.	Diameter of pigment inhibition (mm)	Comp. No.	Diameter of pigment inhibition (mm)
-	Ch. violaceum	_	Ch. violaceum
3a	-	3ј	4
3b	-	3k	6
3c	11	31	-
3d	6	3m	3
3e	6	3n	4
3f	4	30	3
3g	-	3р	-
3h	-	Catechin	2
3i	8		

Table 2. Antiquorum-sensing activity of compounds $3a-p^{a,b,c}$

^a Sample concentration: 5000 μg/mL, Sample volume: 0.1 mL/well.
 ^b Results were calculated after subtraction of DMSO activity.
 ^c No activity (-, inhibition zone < 2 mm); weak activity (2-9 mm); moderate activity (10-15 mm); strong activity (>15 mm).

- 19 -

Comp. No.		IC ₅₀ (<mark>mM</mark>)	
	HepG2	HCT-116	MCF-7
3a	0.162	0.156	0.228
3 b	0.184	0.176	0.230
3c	0.233	0.238	0.242
3d	0.263	0.253	0.291
3e	0.226	0.198	0.254
3f	0.032	0.031	0.037
3g	0.08	0.041	0.063
3h	0.096	0.045	0.078
3i	0.259	0.204	0.237
3ј	0.265	0.256	0.274
3k	0.063	0.038	0.053
31	0.093	0.044	0.078
3m	0.043	0.031	0.04
3n	0.054	0.042	0.062
30	0.265	0.20	0.281
3p	0.022	0.014	0.015
5-Fluorouracil	0.061	0.041	0.0415

en er

Table 3. In vitro antitumor	activity of compoun	ils 3a-p toward He	epG2, HCT-116 and
MCF-7 cancer cell lines			

Bold values refer to the best results.

Group	Mean survival time (day)	% Increase in lifespar
Normal	nd ^a	nd ^a
EAC cells only	14.5	nd ^a
5-Fluorouracil	49	237.93
3f	46.7	222.07
3m	39	168.9
3n	31.5	110.34
3n	44.5	206.98

Table 4. Effect of compounds **3f**, **3m**, **3n** and **3p** on mean survival time and % increase in lifespan of mice inoculated with EAC cells

Group	Tumor volume (mL)	Viable tumor cell count/100 µL
Normal	nd ^a	nd ^a
EAC cells only	9.85	$83.20 \text{ x} 10^6$
5-Fluorouracil	1.60	$20.17 \text{ x} 10^6$
3f	2.15	21.95 x10 ⁶
3m	3.23	29.65 x10 ⁶
3n	4.16	45.38 x10 ⁶
3p	2.32	$23.54 \text{ x}10^6$

Table 5. Effect of compounds 3f, 3m, 3n and 3p on tumor volume and viable tumor cell count of mice inoculated with EAC cells

^and: not determined.

Bold values refer to the best results.

Group	Hb (g/dl)	RBC Count 10 ⁶ /mm ³	WBC Count 10 ³ /mm ³	
Normal	13.73	13.73 5.84 5.9		
EAC cells only	8.15	3.69	23.96	
5-Fluorouracil	12.96	5.21	8.86	
3f	13.21	5.52	7.11	
3m	12.13	4.89	9.11	
3n	11.47	4.55	11.26	
3n	13 15	5 36	7 34	

Table 6. Effect of compounds **3f**, **3m**, **3n** and **3p** on blood profile of mice inoculated with EAC cells

Bold values refer to the best results.

Table 7. *In vitro* cytotoxic activity of compounds **3f**, **3m**, **3n** and **3p** toward W138 human normal cell line

Comp. No.	IC ₅₀ (mM)
3f	0.322
3m	0.058
3n	0.246
3р	0.298
5-Fluorouracil	0.051

Comp. No.	DNA-binding affinity
3 a	++
3c	+++
3f	+++
5i	+++
3ј	++
3k	+++
3m	+
3n	+++
3р	++
Ethidium bromide	+++

Table 8. DNA-binding affinity of compounds 3a, 3c, 3f, 3i-k, 3m, 3n and 3p

Comp. No	. Ar	R	Comp. No.	Ar	R
3 a	^{N-N} ∽ S ⁽¹ , SO ₂ NH ₂	Н	3h		NO ₂
3b	N ⁻ N ∽ ⁽ S [⊥] SO ₂ NH ₂	NO ₂	3i	O ₂ N	Н
3c	\prec_{N}^{S}	н	3j	O ₂ N	NO ₂
3d	→ ^S N ^F	NO ₂	3k	H ₃ C, CH ₃ N N	Н
3e	~sl~	NO ₂	31	H ₃ C CH ₃	NO ₂
3f		Н	3m	C2H500C	Н
3g	N NO2	Н			

NO ₂
Scheme 1. Synthesis of compounds 3a-p
\rightarrow

- New benzimidazole analogs were synthesized.
- The newly synthesized compounds were screened for antimicrobial and antitumor activities.
- \bullet Compounds $3c,\,3i$ and 3n are the most active antimicrobial agents.
- Compounds **3p** and **3f** are the most potent analogs against all tested cancer cell lines.