

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 14 (2006) 479-491

Bioorganic & Medicinal Chemistry

Novel platinum(II) and palladium(II) complexes with cyclin-dependent kinase inhibitors: Synthesis, characterization and antitumour activity

Lucie Szűčová,^a Zdeněk Trávníček,^{a,b,*} Marek Zatloukal^b and Igor Popa^b

^aDepartment of Inorganic Chemistry, Palacký University, Křížkovského 10, CZ-771 47 Olomouc, Czech Republic ^bLaboratory of Growth Regulators, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic

> Received 16 May 2005; revised 18 July 2005; accepted 16 August 2005 Available online 28 September 2005

Abstract—The Pt(II) and Pd(II) complexes of the types cis-[Pt(L₁)₂Cl₂]·H₂O (1), cis-[Pt(L₂)₂Cl₂]·3H₂O (2), trans-[Pd(L₁)₂Cl₂]·H₂O (3), trans-[Pd(L₂)₂Cl₂]·H₂O (4), trans-[Pd(L₃)₂Cl₂]·2DMF (5) and trans-[Pd(L₄)₂Cl₂]·2DMF (6) (L₁-L₄ = cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, ¹H, ¹³C and ¹⁹⁵Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L_1 , *trans*-[Pd(L_3)_2Cl_2] 2DMF (5) and *trans*-[Pd(L_4)_2Cl_2] 2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC50 values of 6 µM acquired against G-361 as well as against HOS cell lines. The lowest values of IC50 were achieved for the complexes 3 and 4 against MCF 7 cell line with IC_{50} 3 μ M (for 3) and also 3 μ M (for 4).

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The discovery of antineoplastic effects of cis-(diammine)-(dichloro)platinum(II) (Cisplatin) in 1961,^{1,2} led to the progressive development of cisplatin-like complexes.3 The complexes structurally analogous to Cisplatin, for example, (1,2-cyclohexanediammine)-(oxalato)platinum(II) (Oxaliplatin)⁴ or cis-(diammine)-(1,1-cyclobutanedicarboxylato)platinum(II) (Carboplatin),⁵ were prepared and their anticancer effects were studied. Although Cisplatin, Oxaliplatin and Carboplatin have been used as effective cancer treatments, some toxic side effects and natural resistance have still remained. It was found that the substitution of NH₃ groups in Cisplatin by primary (especially cyclic or aromatic) amines could lead to the preparation of anticancer substances, which are less toxic.^{6,7} Subsequently, cis- and *trans*- $[Pt(L)_2Cl_2]$ complexes have been prepared, where L = pyridine, lutidine and picoline derivatives,^{7,8}

anilines,⁹ pyrazole,¹⁰ benzimidazole derivatives¹¹ and many others. Recently, the complex of the type cis- $[Pt(Boh)_2Cl_2]$ ·3H₂O, where Boh = 2-[(3-hydroxypropyl)-amino]-6-benzylamino-9-isopropylpurine (Bohemine), has also been studied and its cytotoxic activity has been determined.¹² Some trans- and cis-[Pd(L)₂Cl₂] complexes were also prepared and characterized, where L = inosine, guanosine,^{13,14} substituted triazolo-pyrimi-dines¹⁵ or pyrazole derivatives,¹⁰ as well as some *trans*- $[Pd(L)_2Cl_2]$ complexes with L = adenosine or xanthosine.¹⁴ For a long time, *cis*-configuration was considered to be responsible for the anticancer activity of Pt(II) and Pd(II) complexes⁶ but later, *trans*-[Pt(L)₂Cl₂] complexes, where L = pyridine derivatives, were published and it was stated that they show anticancer effects despite the trans-configuration.7,16,17

Organic substances with 6-benzylaminopurine moiety, belonging to a group of compounds called cytokinins, have been studied since 1960s. These compounds are able to influence plant cell division.¹⁸ On the other hand, 2,6,9-trisubstituted purines have been intensively studied since the 1990s due to the fact that some of them strongly inhibit cyclin-dependent kinases (CDKs),¹⁹ that is,

Keywords: Platinum(II); Palladium(II); Cyclin-dependent kinase inhibitors; Cytotoxic activity; X-ray structures.

^{*} Corresponding author. Tel.: +420 585634944; fax: +420 585634954; e-mail: trav@risc.upol.cz

^{0968-0896/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2005.08.033

protein kinase enzymes which play a crucial role in the regulation of the cell cycle.²⁰ Some of the first artificially prepared CDK inhibitors based on 6-benzylaminopurine moiety were 2-[2-(hydroxyethyl)amino]-6-benzylamino-9-methylpurine (*Olomoucine*)²¹ and 2-[3-(hydroxypropyl)amino]-6-benzylamino-9-isopropylpurine (Bohemine) followed by a very effective inhibitor 2-{[l-(hydroxylmethyl)-propyl]-amino}-6-benzylamino-9-isopropylpurine (Roscovitine).²² The above-mentioned organic substances are also very effective against some human cancer cell lines.²² It was established, that the cytotoxic activity of the molecules with 6-benzylaminopurine moiety, substituted by -OH, -CH₃, -Cl, -F or -OCH₃ on the phenyl ring, changes after the coordination of the ligand to a suitable transition metal ion, for example, Pt(II), Pd(II),¹² Cu(II),²³ Ni(II)^{24,25} or Co(II).²⁶ These facts brought us into the idea to use four new substituted 6-benzylaminopurine-derived CDK inhibitors as ligands for the preparation and study of Pt(II) and Pd(II) complexes. The compounds used as ligands in this study, that is, 2-{[l-(hydroxylmethyl)-propyl]amino}-6-[(3-hydroxybenzyl)amino]-9-isopropyl-purine (L₁), 2-{[l-(hydroxymethyl)-2-(methyl)propyl]-amino}-6-[(3-hydroxybenzyl)amino]-9-isopropyl-purine (L₂), 2-chloro-6-[(3-hydroxybenzyl)-

amino]-9-isopropyl-purine (L_3) and 2-chloro-6-[(2-hydroxy-3-methoxy)-benzylamino]-9-isopropylpurine) (L_4), are shown in Figure 1.

In this paper, we report the preparation and characterization of a series of *cis*-Pt(II) and *trans*-Pd(II) complexes containing the above-mentioned ligands L_1-L_4 . The prepared complexes 1–6, with the composition $[M(L)_2Cl_2]$ {M = Pt(II) or Pd(II)}, have a square-planar geometry with two chloride anions and two organic ligands attached to Pd(II) or Pt(II) central atom via N(7) of the purine ring. In the complexes 1 and 2, the chloride anions as well as the organic ligands are coordinated to central atom in *cis*-configuration, while in the complexes 3–6 in *trans*-geometry.

2. Results and discussion

2.1. Chemistry

The organic ligands were synthesized by slightly modified procedures as described in the literature²² (Scheme 1).

Figure 1. The organic ligands L_1-L_4 used as starting reagents in this study.

$$\mathbf{R}_1 = -\mathbf{OH} \quad (\mathbf{L}_1 - \mathbf{L}_3) \quad \mathbf{R}_3 = -(\text{hydroxymethyl})\text{propyl} (\mathbf{L}_1) \\ -\mathbf{O} - \text{Me} (\mathbf{L}_4) \quad -(\text{hydroxymethyl}) - 2 - (\text{methyl})\text{propyl} (\mathbf{L}_2) \\ \mathbf{R}_2 = -\mathbf{H} \quad (\mathbf{L}_1 - \mathbf{L}_3) \\ -\mathbf{OH} \quad (\mathbf{L}_1)$$

Scheme 1. Schematic representation of the synthesis of the ligands L_1-L_4 .

The mononuclear Pt(II) and Pd(II) complexes described in this paper were prepared by the reaction of *cis*-[Pt(DMSO)₂Cl₂] (Scheme 2), trans-[Pd(DMSO)₂Cl₂] or $[K_2PdCL_4]$ (Scheme 3) with the corresponding cyclin-dependent kinase inhibitors L_1-L_4 . The syntheses of the complexes were performed in a 1:2 molar ratio of reactants in ethanol and led to the complexes of the types *cis*-[Pt(L)₂Cl₂], where $L = L_1$ or L_2 , and *trans*-[Pd(L)₂Cl₂], where $L = L_1-L_4$. The molar conductivity values of all the prepared complexes were determined in dimethylformamide (DMF) and acetone solutions, and were found to be 3.7-5.8 and 1.4-17.4 S cm² mol⁻ in DMF, and acetone, respectively. While the molar conductivity value interval for the electrolytes 1:1 is between 65 and 90 S $\text{cm}^2 \text{ mol}^{-1}$ for DMF and between 100 and $140 \text{ S cm}^2 \text{ mol}^{-1}$ for acetone solutions,²⁷ the obtained conductivity values of the complexes 1-6 indicate that the complexes in question behave as non-electrolytes. This finding refers to the fact that both chloride anions and organic ligands are located in the internal coordination sphere of Pt(II) or Pd(II) complexes 1-6.

Despite the fact that the complexes **5** and **6** were supposed to be *cis*-isomers due to the use of $[K_2PdCl_4]$ as a starting complex (in connection with *trans*-effect), it was proved that they are formed in *trans*-arrangement. This finding might be explained by the isomerization of the initial *cis*-complexes after the recrystallization from DMF. A similar behaviour has already been described in the literature for complexes *trans*-[PtCl₂(L)₂] (L = aniline,⁹ cyclobutylamine²⁸ or aminobenzonitrile²⁹) and *trans*-[PdCl₂(L)₂], where L = aminobenzonitrile.²⁹

2.2. ¹H, ¹³C and ¹⁹⁵PtNMR spectroscopy

The chemical shifts in ¹H and ¹³C NMR spectra of the complexes **1–6** are listed in Table 1. ¹H and ¹³C NMR spectra are well defined and the signals in the spectra confirm the presence of organic ligands ($\mathbf{L}_1-\mathbf{L}_4$) in the complexes **1–6**. The ¹H NMR spectra of the complexes displayed two important signals assignable to (C8)H and (N6)H. The signals are shifted downfield, $\Delta \delta = 0.36-0.77$ ppm, where $\Delta \delta = \delta_{\text{complex}} - \delta_{\text{ligand}}$, towards those belonging to the corresponding atoms in

the free CDK inhibitors. The above-mentioned coordination shifts may be connected with probable binding of the transition metal to N7. At this point, we would like to notice that the changes of the chemical shifts of N(6)H may also be caused by the exchange interactions with the protons of the solvent or by the formation of the N-H ··· Cl hydrogen bond (see below in Section 2.6.2). Significant shifts were also observed in the ^{13}C NMR spectra. As apparent from Table 1, the largest chemical shifts were found for C5 and C8 of the purine moiety. The signals assigned to C5 are shifted upfield, $|\Delta\delta| = 2.95 - 3.59$ ppm, and the signals of C8 downfield, $\Delta \delta = 2.84 - 3.15$ ppm, in comparison with the C5 and C8 atom signals in the corresponding free ligands. These carbon atoms are adjacent to N7, that is, the expected coordination site. This conclusion is in agreement with the findings related to the ¹H NMR spectra, where the significant coordination chemical shifts for (C8)H and (N6)H were also found.

¹⁹⁵Pt-NMR signals of **1** and **2** were observed at -2031 and -2035 ppm as broad ones. These values indicate the existence of the complexes with *cis*-PtN₂Cl₂ chromophores.^{30,31} The results are in accord with data published in the literature for *cis*-[Pt(L)₂Cl₂] complexes which vary from -1998 to -2096 ppm (for L = pyridine, lutidine or picoline derivatives, 5,7-disubstituted-1,2,4-triazolo[1,5*a*]pyrimidines).^{7,32} The value of -2028 ppm for the *cis*-[Pt(Boh)₂Cl₂]·3H₂O has also been published.¹²

2.3. IR spectra

The FT-IR spectra of the complexes **1–6** were measured in the region 150–4000 cm⁻¹ and selected maxima are given in Table 2. Majority of the bands in the region 665-900 cm⁻¹ have been assigned to the characteristic skeletal vibrations of the purine ring in the organic ligands. The strong bands, observed between 3359 and 3435 cm⁻¹, could be connected with v(N-H) and can also be overlapped with those for v(O-H) of lattice water.³³ The medium bands appearing between 3070 and 3129 cm⁻¹ are probably associated with v(O-H) of a R–CH₂–OH group. Medium absorptions occurring

Scheme 2. Schematic representation of the synthesis of *cis*-Pt(II) complexes 1 and 2.

-OH (**6**)

Scheme 3. Schematic representation of the synthesis of trans-Pd(II) complexes 3-6.

Table 1. Selected ¹H, ¹³C and ¹⁹⁵PtNMR spectral data (δ , ppm) for L₁–L₄ and for the complexes 1–6 measured in DMF- d_7

Compounds	(N6)H	(C8)H	C2	C4	C5	C6	C8	¹⁹⁵ Pt
L ₁	7.60	7.77	160.27	151.77	114.90	155.68	135.68	_
L ₂	7.58	7.77	160.54	151.77	114.88	155.63	135.65	_
L ₃	8.59	8.28	158.71	150.56	119.67	153.97	140.02	_
L ₄	8.33	8.29	156.20	150.43	119.71	153.86	140.12	_
1 cis-[Pt(L_1) ₂ Cl ₂]·H ₂ O	8.16(0.56)	8.47(0.70)	160.45(0.18)	150.78(-0.99)	111.31(-3.59)	153.60(2.08)	138.57(2.89)	-2031
2 cis-[Pt(L_2) ₂ Cl ₂]·3H ₂ O	8.15(0.57)	8.46(0.69)	160.81(0.27)	150.79(-0.98)	111.33(-3.55)	153.60(-2.03)	138.57(2.92)	-2035
3 trans-[Pd(L ₁) ₂ Cl ₂]·H ₂ O	8.37(0.77)	8.18(0.41)	160.45(0.18)	151.30(-0.47)	111.85(-3.05)	153.81(-1.87)	138.52(2.84)	_
4 trans-[Pd(L ₂) ₂ Cl ₂]·H ₂ O	8.17(0.59)	8.36(0.59)	160.76(0.22)	151.28(-0.49)	111.79(-3.09)	153.75(-1.88)	138.78(3.13)	_
5 trans-[Pd(L ₃) ₂ Cl ₂]·2DMF	8.95(0.36)	8.86(0.58)	158.79(0.08)	150.20(-0.36)	116.72(-2.95)	154.16(0.19)	143.17(3.15)	_
6 trans-[Pd(L ₄) ₂ Cl ₂]·2DMF	8.99(0.66)	8.84(0.55)	155.16(-1.04)	150.16(-0.27)	116.73(-2.98)	154.22(0.36)	143.07(2.95)	_

Coordination chemical shifts ($\Delta \delta = \delta_{complex} - \delta_{ligand}$) are given in parentheses.

in the 2963–2983 cm⁻¹ region could be attributed to the $v(C-H)_{ar}$ vibration.³³ A very strong band within the 1610–1616 cm⁻¹ region assigned to the v(C=N) vibration of the purine ring was observed.³³ Medium to strong bands between 1229 and 1267 cm⁻¹ can be associated with the $v(C-O)_{ar}$ vibration.³³ A strong band observed at 1070 cm⁻¹ in the spectra of the complexes could be assigned to the v(C-O) vibration of the R–CH₂–OH group.³³

The spectra of the complexes **1–6** between 150 and 600 cm⁻¹ revealed two new absorption bands, as compared to the spectra of free CDK inhibitors, which could be assigned to v(M-N) and v(M-Cl) stretching vibrations. For the platinum(II) complexes **1** and **2**, one split band within the 327–345 cm⁻¹ region assignable to the v(Pt-Cl) stretching vibration was detected. The position as well as the splitting of the band supports our presumption, based mainly on ¹⁹⁵Pt NMR spectra, that

Table 2. Selected IR spectral and conductivity data of the complexes 1-6

v(N–H)	$v(O-H)_{ar}$	v(C–H) _{ar}	v(C=N)	$v(C_{ar} - O)$	v(M–N)	v(M–Cl)	$(S \text{ cm}^2 \text{ mol}^{-1})$
3410s	3070w	2967m	1610vs	1267m	514w	342s	16.5 ^a
					508w	329m	3.7 ^b
3435s		2965m	1612s	1266m	531s	345m	16.4 ^a
					510w	327m	3.8 ^b
3376s	3118w	2967m	1610vs	1267s	475m	357s	17.0 ^a
							4.8 ^b
3427s	3100w	2963m	1610vs	1266m	490m	364m	17.4 ^a
							6.7 ^b
3369s	3129w	2983m	1610vs	1229s	497s	370vs	1.7 ^a
							5.2 ^b
3359s	3100s	2983m	1616vs	1239m	475m	368s	1.4 ^a
							5.8 ^b
	v(N-H) 3410s 3435s 3376s 3427s 3369s 3359s	v(N-H) v(O-H) _{ar} 3410s 3070w 3435s — 3376s 3118w 3427s 3100w 3369s 3129w 3359s 3100s	v(N-H) v(O-H) _{ar} v(C-H) _{ar} 3410s 3070w 2967m 3435s 2965m 3376s 3118w 2967m 3427s 3100w 2963m 3369s 3129w 2983m 3359s 3100s 2983m	$\nu(N-H)$ $\nu(O-H)_{ar}$ $\nu(C-H)_{ar}$ $\nu(C=N)$ 3410s3070w2967m1610vs3435s2965m1612s3376s3118w2967m1610vs3427s3100w2963m1610vs3369s3129w2983m1610vs3359s3100s2983m1616vs	$v(N-H)$ $v(O-H)_{ar}$ $v(C-H)_{ar}$ $v(C=N)$ $v(C_{ar}-O)$ 3410s3070w2967m1610vs1267m3435s2965m1612s1266m3376s3118w2967m1610vs1267s3427s3100w2963m1610vs1266m3369s3129w2983m1610vs1229s3359s3100s2983m1616vs1239m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Measured in dimethylformamide.

^b Measured in acetone.

the complexes occur in *cis*-arrangement.³⁴ The bands in the range of $508-531 \text{ cm}^{-1}$ could be assigned to the v(Pt–N) stretching vibration in the platinum(II) complex with cis-configuration.³⁴ For the palladium(II) complexes 3–6, some single bands between 357 and 370 cm⁻¹ which were attributed to the v(Pd–Cl) vibration were observed, ³⁴ while the bands within the 475-497 cm⁻¹ range were assignable to the v(Pd-N) stretching vibration and are in good agreement with the maximum at 472 cm⁻¹ as found for *trans*- $[Pd(L)_2Cl_2]$ (L = pyridine) in the literature.^{34,35} The maxima at $357-370 \text{ cm}^{-1}$ assigned to v(Pd-Cl) are $10-20 \text{ cm}^{-1}$ shifted in comparison to those for *trans*- $[Pd(L)_2Cl_2]$ complexes, where L = pyridine (358 cm^{-1}) or aniline (334 cm^{-1}) published previously.³⁵ The single bands observed in these regions supported our belief that the complexes 3-6 are in transarrangement.

2.4. ES+ MS spectroscopy

Electrospray mass spectra in the positive ion mode (ES+ MS) were measured for the complexes 1–6. The molecular ion peaks [M+H]⁺ were clearly observed at 1007.2, 1035.2, 917.3 and 945.9 m/z, for 1, 2, 3 and 4, respectively. Peaks were found at 1029.1 m/z for 1 and 1057.2 m/zfor **2**, related to $[M+Na]^+$, or peaks at 1045.9, 1073.3, 956.2 and 912.0 m/z for 1, 2, 3 and 6, respectively, related to $[M+K]^+$. The presence of clusters of the molecular ion peaks with Na⁺ and K⁺ was caused by the common presence of these ions in the analyzer or in solvent as typical for this type of ionization. Peaks were found at 876.3 m/z for 4, 742.9 m/z for 5 and 803.7m/z for 6 assignable to $[{Pd(L)_2}+H]^+$, and the peak at 971.2 m/ z for 1 attributable to $[{Pd(L)_2Cl}+H]^+$. In all the complexes 1-6, $[L+H]^+$ peaks of the corresponding CDK inhibitors were found, that is, at 371.0 m/z for 1 and **3**, 385.2 *m*/*z* for **2** and **4**, 318.1 *m*/*z* for **5** and 348.1 *m*/*z* for 6. In all the complexes, except for 2, the peaks for $[L+Na]^+$ were observed. In the spectra of the complex **6**, the peak at 386.0 m/z for $[L+K]^+$ was also detected. In all the complexes, the fragmentation of the organic ligand was observed. The peaks with the values ca. 121 m/z, found for 2–6, can be assigned to [purine+H]⁺, whilst the peaks at ca. 137 m/z, found for 1, 3 and 4 complexes, can be ascribed to [adenine+H]⁺. The peak at 163.0 m/z appeared in the spectra of complex 4 which

can be associated with [9-isopropylpurine+H]⁺. Unfortunately, we did not obtain any peaks which represent the more extensive fragmentation of the ligands, because massive recombination of the fragments occurs when using the used voltages.

2.5. Thermal analyses

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for the thermal behaviour study of the complexes 1-6. The thermal decompositions of Pt(II) cis-complexes 1 and 2 started between 60 and 90 °C and ended at ca 580 °C. In the above-mentioned temperature interval, there appeared to be some weight losses, accompanied by broad endoeffects on DSC curves with the minimum at 78.1 °C for 1 and 66.7 °C for 2, corresponding to the elimination of one crystal water molecule for 1 (found/calcd: 1.7/ 1.8%), or three crystal water molecules for 2 (found/ calcd: 5.6/5.8%). For the complexes 1 and 2, the activation energy of the above-mentioned endo-effects was determined by the Borchardt and Daniels method,³⁶ and was found to be 28.8 kJ mol^{-1} (6.9 kcal mol⁻¹) for **1** or 40.3 kJ mol⁻¹ (9.6 kcal mol⁻¹) for **2**. Between 360 and 500 °C, weight losses were observed accompanied by appropriate exo-effects on DSC curves. These weight losses were not associated with the formation of the thermally stable intermediates. However, there occurred some significant slowing in weight loss on TG curves around 380 °C, which might be connected with the loss of one molecule of organic ligand (found/calcd: 35.7/ 35.9%) and (found/calcd: 35.6/35.8%), for the complexes 1, and 2, respectively.

The thermal decomposition of the *trans*-Pd(II) complexes **3–6** is similar and started within the temperature interval 80–120 °C. Clearly observable weight losses on TG curves, which appeared between 50 and 120 °C, were accompanied with the *endo*-effects on DSC curves and assigned to the elimination of one crystal water molecule for **4** (found/calcd: 1.7/1.8%), two molecules of DMF for **5** (found/calcd: 17.2/16.9%) and for **6** (found/calcd: 14.2/14.3%). The minima of the *endo*-effects were found to be 55.6, 132.7, 112.2 °C for **4**, **5** and **6**, respectively. In the case of **3**, a weight loss relating to crystal water elimination could not be assigned

due to overlapping with another decomposition process. The DSC and TG curves of the complex **6** are presented in Figure 2. In the complex **6**, a significant weight loss was observed between 260 and 290 °C accompanied by the sharp *endo*-effect with the minimum at 269.0 °C, which is probably connected with the loss of one molecule of organic ligand from the complex **6** (found/calcd: 34.0/34.1%). Then, the thermal decomposition of **6** proceeds without the formation of stable intermediates and is finished at ca. 570 °C. For **4**–**6**, the activation energy of the endothermic effect assignable to the crystal H₂O (**4**) or DMF (**5**,**6**) elimination was also determined³⁶ and was found to be 28.8 (6.9), 254.3 (60.7) and 259.6 (62.0) kJ mol⁻¹ (kcal mol⁻¹) for **3**, **4**, **5** and **6**, respectively.

2.6. X-ray crystallography

2.6.1. X-ray structure of 2-{[l-(hydroxymethyl)propyl]amino}-6-[(3-hydroxybenzyl)amino]-9-isopropyl-purine, (L1). The molecular structure of L_1 together with the atom numbering scheme is shown in Figure 3. The crystallographic data are given in Table 3, while selected bond lengths and angles can be found in Table 4. The intermolecular parameters of the adenine moiety of L_1 are in good agreement with those found for the similar compounds described previously, for example, 6-(2-chlorob-enzyl-amino)purine $(L_a)^{37}$ or 6-benzylaminopurine (L_b) .³⁸ For example, the C(2)–N(3)–C(4) angle which is 111.6(3)° for L_1 is 111.32(14)° for L_a and 110.70° for L_b .^{37,38} From a general point of view, we can state that the protonation and/or substitution of the ligand cause the differences in the interatomic parameters within the purine ring, mainly in C-N-C bond angles. For example, the value of $111.6(3)^{\circ}$ for the C(2)–N(3)–C(4) bond angle in L_1 differs significantly in comparison with those for the N3 protonated forms of similar molecules. The values for the above-mentioned angle were found to be $117.02(16)^{\circ}$ 6-(4-methoxybenzylamino)purin-3-ium chloride, in (H^+L_d) ³⁹ and 117.6(2)° in 6-(3-chlorobenzylamino)purin-3-ium chloride, (H^+L_e) .³⁷

Other differences in bond angles between the electroneutral and protonated forms of these molecules are observa-

Figure 3. The molecular structure of L_1 together with the atom numbering scheme. The thermal ellipsoids are plotted at the 50% probability level.

ble also for the C(8)–N(7)–C(5) and C(8)–N(9)–C(4) angles, mainly in cases where the molecules are protonated or substituted at N7 and/or N9 positions. Concretely, the values of 104.6(3)° and 105.6(3)° for the angles C(8)–N(7)–C(5) and C(8)–N(9)–C(4), respectively, of L_1 differ significantly from those found for H⁺L_e {106.8(2)° and 102.60(18)°}³⁷ and H⁺L_f {108.10(19)° and 108.05(19)°},⁴⁰ where H⁺L_f is 6-benzylamino-2-(2hydroxyethylamino)-9-methylpurine-1,7-diium bis(perchlorate) monohydrate. The changes relating to different degree of protonation and/or substitution within the 6benzylaminopurine moieties are also apparent for select-

Figure 2. DSC and TG curves of the complex 6.

Table 3. Crystal data and structure refinements for L_1 , trans-[Pd(L_3)₂Cl₂]·2DMF (5) and trans-[Pd(L_4)₂Cl₂]·2DMF (6)

Compound	\mathbf{L}_1	5	6
Empirical formula Molecular weight	C ₁₉ H ₂₆ N ₆ O ₂ 370.46	C ₃₆ H ₄₆ Cl ₄ N ₁₂ O ₄ Pd 959.05	C ₃₈ H ₅₀ Cl ₄ N ₁₂ O ₆ Pd 1019.11
Temperature (K)	100(2)	100(2)	100(2) T. i. li
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1$	$P2_1/n$	P-1
Unit cell dimensions			
a (Å)	9.579(2)	9.3882(6)	9.4982(6)
b (Å)	5.8454(12)	19.9915(13)	10.9058(8)
<i>c</i> (Å)	17.241(3)	10.9270(7)	11.8499(8)
$\alpha(^{\circ})$	90.0	90.0	80.390(6)
$\beta(^{\circ})$	93.52(2)	96.437(6)	78.262(6)
γ(°)	90.0	90.0	66.535(7)
$V(Å^3)$	963.6(3)	2037.9(2)	1097.37(13)
Ζ	2	2	2
Density $(g cm^3)$	1.277	1.563	1.542
$\mu (mm^{-1})$	0.087	0.773	0.726
F(000)	396	984	524
Crystal size (mm)	$0.20 \times 0.15 \times 0.15$	$0.40 \times 0.40 \times 0.35$	$0.25 \times 0.25 \times 0.20$
Index ranges (h, k, l)	$-11 \leqslant h \leqslant 11$	$-11 \leqslant h \leqslant 10$	$-9 \leqslant h \leqslant 11$
	$-6 \leqslant k \leqslant 6$	$-21 \leq k \leq 23$	$-12 \leqslant k \leqslant 12$
	$-20 \leqslant l \leqslant 20$	$-12 \leq l \leq 12$	$-13 \leq l \leq 14$
Reflections collected/unique	5488/1865	12496/3550	8339/3849
Data /restraints/parameters	1865/1/252	3550/0/263	3849/0/282
Goodness-of-fit on F^2	0.978	1.127	1.094
Final R_1/wR_2 indices $[I > 2\sigma(I)]$	0.0505/0.1199	0.0370/0.0882	0.0313/0.0720
R_1/wR_2 indices (all data)	0.0601/0.1260	0.0384/0.0878	0.0354/0.0737

ed dihedral and torsion angles. In L_1 , the torsion angles for C(6)-N(6)-C(9)-C(10), C(5)-C(6)-N(6)-C(9) and N(6)-C(9)-C(10)-C(15) are $106.5(4)^{\circ}$, $-168.4(4)^{\circ}$ and -41.7 (5)°, respectively. For comparison, these torsion angles for an N3-protonated N7 tautomers, for example, H^+L_e , are $-129.5(2)^\circ$, $178.99(17)^\circ$ and $49.7(3)^\circ$, respectively,³⁷ and as can be seen they differ significantly as against those found for an electroneutral form of the L_1 molecule. The L_1 molecule contains nearly planar benzene (A), pyrimidine (B) and imidazole (C) ring systems with maximal deviations from each plane of 0.0114(26), 0.0037(25) and 0.0090(22) A for rings A, B and C, respectively. Atoms forming the purine ring (B + C) also deviate significantly from planarity with maximal deviations being 0.0114(25) Å for N(9) atom.⁴¹ The dihedral angle of L_1 between the benzene and the purine rings is $79.01(10)^{\circ}$. This value is in accord with the one published for a similar electroneutral molecule L_a which is 79.5(2)^{\circ 37} but differs from the value for protonated H⁺L_f being $82(1)^{\circ}$ ⁴⁰ The CgA...CgB, CgA...CgC and CgB...CgC distances are 5.7196(13), 6.5001(12) and 2.0936(3) Å, respectively, where CgA, CgB and CgC are the centroids of the rings A, B and C, respectively. The crystal structure of L_1 is stabilized by a network of N-H···O and O-H···N hydrogen bonds. More detailed information related to hydrogen bonding of L_1 , including symmetry transformations, is given in Table 5.

2.6.2. X-ray structures of *trans*- $[Pd(L_3)_2Cl_2]$ ·2DMF (5) and *trans*- $[Pd(L_4)_2Cl_2]$ ·2DMF (6). The molecular structures of the complexes 5 and 6 have also been determined and they are depicted in Figures 4 and 5, respectively.

The crystallographic data are given in Table 3, while selected bond lengths and angles can be found in Table 4. The orange crystals of the complexes 5 and 6 have been prepared by recrystallization of the compounds from DMF. Both the complexes (5, 6) have a square-planar arrangement of donor atoms in the vicinity of palladium with a PdN_2Cl_2 chromophore. In both cases, two chlorine atoms and two organic ligands, bonded via N(7) atom of the imidazole ring, are coordinated to the palladium atom in a *trans*-geometry. Atoms forming the benzene and purine ring deviate slightly from planarity in both the complexes 5 and 6.

The maximal deviations from the above-mentioned rings in the complex 5 are 0.0026(21) Å for C(11) and 0.0493(24) A for C(5), while 0.0113(23) A for C(4) and 0.0107(19) Å for C(11) in the complex 6.⁴¹ The CgA...CgB, CgA...CgC and CgB...CgCdistances were found to be 5.5277(3), 6.8413(3) and 2.0882(1) Å, respectively, in the complex 5, while the same distances are equal to 5.5227(6), 6.7747(7) and 2.0899(1) Å, respectively, in the complex 6. To date, only one similar structure having the trans-PdN₂Cl₂ chromophore and purine moiety at the molecule has been deposited with the Cambridge Crystallographic Centre CCDC (CSD Version 5.25.),⁴² that is, *trans*pentahydrate. dichloro-bis(inosine)-palladium(II) trans-[Pd(Ino)₂Cl₂]·5H₂O, where each of the purine rings of two inosine ligands is bonded via N(7) atom to palladium in *trans*-arrangement.¹⁴ The Pd(1)-N(7)bond length is 2.019(2) Å (for 5) and 2.010(2) Å (for 6), which is within an interval 1.991–2.018 Å of the values published for the above-mentioned structure.¹⁴

Fable 4.	Selected bond	l lengths (A	 and an 	gles (°) for	L_1 , trans-	$[Pd(L_3)_2Cl_2]$	·2DMF (5) and <i>trans</i> -	$[Pd(L_4)_2Cl_2]$	2DMF (6)

	L ₁	5	6
Bond lengths			
Pd(l)-N(7)	_	2.019(2)	2.010(2)
Pd(l)-N(7A)	_	2.019(2)	2.010(2)
Pd(1)-Cl(1)	_	2.2809(7)	2.3014(7)
Pd(l)-C1(1A)	_	2.2809(7)	2.3014(7)
N(l)–C(2)	1.353(4)	1.333(4)	1.328(4)
N(1)–C(6)	1.343(5)	1.354(4)	1.355(3)
N(3)–C(2)	1.365(5)	1.313(4)	1.317(4)
N(3) - C(4)	1.343(5)	1.350(4)	1.350(3)
N(7)-C(8)	1.315(5)	1.320(4)	1.322(3)
N(7)-C(5)	1.400(6)	1.391(4)	1.396(3)
N(9)-C(8)	1.374(4)	1.354(4)	1.353(3)
N(9)-C(4)	1.375(5)	1.374(4)	1.374(3)
C(4) - C(5)	1.378(5)	1.386(4)	1.382(4)
C(5)–C(6)	1.400(6)	1.415(4)	1.414(4)
Bond angles			
N(7)-Pd(l)-N(7A)	—	180.0	180.0
N(7A)-Pd(l)-Cl(l)	—	91.18(7)	91.81(6)
N(7)-Pd(1)-C1(1A)	_	91.18(7)	91.81(6)
N(7)-Pd(l)-Cl(l)	—	88.82(7)	88.19(6)
N(7A)-Pd(l)-Cl(lA)	_	88.82(7)	88.19(6)
Cl(l)-Pd(l)-Cl(lA)	—	180.0	180.0
C(8)-N(7)-Pd(1)	_	122.83(19)	123.02(18)
C(5)-N(7)-Pd(1)	_	130.79(19)	130.83(17)
C(2)-N(1)-C(6)	118.7(3)	117.7(2)	117.7(2)
C(2)–N(3)–C(4)	111.6(3)	109.9(2)	109.5(2)
C(8)–N(7)–C(5)	104.6(3)	106.0(2)	106.0(2)
C(8)–N(9)–C(4)	105.6(3)	106.7(2)	107.0(2)
N(3)-C(2)-N(1)	127.2(3)	131.2(3)	131.5(2)
N(3)-C(4)-N(9)	126.7(3)	126.2(3)	126.2(2)
N(3)-C(4)-C(5)	126.2(4)	127.0(3)	127.0(2)
N(9)-C(4)-C(5)	107.1(3)	106.8(2)	106.8(2)
C(4)-C(5)-N(7)	109.4(3)	108.3(2)	108.2(2)
C(4)-C(5)-C(6)	117.5(3)	116.5(3)	116.9(2)
N(7)-C(5)-C(6)	133.1(3)	134.9(3)	134.9(2)
N(1)-C(6)-C(5)	118.7(3)	117.7(3)	117.4(2)
N(7)-C(8)-N(9)	113.4(4)	112.2(2)	111.9(2)

Symmetry transformations used to generate equivalent atoms A: for 5: -x, -y + 2, -z + 1; for 6: -x + 2, -y, -z + 2.

= -3/2 + 3/2 + 3/2 + 2
--

D–H···A	d(D–H)	$d(H{\cdot}{\cdot}{\cdot}A)$	$d(D{\cdots}A)$	<(DHA)
For L_1				
N(10)-H(10A)-O(2) ⁱ	0.88	2.12	2.936(4)	154.8
$O(1)-H(1)-N(7)^{ii}$	0.85(6)	1.89(6)	2.656(4)	149(6)
O(2)-H(2)-N(3) ⁱⁱⁱ	0.93(6)	1.87(6)	2.789(4)	168(5)
N(6)-H(6A)-O(1) ^{iv}	0.88	2.06	2.889(4)	155.9
For 5				
$N(6)-H(6A)\cdots C1(1)^{v}$	0.88	2.82	3.382(3)	122.7
$O(1)-H(1A)\cdots O(2)^{v}$	0.84	1.81	2.625(3)	162.5
For 6				
$O(1)-H(1)\cdots O(2)^{vi}$	0.84	2.21	2.661(3)	113.8
$O(l)-H(l)\cdots Cl(l)^{vii}$	0.84	2.45	3.216(2)	151.2
$N(6)-H(6A)\cdot\cdot\cdot O(3)^{vi}$	0.88	2.62	3.161(3)	120.4

Symmetry transformations used to generate equivalent atoms: (i): -x + 1, y + 1/2, -z + 1; (ii): -x, y - 1/2, -z; (iii): x, y - 1, z; (iv): -x, y + 1/2, -z; (v): -x, -y + 2, -z + 1; (vi): -x + 2, -y, -z + 2; (vii): x - 1, y, z.

The Pd–Cl distances are 2.2809(7) Å for **5** and 2.3014(7) Å for **6**, and differ significantly from those reported previously for *trans*-[Pd(Ino)₂Cl₂]·5H₂O $\{2.296(2) \text{ and } 2.343(2) \text{ Å}\}^{14}$ and [PdCl(L)]⁺ (L = chelate-tethered derivatives of adenine)⁴³ $\{2.3189(9) \text{ and } 2.348(9) \text{ and } 3.348(2) \text{ A}\}^{14}$

2.300(10) Å}. A degree of deformation in a squareplanar arrangement in the vicinity of the central atom can also be deduced from angle values because they vary significantly from the idealized 90°. The N(7)– Pd(1)–C1(1A) angle equals 91.18(7)° (for 5) and

Figure 4. The molecular structure of **5** including the atom numbering scheme. The thermal ellipsoids are plotted at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 5. The molecular structure of 6 including the atom numbering scheme. The thermal ellipsoids are plotted at the 50% probability level. Hydrogen bonds are shown as dashed lines.

91.81(6)° (for **6**), whilst the value determined for the N(7)–Pd(l)–Cl(l) angle is $88.82(7)^{\circ}$ (for **5**) and $88.19(6)^{\circ}$ (for **6**). The bond angle values around the central atom slightly differ from those described in the structure for *trans*-[Pd(Ino)₂Cl₂]·5H₂O, where the value for the same angle is 90.4(2)° and 89.0(2)°, respectively.¹⁴

Spatial arrangement of the organic molecules in 5 and 6 can be deduced from values of selected dihedral and torsion angles. The dihedral angles between the atoms forming the benzene and purine rings are 88.01(8)° and $85.78(6)^{\circ}$ for 5 and 6, respectively.¹⁴ The torsion C(6)-N(6)-C(9)-C(10), C(5)-C(6)-N(6)-C(9)and angles N(6)-C(9)-C(10)-C(15) $-90.4(3)^{\circ}$, are $-173.3(3)^{\circ}$, $-1.1(4)^{\circ}$ (for 5), and -92.9(3), -176.1(2)and 14.4(4)° (for 6), respectively. The crystal structures of **5** and **6** are stabilized by networks of hydrogen bonds. Hydrogen bonding geometry for both the structures, involving O-H···O, O-H···C1, N-H···Cl and N-H-O hydrogen bonds, is given in Table 5.

2.7. In vitro cytotoxicity studies

The prepared complexes 1-6 and the corresponding CDK inhibitors, used as ligands, were tested in vitro against four human cancer cell lines: K-562, MCF7, G-361 and HOS. The IC_{50} cytotoxicity values of the complexes were compared to those found for the starting organic bases as well as for some of the anticancer agents used nowadays, that is, *Cisplatin* and *Oxaliplatin*. The obtained results are presented in Table 6. The IC_{50} values of Pt(II) complexes presented in this work are comparable to those achieved for the starting ligands in case of the MCF7 and K-562 cancer cell lines. However, very interesting results were obtained against G-361 (6 μ M) and HOS (6 μ M) cell lines for complex 1. Moreover, the IC_{50} value in the case of the G-361 cell line is approximately five times more effective in comparison to the free CDK inhibitor. The abovementioned IC₅₀ values of the complex 1 are also comparable with those obtained for Cisplatin, which are $3 \mu M$ against G-361 and 3 µM against HOS, and even better than the results obtained for Oxaliplatin, which are 7 µM and 7 µM, against G-361 and HOS, respectively.

Although the free CDK inhibitors L_3 and L_4 are not very effective as is obvious from Table 6 their complexes 5 and 6 demonstrate at least twice higher cytotoxicity against both the lines MCF7 and K-562. Moreover, the cytotoxicity of the complexes 3 and 4 against the

Table 6. Cytotoxicity of the complexes 1-6 compared to those found for the organic ligands, Cisplatin and Oxaliplatin, expressed as IC₅₀ values (µM)

Compounds		IC	50	
	MCF7	K-562	G-361	HOS
\mathbf{L}_1	7	21	29	10
\mathbf{L}_2	15	16	7	9
L_3	45	> 50	38	> 50
\mathbf{L}_4	> 50	20	31	26
1 cis-[Pt(L_1) ₂ Cl ₂]·H ₂ O	15	17	6	6
2 cis-[Pt(L_2) ₂ Cl ₂]·3H ₂ O	19	17	18	21
3 trans- $[Pd(L_1)_2Cl_2]$ ·H ₂ O	3	7	20	12
4 trans- $[Pd(L_2)_2Cl_2]$ ·H ₂ O	3	6	15	15
5 trans-[Pd(L ₃) ₂ Cl ₂]·2DMF	27	29	28	32
6 trans-[Pd(L ₄) ₂ Cl ₂]·2DMF	29	34	>50	32
Cisplatin	11	5	3	3
Oxalinlatin	18	9	7	7

 IC_{50} (μ M) specified by a calcein AM assay of surviving tumor cells. The human cancer cell lines^a were treated with the solution of the tested compound in the concentration range of 0.2–50 μ M for 72 h at 37 °C. 5% CO₂. ^aMCF7, breast adenocarcinoma; K-562, chronic myelogenous leukaemia; G-361, malignant melanoma; HOS, osteogenic sarcoma. The figures in the table present the arithmetic mean of three measured values. The measurement deviation ranges from 13 to 19%.

latter cell lines is significantly higher as compared to those determined for *Oxaliplatin* and *Cisplatin*.

3. Experimental

3.1. Materials

 K_2 PdCl₄ was used as purchased (Sigma-Aldrich Co.), *cis*-[Pt(DMSO)₂Cl₂] and *trans*-[Pd(DMSO)₂Cl₂] were prepared according to the published methods.^{44,45} The organic ligands 2-{[l-(hydroxymethyl)propyl]amino}-6-[(3-hydroxybenzyl)amino]-9-isopropylpurine (L₁), 2-{[l-(hydroxymethyl)-2-(methyl)propyl]amino}-6-[(3-hydroxybenzyl)amino]-9-isopropylpurine (L₂), 2-chloro-6-[(3hydroxybenzyl)amino]-9-isopropylpurine (L₃) and 2chloro-6-[(2-hydroxy-3-methoxybenzyl)amino]-9-isopropylpurine (L₄) were prepared by the slightly modified methods described in the literature.²²

The yellowish crystals of L_1 suitable for single crystal X-ray analysis were obtained by recrystallization from iso-propanol. L1: found: C, 61.3; H, 7.4; N, 22.6%. $C_{19}H_{26}N_6O_2$ requires C, 61.6;H, 7.1; N, 22.7%, mp: 151–152 °C; TLC: single spot. ¹H NMR (DMF- d_7 , ppm):9.38 (s, 1H, (O1)H), 7.77 (s, 1H, (C8)H), 7.60 (s, 1H, (N6)H), 7.12 (t, 1H, (C14)H, J = 7.7 Hz), 6.94 (s, 1H, (C11)H), 6.87 (d, 1H, (C15)H, J = 7.5 Hz), 6.71 (dd, 1H, (C13)H, $J_a = 7.9$ Hz, $J_b = 2.2$ Hz), 5.82 (d, 1H, (N2)H, J = 7.7 Hz), 4.91 (s, 1H, (02)H), 4.74 (s, 2H, (C9)H), 4.62 (sep, 1H, (C19)H, J = 6.8 Hz), 3.98 (m, 1H, (C16)H), 3.66 (m, 1H_a, (C20)H), 3.58 $1H_b$, (C20)H), 1.74 (sep, $1H_a$, (C21)H, (m, J = 7.0 Hz), 1.59 (sep, 1H_b(C21)H, J = 7.0 Hz), 1.53 (d, 6H, (C17,18)H, J = 6.6 Hz), 0.94 (t, 3H, (C22)H, J = 7.5 Hz). ¹³C NMR (DMF- d_7 , ppm): 160.27 (C2), 158.55 (C12), 155.68 (C6), 151.77 (C4), 143.15 (C10), 135.68 (C8), 129.69 (C11), 118.77 (C15), 115.05 (C14), 114.90 (C5), 114.18 (C13), 64.52 (C20), 55.29 (C19), 46.81 (C16), 43.77 (C9), 24.91 (C21), 22.34 (C17,18), 10.99 (C22). L₂: found: C, 62.3; H, 7.3; N, 21.9%. C₂₀H₂₈N₆O₂ requires C, 62.5; H, 7.3; N, 21.9%, mp: 179-180 °C; TLC: single spot. ¹H NMR (DMF-d₇, ppm): 9.43 (s, 1H, (O1)H), 7.77 (s, 1H, (C8)H), 7.58 (s, 1H, (N6)H), 7.12 (t, 1H,(C14)H, J = 7.7 Hz), 6.94 (t, 1H,(C11)H, J = 1.8 Hz), 6.87 (d, $1H_{,}(C15)H, J = 7.5 Hz), 6.71 (dd, 1H, (C13)H,$ $J_{\rm a} = 7.9$ Hz, $J_{\rm b} = 2.2$ Hz), 5.82 (d, 1H, (N2)H, J = 7.8 Hz), 4.89 (s, 1H, (O2)H), 4.74 (s, 2H, (C9)H), 4.62 (sep, 1H, (C19)H, J = 6.8 Hz), 3.98 (m, 1H, (C16)H), 3.66 (qui, 2H, (C20)H, J = 4.5 Hz), 2.07 (sxt, 1H, (C21)H, J = 6.8 Hz), 1.53 (dd, 6H, (C17,18)H, $J_a = 6.8$ Hz, $J_b = 1.9$ Hz), 0.97 (d, 3H, J = 6.8 Hz), (C22)H, 0.95 (d, 3H. (C23)H, J = 6.8 Hz). ¹³C NMR (DMF- d_7 , ppm): 160.54 (C2), 158.55 (C12), 155.63 (C6), 151.77 (C4), 143.13 (C10), 135.65 (C8), 129.67 (C11), 118.75 (C15), 115.03 (C14), 114.88 (C5), 114.77 (C13), 62.93 (C20), 58.71 (C19), 46.79 (C16), 43.79 (C9), 29.02 (C21), 22.38 (C17), 22.29 (C18), 19.93 (C22), 18.92 (C23). L₃: found: C, 56.5; H, 5.0; N, 21.6%. C15H16N5OC1 requires C, 56.7; H 5.1; N, 22.0%, mp: 217-218 °C; TLC: single spot. ¹H NMR (DMF-d₇, ppm): 9.48 (s,

1H, (O1)H), 8.59 (t, 1H, (N6)H, J = 6.2 Hz), 8.28 (s, 1H, (C8)H),7.14 (t, 1H, (C14)H, J = 7.9 Hz), 6.94 (t, 1H, (C11)H, J = 1.8 Hz), 6.87 (d, 1H, (C15)H, J = 7.5 Hz), 6.73 (dd, 1H, (C13)H, $J_a = 7.9$ Hz, $J_{\rm b} = 2.3$ Hz), 4.76 (sep, 1H, (C16)H, J = 6.8 Hz), 4.75 (d, 2H, (C9)H, J = 6.2 Hz), 1.58 (d, 6H, (C17,18)H, J = 6.8 Hz). ¹³C NMR (DMF- d_7 , ppm): 158.71 (C2), 156.13 (C12), 153.97 (C6), 150.56 (C4), 141.87 (C10), 140.02 (C8), 129.91 (C11), 119.67 (C5), 118.76 (C15), 115.04 (C14), 114.53 (C13), 47.89 (C16), 44.08 (C9), 22.41 (C17,18). L_4 : found: C, 55.2; H, 5.2; N, 19.8%. C₁₆H₁₈N₅O₂C1 requires C, 55.2; H 5.2; N, 20.1%, mp: 161 - 162 °C; TLC: single spot. ¹H NMR (DMF-d₇, ppm): 9.07 (s, 1H, (O1)H), 8.33 (t, 1H, (N6)H, J = 6.2 Hz), 8.29 (s, 1H, (C8)H), 6.89 (dd,2H, (C13,15)H, $J_a = 7.7$ Hz, $J_b = 1.8$ Hz), 6.74 (t, 1H(C14)H, J = 7.9 Hz), 4.80 (d, 2H, (C9)H, J = 6.2 Hz), 4.78 (sep, 1H, (C16)H, J = 6.8 Hz), 3.84 (s, 3H, (C19)H), 1.58 (d, 6H, (C17,18)H, J = 6.8 Hz). ¹³C NMR (DMF- d_7 , ppm): 156.20 (C2), 153.86 (C6), 150.43 (C4), 148.54 (C12), 145.22 (C11), 140.12 (C8), 126.34 (C10), 121.02 (C15), 119.71 (C5), 119.41 (C14), 111.41 (C13), 56.36 (C19), 47.95 (C16), 39.88 (C9), 22.42 (C17,18).

3.2. Methods

3.2.1. General techniques. Elemental analyses (C, H, and N) were determined on an EA1112 Flash analyzer (ThermoFinnigan). Thin layer chromatography (TLC) performed using CHC1₃/CH₃OH/NH₄OH was (8:2:0.1) mobile phase and carried out using silica gel 60 WF₂₅₄ plates (Merck Co.). Melting points (mp) were determined with a BÜCHI Melting Point B-540. Conductivity measurements were performed on a Cond340i/SET conductometer (WTW, Germany) in dimethylformamide (DMF) and acetone solutions (10^{-3} M) at 25 °C. FT-IR spectra in the range 150– 600 cm^{-1} were measured using polyethylene (PE) discs or nujo1 technique, while FT-IR spectra in the region $400-4000 \text{ cm}^{-1}$ were obtained by the KBr disc technique, both using a NEXUS 670 FT-IR spectrometer (Thermo Nicolet). Thermogravimetric analysis and differential scanning calorimetry (DSC) measurements were performed on a TGA XP-10 Thermogravimetric Analyser (THASS, GmbH). TGA was performed in the range 20–600 °C with the gradient 5 °C per minute, while DSC recorded in the range 20-400 °C with the gradient 5 °C per minute. The measurements were taken in the air atmosphere. ES+ MS spectra were recorded using an electrospray probe on a Waters ZMD 2000 mass spectrometer. The mass monitoring interval was 10–1500 m/z. All interpretations of m/z were related to ${}^{35}C1$, ${}^{194}Pt$ and ${}^{104}Pd$. The spectra were collected using 3.0 s cyclical scans and applying the sample cone voltage: 20, 40 and 60 V at the source block temperature of 80 °C. Desolvation temperature was 150 °C and desolvation gas flowrate 200 L/h. The mass spectrometer was directly coupled to a Mass Lynx data system.

¹H, ¹³C and ¹⁹⁵Pt NMR spectra were recorded on a Bruker Avance 300 spectrometer at 300 K. The sam-

489

ples were prepared by dissolving of the ligands L_1-L_4 and the complexes 1–7 in deuterated dimethylformamide (DMF- d_7). The internal reference standard used for ¹H and ¹³C was tetramethylsilane (TMS), the external standard used for ¹⁹⁵Pt was K_2 PtCl₆ ($\delta = 0.0$ ppm).

3.2.2. X-ray crystallography. X-ray data of L_1 trans-[Pd(L_3)₂Cl₂]·2DMF (**5**) and trans-[Pd(L_4)₂Cl₂]·2DMF (**6**) were collected on a four-circle κ -axis diffractometer Xcalibur2 (Oxford Diffraction Ltd.) equipped with the Sapphire2 CCD detector at 100 K. The CrysAlis (ver.1.171.23) software was used for data collection and reduction.⁴⁶ The structures were solved using the direct methods [SHELXS-97]⁴⁷ and refined anisotropically on F^2 using full-matrix least-squares procedure [SHEL-XL-97].⁴¹ All hydrogen atoms of L₁, **5** and **6** were localized in difference Fourier maps, idealized and refined using a 'riding' model, with C–H distances of 0.95 and 0.99 Å and the N–H distances of 0.88 Å, and with U_{iso} (H) = $1.2U_{eq}$ (CH, CH₂ and NH) or $1.5U_{eq}$ (CH₃).

3.2.3. Cytotoxicity testing. The cytotoxicity values of IC_{50} for the complexes **1–6** as well as for the ligands L_1-L_4 were determined by a calcein AM assay. Human cancer cell lines used were as follows: malignant melanoma (G-361), chronic myelogenous leukaemia (K-562), osteogenic sarcoma (HOS) and breast adenocarcinoma (MCF7). The technique has been previously described in greater detail.¹² After preincubation lasting 12 h at 37 °C in a 5% CO_2 atmosphere and 100% humidity, the tested compounds in the concentration range 0.2-50 µM were added. The incubation lasted 72 h and at the end of this period, the cells were incubated for 1 h with calcein AM and the fluorescence of the live cells was measured at 485/538 nm (exitation/ emission) with a Fluoroskan Ascent (Labsystems). IC_{50} values, that is, the drug concentrations lethal for 50% of the tumour cells were estimated. All the experiments were repeated in triplicate with the maximal deviation 15%. All the ligands and complexes were first dissolved in DMF and then immediately diluted in water to final DMF concentration of 0.6%.

3.3. Synthesis of the complexes 1–6

3.3.1. cis-[Pt(L₁)₂Cl₂]·H₂O (1) and cis-[Pt(L₂)₂Cl₂]· $3 H_2 O$ (2). One millimole of L_1 or L_2 was dissolved in 10 mL ethanol and added to a mixture of cis-[Pt(DMSO)₂Cl₂] (0.5 mmol) in 15 mL ethanol. The mixture was stirred at the room temperature for 72 h and consecutively at 50 °C for 12 h. Obtained ocher (for 1) or white (for 2) precipitate was filtered off, washed with ethanol (10 mL), diethylether (5 mL) and dried under an IR lamp at 40 °C. Complex 1: Anal. Found: C, 44.3; H, 5.3; N, 16.6%. PtCl₂C₃₈H₅₂N₁₂O₄·H₂O requires C, 44.5; H 5.3; N, 16.4%. ES+ MS (*m*/*z*): 1007.2 [{M- (H_2O) + H]⁺, 1029.1 [{M-(H_2O)} + Na]⁺, 1045.9 [{M- (H_2O) + K]⁺, 971.2 [{Pt(L₁)₂Cl} + H]⁺, 393.4 [L₁+Na]⁺, 371.0 [L₁+H]⁺, 136.9 [adenine+H]⁺. ¹H NMR (DMFd₇, ppm): 9.63 (s, 1H, (O1)H), 8.47 (s, 1H, (C8)H), 8.16 (s, 1H, (N6)H), 7.18 (t, 1H, (C14)H, J = 7.7 Hz), 7.10 (s, 1H, (C11)H), 7.03 (d, 1H, (C15)H, J = 7.5 Hz),

6.80 (d, 1H, (C13)H, J = 7.9 Hz), 6.34 (s, 1H, (N2)H), 4.98 (s, 1H, (O2)H), 4.76 (d, 2H, (C9)H, J = 6.0 Hz), 4.69 (m, 1H, (C19)H), 3.96 (m, 1H, (C16)H), 3.64 (m, 1H_a (C20)H), 3.58 (m, 1H_b, (C20)H), 1.72 (sep, 1H_a, (C21)H, J = 7.1 Hz, 1.57 (d, 6H, (C17,18)H), J = 6.6 Hz), 1.47 (t, 1H_b, (C21)H, J = 7.1 Hz), 0.93 (t, 3H, (C22)H, J = 7.3 Hz). ¹³CNMR (DMF- d_7 , ppm): 160.45 (C2), 158.69 (C12), 153.60 (C6), 150.78 (C4), 141.57 (C10), 138.57 (C8), 129.95 (C11), 118.85 (C15), 115.15 (C14), 114.63 (C13), 111.31 (C5), 64.12 (C20), 55.41 (C19), 48.60 (C16), 44.81 (C9), 24.78 (C21), 21.93 (C17,18), 10.94 (C22). Complex 2: Anal. Found: C, 44.3; H, 5.4; N, 15.6%. PtCl₂C₄₀H₅₆N₁₂0₄·3H₂0 requires C, 44.1; H, 5.7; N, 15.4%. ES+ MS (m/z): 1035.2 $[{M-(3H_2O)}+H]^+$, 1057.2 $[{M-(3H_2O)}+Na]^+$, 1073.3 $[{M-(3H_2O)}+K]^+$, 598.1 $[{Pt(L_2)}+(H_2O)+H]^+$, 385.2 $[L_2+H]^+$, 121.1 $[purine+H]^+$. ¹H NMR (DMF- d_7 , ppm): 9.57 (s, 1H, (O1)H), 8.46 (s, 1H, (C8)H), 8.15 (s, 1H, (N6)H), 7.18 (t, 1H, (C14)H, J = 7.7 Hz), 7.07 (t, 1H, (C11)H, J = 1.9 Hz), 7.03 (d, 1H, (C15)H, J = 7.5 Hz), 6.78 (dd, 1H, (C13)H, $J_a = 8.0$ Hz, $J_{\rm b} = 1.7$ Hz), 6.30 (d, 1H, (N2)H, J = 7.8 Hz), 4.77 (s, 1H, (O2)H), 4.75 (d, 2H, (C9)H, J = 6.0 Hz), 4.59 (t, 1H, (C19)H, J = 6.2 Hz), 3.96 (m, 1H, (C16)H), 3.66 (qui, 2H, (C20)H, J = 4.6 Hz), 2.04 (sxt, 1H, (C21)H, J = 6.8 Hz), 1.56 (dd, 6H, (C17,18)H, $J_a = 6.8$ Hz, $J_{\rm b} = 2.0$ Hz), 0.95 (t, 6H, (C22,23)H, J = 5.7 Hz). ¹³C NMR (DMF-d7, ppm): 160.81 (C2), 158.74 (C12), 153.60 (C6), 150.79 (C4), 141.63 (C10), 138.57 (C8), 130.01 (C11), 118.87 (C15), 115.14 (C14), 114.66 (C13), 111.33 (C5), 62.63 (C20), 58.92 (C19), 48.70 (C16), 44.81 (C9), 29.00 (C21), 21.99 (C17), 21.90 (C18), 19.96 (C22), 18.91 (C23).

and trans- $[Pd(L_1)_2Cl_2]$ ·H₂O (3) 3.3.2. trans- $[Pd(L_2)_2Cl_2]H_2O$ (4). One millimole of L_1 or L_2 was dissolved in 10 mL ethanol and added to a mixture of trans-[Pd(DMSO)₂Cl₂] (0.5 mmol) in 15 mL ethanol. The mixture was stirred at the room temperature for 72 h. Afterwards, yellow (for 3) or orange (for 4) precipitate was formed. The solid was filtered off, washed with ethanol (10 mL), diethylether (5 mL) and dried under an IR lamp at 40 °C. Complex 3: Anal. Found: C, 48.6; H, 5.9; N, 17.6%. PdCl₂C₃₈H₅₂N₁₂O₄·H₂O requires C, 48.7; H, 5.8; N, 17.9%. ES+ MS (m/z): 956.2 [[{M- $[[{M-(H_2O)}+H]^+$ 917.3 (H_2O) + K]⁺, 535.3 $[{Pd(L_1)Cl}+Na]^+, 513.3 [{Pd(L_1)Cl}+H]^+, 393.1 [L_1+Na]^+, 371.2 [L_1+H]^+, 163.0 [9-isopropylpurine+H]^+, 157.1 [adenine+Na]^+, 136.5 [adenine+H]^+, 157.1 [adenine+Na]^+, 136.5 [adenine+H]^+, 146.5 [adenine+H]^+,$ 121.0 [purine+H]⁺. ¹H NMR (DMF-*d*₇, ppm): 9.57 (s, 1H, (O1)H), 8.37 (t, 1H, (N6)H), J = 6.4 Hz), 8.18 (s, 1H, (C8)H),7.18(t,lH, (C14)H, J = 7.7 Hz), 7.10 (s, 1H, (C11)H), 7.05 (d, 1H, (C15)H, J = 7.5 Hz), 6.78 (dd, 1H, (C13)H, $J_a = 8.0$ Hz, $J_b = 1.9$ Hz), 6.32 (d, 1H, (N2)H, J = 7.5 Hz), 4.86 (s, 1H, (O2)H), 4.79 (d, 2H, (C9)H, J = 5.8 Hz), 4.69 (sep, 1H, (C19)H, J = 6.8 Hz),3.97 (m, 1H, (C16)H), 3.65 (m, 1H_a, (C20)H), 3.58 (m, $1H_b$, (C20)H), 1.74 (sep, $1H_a$ (C21)H) J = 6.9 Hz), 1.56 (m, 1H_b, (C21)H), 1.56 (d, 6H, (C17,18)H, J = 6.6 Hz), 0.94 (tt, 3H, (C22)H, $J_a = 7.5$ Hz, $J_{\rm b} = 2.9$ Hz). ¹³C NMR (DMF- d_7 , ppm): 160.45 (C2), 158.71 (C12), 153.81 (C6), 151.30 (C4), 141.75 (CIO), 138.52 (C8), 129.98 (C11), 118.91 (C15), 115.20 (C14),

114.61 (C13), 111.85 (C5), 64.17 (C20), 55.45 (C19), 48.68 (C16), 44.85 (C9), 24.82 (C21), 21.94 (C17,18), 10.96 (C22). Complex 4: Anal. Found: C, 49.4; H, 6.1;N, 17.1%. $PdCl_2C_{40}H_{56}N_{12}O_4H_2O$ requires C, 49.8; H 6.1; N, 17.4%. ES+ MS (m/z): 945.9 [{M- (H_2O) + H]⁺, 876.3 [{Pd(L_2)_2} + H]⁺, 407.1 [L_2+Na]⁺, 385.2 [L_2+H]⁺, 163.0 [9-isopropylpurine+H]⁺, 157.9 [adenine+Na]⁺, 137.6 [adenine+H]⁺, 121.0 [purine+H]⁺. ¹H NMR (DMF-*d*₇, ppm): 9.56 (s, 1H, (O1)H), 8.36 (s, 1H, (C8)H), 8.17 (t, 1H, (N6)H, J = 6.4 Hz), 7.17 (t, 1H, (C14)H, J = 7.8 Hz), 7.09 (t, 1H, (C11)H, J = 2.0 Hz), 7.05 (d, 1H, (C15)H, J = 7.5 Hz), 6.77 (dd, 1H, (C13)H, $J_a = 7.9$ Hz, $J_b = 2.0$ Hz), 6.28 (d, 1H, (N2)H, J = 7.7 Hz), 4.78 (d, 2H, (C9)H, J = 5.7 Hz),4.71 (qui, 1H, (C19)H, J = 6.8 Hz), 4.60 (t, 1H, (O2)H, J = 5.7 Hz), 3.96 (m, 1H, (C16)H), 3.66 (qui, 2H, (C20)H, J = 4.6 Hz), 2.04 (sxt, 1H. (C21)H, J = 6.8 Hz), 1.55 (dd, 6H, (C17,18)H, $J_a = 6.9$ Hz, $J_{\rm b} = 1.9$ Hz), 0.95 (t, 6H, (C22,23)H, J = 6.0 Hz). ¹³C NMR (DMF-d₇, ppm): 160.76 (C2), 158.70 (C12), 153.75 (C6), 151.28 (C4), 141.76 (C10), 138.78 (C8), 129.98 (C11), 118.87 (C15), 115.16 (C14), 114.59 (C13), 111.79 (C5), 62.63 (C20), 58.90 (C19), 48.64 (C16), 44.86 (C9), 21.97 (C17), 21.88 (C18), 19.94 (C22), 18.88 (C23).

3.3.3. trans-[Pd(L₃)₂Cl₂]·2DMF (5) and trans- $[Pd(L_4)_2Cl_2]$ 2DMF (6). One millimole of L_3 (5) or L_4 (6) was dissolved in 10 mL ethanol and added to the mixture of K_2PdCL_4 (0.5 mmol) in 15 mL ethanol. The mixture was stirred at the room temperature for 72 h and then, yellow (for 5) or orange (for 6) precipitate was obtained. The solid was filtered off, washed with ethanol (10 mL), diethylether (5 mL) and dried under an IR lamp at 40 °C. The crystals suitable for X-ray analysis were obtained by the recrystallization of the complexes from DMF. Initially, cis-[Pd(L₄)₂Cl₂] (Anal. Found: C, 43.4; H, 4.1; N, 16.1%. $PdC_{32}H_{36}N_{10}O_4Cl_4(H_2O)$ requires C, 43.1; H 4.3; N, 15.7%) was prepared, but after the recrystallization from DMF, it was transformed into trans- $[Pd(L_4)_2Cl_2]$ ·2DMF (see Section 2.6.). Complex 5: Anal. Found: C, 45.0; H, 4.9; N, 17.5%. PdC₃₀H₃₂N₁₀O₂-Cl₄·(C₃H₇NO)₂ requires C, 45.1; H 4.8; N, 17.5%. ES+ MS (m/z): 763.7 $[{Pd(L_3)_2}+Na]^+$, 742.9 $[{Pd(L_3)_2}+H]^+$, 340.1 $[L_3+Na]^+$, 318.1 $[L_3+H]^+$, 121.0 $[purine+H]^+$. ¹H NMR (DMF- d_7 , ppm): 9.58 (s, 1H, (O1)H), 8.95 (t, 1H, (N6)H, J = 5.9 Hz), 8.86 (s, 1H, (C8)H), 7.16 (t, 1H, (C14)H, J = 7.9 Hz), 7.04 (t, 1H, (C11)H, J = 1.9 Hz), 7.00 (d, 1H, (C15)H, J = 7.5 Hz), 6.77 (dd, 1H, (C13)H, $J_a = 7.9$ Hz, $J_b = 2.2$ Hz), 4.87 (sep, 1H, (C16)H, J = 6.8 Hz), 4.87 (d, 2H, (C9)H, J = 6.0 Hz), 1.61 (d, 6H, (C17,18)H, J = 6.8 Hz). ¹³C NMR (DMF-d7, ppm): 158.79 (C2), 155.15 (C12), 154.16 (C6), 150.20 (C4), 143.17 (C8), 140.44 (C10), 130.06 (C11), 118.80 (C15), 116.72 (C5), 115.17 (C14), 114.86 (C13), 49.97 (C16), 45.39 (C9), 22.07 (C17,18). Complex 6: Anal. Found: C, 44.9; H, 4.9; N, 16.9%. $PdC_{32}H_{36}N_{10}O_4Cl_4$ · (C₃H₇NO)₂ requires C, 44.7; H 4.9; N, 16.5%. ES+ MS (m/z): 912.0 $[M+K]^+$, 819.6 $[{Pd(L_4)_2}+(H_2O)+H]^+, 803.7 [{Pd(L_4)_2}+H]^+, 386.0$ $[L_4+K]^+$, 370.0 $[L_4+Na]^+$, 348.1 $[L_4+H]^+$, 121.0 [purine+H]⁺. ¹H NMR (DMF-d₇, ppm): 9.13 (s, 1H, (O1)H), 8.99 (t, 1H, (N6)H, J = 6.1 Hz), 8.84 (s, 1H,

(C8)H), 7.11 (dd, 1H, (C15)H, $J_a = 7.8$ Hz, $J_b = 1.2$ Hz), 6.94 (dd, 1H, (C13)H, $J_a = 7.9$ Hz, $J_b = 1.2$ Hz), 6.74 (t, 1H, (C14)H, J = 7.9 Hz), 4.98 (d, 2H, (C9)H, J = 6.1 Hz), 4.90 (sep, 1H, (C16)H, J = 6.8 Hz), 3.86 (s, 3H, (C19)H), 1.63 (d, 6H, (C17,18)H, J = 6.8 Hz). ¹³C NMR (DMF- d_7 , ppm): 155.16 (C2), 154.22 (C6), 150.16 (C4), 148.46 (C12), 145.28 (C11), 143.07 (C8), 125.28 (C10), 120.91 (C15), 119.46 (C14), 116.73 (C5), 111.57 (C13), 56.37 (C19), 50.05 (C16), 40.88 (C9), 22.03 (C17,18).

4. Conclusion

A series of complexes of the types cis-[Pt(L)₂Cl₂] and *trans*- $[Pd(L)_2Cl_2]$, where L = CDK inhibitor derived from 6-benzylamino-9-isopropylpurine, have been synthesized and characterized. The molecular structures of CDK inhibitor, used as ligand L_1 , and the *trans*-Pd(II) complexes 5 and 6 have been determined by a single crystal X-ray analysis. The square-planar geometry as well as the *trans*-arrangement in the vicinity of the central palladium atom has been proved unambiguously. It consists of a PdN₂Cl₂ chromophore, constituted of two organic ligands bonded via N(7) of the imidazole ring and of two chlorides. The best IC₅₀ values, 6 and 6 µM against G-361 and HOS, respectively, were obtained for the complex 1, and are much lower than the values obtained for the initial ligand L_1 . These results are very promising because the IC₅₀ values for the complex 1 are of the same order as the values obtained for Cisplatin and even better than the values achieved for Oxaliplatin. The IC50 values of the complexes 3 and 4 against MCF7 and K-562 are 3 µM $7 \,\mu M$ for 3 and 3 and $6 \,\mu M$ for 4, which is higher by order of magnitude in comparison with the cytotoxicity of the starting ligands, and, surprisingly, much better than the values achieved for Cisplatin and Oxaliplatin.

5. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 268241 (for L_1), 268242 (for 5) and 268243 (for 6). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336-033, e-mail: deposit@ccdc.cam.ac.uk; http//www.ccdc.cam. ac.uk.

Acknowledgments

This research was supported by the Ministry of Education, Youth and Sports (MSM6198959218) and by the Grant Agency of the Czech Republic (Grant No. 203/ 04/1168). The authors thank Dana Vychodilová for elemental analyses and IR spectra measurements, Ondřej Novák for obtaining of ES+ MS spectral data, Michal Maloň for ¹⁹⁵Pt NMR spectra measurements, Libor Machala for his help with acquiring of the thermal analyses data and Eva Hirnerová for cytotoxicity testing.

References and notes

- Kelland, L. R.; Sharp, S. Y.; O'Neil, C. F.; Raynaud, F. I.; Beale, P. J.; Judson, I. R. J. Inorg. Biochem. 1999, 77, 111.
- 2. Hambley, T. W. Coord. Chem. Rev. 1997, 166, 181.
- 3. Barefoot, R. R. J. Chromatogr. B 2001, 751, 205.
- 4. Harrap, K. R. Cancer Res. 1995, 55, 2761.
- Extra, J. M.; Espic, M.; Calvo, F.; Ferme, C.; Mignot, L.; Marty, M. Cancer Chemother. Pharmacol. 1990, 25, 299.
- Natile, G.; Coluccia, M. Coord. Chem. Rev. 2001, 216– 217, 383.
- 7. Tessier, Ch.; Rochon, F. D. Inorg. Chim. Acta 1999, 295, 25.
- 8. Thompson, LK. Inorg. Chim. Acta 1980, 38, 117.
- 9. Kong, P.-Ch.; Rochon, F. D. Inorg. Chem. Acta 1981, 61, 269.
- Budzisz, E.; Malecka, M.; Nawrot, B. *Tetrahedron* 2004, 60, 1749.
- Gökçe, M.; Utku, S.; Gür, S.; Özkul, A.; Gümüş, F. Eur. J. Med. Chem. 2005, 40, 135.
- Trávníček, Z.; Maloň, M.; Zatloukal, M.; Doležal, K.; Strnad, M.; Marek, J. J. Inorg. Biochem. 2003, 94, 307.
- 13. Pneumatitakis, G.; Hadjiliadis, N.; Theophanides, T. *Inorg. Chem.* **1978**, *17*, 915.
- Quirós, M.; Salas, J. M.; Sánches, M. P. Inorg. Chim. Acta 1993, 204, 213.
- Szłyk, E.; Grodzicki, A.; Pazderski, L.; Wojtczak, A.; Chatłas, J.; Wrzeszcz, G.; Sitkowski, J.; Kamieński, B. J. Chem. Soc. Dalton Trans. 2000, 867.
- Farrell, N.; Povirk, L. F.; Dange, Y.; DeMasters, G.; Gupta, M. S.; Kohlhagen, G.; Khan, Q. A.; Pommier, Y.; Gewirtz, D. A. *Biochem. Pharmacol.* 2004, 68, 857.
- 17. Farrell, N.; Ha, T. T. B.; Souchard, J.-P.; Wimmer, F. L.; Cros, S.; Johnson, N. P. J. Med. Chem. **1989**, *32*, 2241.
- Skoog, F.; Hamzi, H. G.; Szweykowska, A. M.; Leonard, N. J.; Carraway, K. L.; Fujii, T.; Helgeson, J. P.; Loeppky, R. N. *Phytochemistry* **1967**, *6*, 1169.
- Veselý, J.; Havlíček, L.; Strnad, M.; Blow, J. J.; Donella-Deana, A.; Pinna, L.; Letham, D. S.; Kato, J.; Detivaud, L.; Leclerc, S. *Eur. J. Biochem.* **1994**, 224, 771.
- Moravec, J.; Kryštof, V.; Hanuš, J.; Havliček, L.; Moravcová, D.; Fuksová, K.; Kuzma, M.; Lenobel, R.; Otyepka, M.; Strnad, M. *Bioorg. Med. Chem. Lett.* 2003, 13, 2993.
- 21. Havlíček, L.; Hanuš, J.; Veselý, J.; Leclerc, S.; Meijer, L.; Shaw, G.; Strnad, M. J. Med. Chem. **1997**, 40, 408.
- Kryštof, V.; Lenobel, R.; Havliček, L.; Kuzma, M.; Strnad, M. *Bioorg. Med. Chem. Lett.* 2002, *12*, 3283.

- Maloň, M.; Trávníček, Z.; Maryško, M.; Marek, J.; Doležal, K.; Rolčík, J.; Strnad, M. *Trans. Met. Chem.* 2002, 27, 580.
- Trávníček, Z.; Maloň, M.; Biler, M.; Hajdúch, M.; Brož, P.; Doležal, K.; Holub, J.; Kryštof, V.; Strnad, M. *Trans. Met. Chem.* 2000, 25, 265.
- Trávníček, Z.; Maloň, M.; Popa, I.; Doležal, K.; Strnad, M. *Trans. Met. Chem.* 2002, 27, 918.
- Trávníček, Z.; Klanicová, A.; Popa, I.; Rolčík, J. J. Inorg. Biochem. 2005, 99, 776.
- 27. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.
- 28. Lock, C. J.; Zvagulis, M. Inorg. Chem. 1981, 20, 1817.
- 29. Kong, P.-Ch.; Rochon, F. D. Inorg. Chim. Acta 1984, 83, 65.
- Harris, R. K.; Mann, F.; Kidd, R. G.; Goodfellow, R. J. *NMR and the Periodic Table*; Academic Press: London, p 250.
- 31. Pregosin, P. S. Transition Metal Nuclear Magnetic Resonance; Elsevier: Amsterdam, 1991, p 228.
- Łakomska, I.; Szłyk, E.; Sitkowski, J.; Kozerski, L.; Wietrzyk, J.; Pełczyńska, M.; Nasulewicz, A.; Opolski, A. J. Inorg. Biochem. 2004, 98, 167.
- Pouchert, C. J. *The Aldrich Library of Infrared Spectra*, third ed.; Aldrich Chemical Company Press: Milwaukee, 1981.
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry, fifth ed.; Wiley: New York, 1991.
- 35. Durig, J. R.; Layton, R.; Sink, D. W.; Mitchell, B. R. Spectrochim. Acta 1965, 21, 1367.
- 36. DSC XP-10, Ver. 3.3.0.7 (D), THASS, 2003.
- Maloň, M.; Trávníček, Z.; Maryško, M.; Zbořil, R.; Mašláň, M.; Marek, J.; Doležal, K.; Rolčik, J.; Kryštof, V.; Strnad, M. Inorg. Chim. Acta 2001, 323, 119.
- Raghunathan, S.; Sinha, B. K.; Pattabhi, V.; Gabe, E. J. Acta Cryst. 1983, C39, 1545.
- 39. Trávníček, Z.; Popa, I.; Doležal, K. Acta Cryst. 2004, C60, 662.
- 40. Trávníček, Z.; Kryštof, V. Acta Cryst. 2004, E60, 2324.
- 41. Sheldrick, G. M. SHELXL 97, Program for crystal structure refinement. University of Göttingen, Göttingen: Germany, 1997.
- 42. Allen, F. H. Acta Cryst. 2002, B58, 380.
- Price, C.; Shipman, M. A.; Rees, N. H.; Elsegood, M. R. J.; Edwards, A. J.; Clegg, W.; Houlton, A. *Chem. Eur. J.* 2001, 7, 1194.
- Price, J. H.; Williamson, A. N.; Schamm, R. F.; Wayland, B. B. Inorg. Chem. 1972, 11, 1280.
- 45. Khodadad, P.; Ceolin, R. Therm. J. Analysis 1985, 30, 1141.
- 46. Oxford Diffraction, *CrysAlis RED* and *CrysAlis CCD* software (Ver. 1.171.23), Oxford Diffraction Ltd., Abingdon, Oxfordshire, England 2003.
- 47. Sheldrick, G. M. SHELXS 97 Acta crystallogr. A 1990, 46, 467.