DOI: 10.1002/hc.21419

RESEARCH ARTICLE

WILEY Heteroatom Chemistry

Synthesis of new functionalized hydroxy- and aminomethylphosphinates with indan moieties

Andrey A. Prishchenko 🕩 Ludmila I. Livantsova | | Mikhail V. Livantsov | Olga P. Novikova Valery S. Petrosyan

Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia

Correspondence

Andrey A. Prishchenko, Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia. Email: aprishchenko@yandex.ru

Funding information Russian Foundation for Basic Research, Grant/Award Number: 17-03-00169

Abstract

The convenient synthesis of new functionalized organophosphorus acids and their derivatives containing indan moieties was developed. The regioselective radical addition of bis(trimethylsiloxy)phosphine to indene proceeds to give rise to 2-indanylphosphonite as key compound for preparation of above acids with bicyclic substituents. Azobis(isobutyronitrile) (AIBN) in the conditions of its thermolysis was used as effective initiator of the addition reaction. The further treatment of organophosphorus acids trimethylsilyl esters with the methanolic sodium methoxide solution resulted in the water-soluble sodium salts of the corresponding acids.

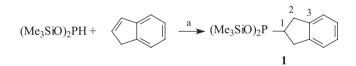
1 | INTRODUCTION

Functionalized hydroxy- and aminomethylphosphonates (phosphinates) and their derivatives are the promising organophosphorus biomimetics of natural hydroxy and amino acids and widely used as effective multidentate ligands and biologically active substances with multifactor activity. It should be noted that the functionalized organophosphorus acids with aryl, heterocyclic, and bicyclic moieties are of particular interest among these substances.^[1-4] Earlier, we described original methods for the synthesis of aminomethylenebisphosphonic acid derivatives^[5], as well as new arylsubstituted methylphosphonic and methylenediphosphonic acids and their derivatives^[6a] using trimethylsilyl esters of trivalent phosphorus acids as highly reactive synthons. In the present work, convenient methods for the synthesis of functionalized amino- and hydroxymethylphosphinic acids and their derivatives, including bicyclic moieties of indan as well as aromatic and heterocyclic substitutents, are proposed via highly reactive bis(trimethylsiloxy)phosphine. Preliminary brief data on the synthesis of organophosphorus derivatives of indan were published by us earlier (cf. ^[6b-e]). In this article, we are reporting detailed synthesis of 32 new compounds with important moieties of heterocycles and amino acids, including their full characterization via complete ¹H, ¹³C, and ³¹P NMR data.

2 | RESULTS AND DISCUSSION

In the present work, we accomplished radical addition of bis(trimethylsiloxy)phosphine to indene. It has been established that the radical addition of bis(trimethylsiloxy)phosphine to indene proceeds regioselectively to give phosphonite **1** as new key synthon in high yield. Azobis(isobutyronitrile) was used as a reaction initiator under the conditions of its thermolysis (100-120°C; Scheme 1).

Phosphonite 1 was successfully used by us for preparing the derivatives of new functionalized aminomethylphosphinic acids, including bicyclic indan moieties. Thus, phosphonite 1 readily reacts with aminomethylating reagents such as aminals, N-chloromethylamides, and *N*-ethoxymethyl-*N*,*N*-bis(trimethylsilyl)amine to form phosphinates 2 in good yields, the reaction conditions being determined by the reactivity of the aminomethylating reagent (cf.^[7]). Various aminals interact with phosphonite 1 only under heating in the presence of zinc chloride as a catalyst, but the highly reactive N-chloromethylamides react already at 10°C. Phosphonite 1 reacts with Nethoxymethyl-N,N-bis(trimethylsilyl)amine at 20-120°C, and chlorotrimethylsilane and zinc chloride are also used as catalysts (Scheme 2).


The interaction of phosphonite 1 with sulfur is a convenient method for the synthesis of thiophosphonate 3, and the

addition of phosphonite **1** via its POSi moiety to the carbonyl group of various aldehydes proceeds under mild conditions and leads to substituted trimethylsiloxymethylphosphinate **4**, including aromatic and heterocyclic moieties along with indan group (Scheme 3).

The reaction of phosphonite **1** with trimethylsilyl acrylate proceeds as a 1,4-addition to the conjugated system of acrylate with the formation of ketene acetal **5a** as an intermediate, the further interaction of intermediate **5a** with diethyl phosphite results in phosphinate **5** containing a propionic acid group (cf.^[8]), (Scheme 4). It should be noted that diethylphosphite smoothly removes only one trimethylsilyl group of ketene acetal **5a**, and this method can be used for further synthetic purposes.

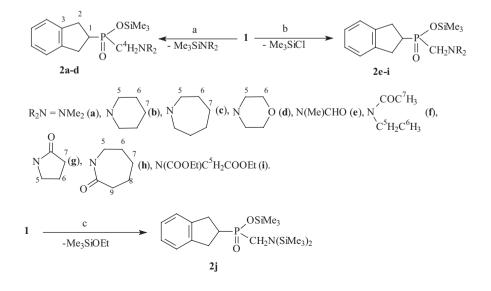
The treatment of phosphonite **1**, phosphinates **2,4,5**, and thiophosphonate **3** with dilute solutions of sodium methoxide in methanol gives stable water-soluble sodium salts of corresponding phosphonous **6**, thiophosphonic **8**, and phosphinic **7,9,10** acids (Scheme 5). Salts **6-10** are colorless hygroscopic crystals.

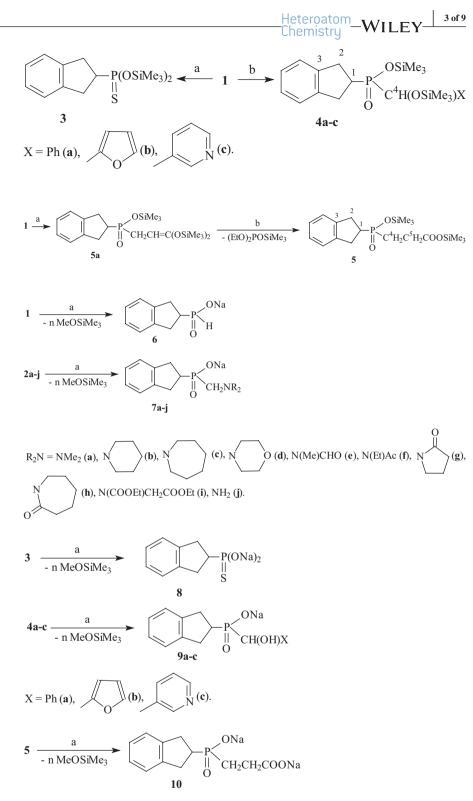
The structures of organophosphorus acids and their derivatives **1-10** with indan moieties were confirmed by the ¹H, ¹³C, ³¹P NMR spectra where the characteristic signals of corresponding moieties were observed. The numbers of the carbon atoms used for the description of the ¹H, ¹³C NMR spectra for compounds **1,24,5** in the experimental section are shown in the schemes (see Schemes 1-4). According to the NMR spectral data, the compounds with asymmetrical atoms and various amide moieties are the mixtures of stereoisomers, and their ratio was determined by the ¹H and

SCHEME 1 Reagents and conditions: (a) AIBN, 100-120°C

³¹P NMR spectra where the data for the major isomer are presented first.

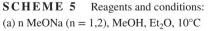
3 | CONCLUSIONS


Summarizing, we have developed convenient methods for the synthesis of new derivatives of functionalized amino-and hydroxymethylphosphinic acids, including bicyclic moieties of indan as well as aromatic and heterocyclic substituents, based on readily available starting materials such as indene and trimethylsilyl esters of trivalent phosphorus acids. The resulting compounds are convenient synthons for the preparation of various functionalized organophosphorus compounds and are of interest as biologically active substances with various properties and promising polydentate ligands.


4 | EXPERIMENTAL

The ¹H, ¹³C, and ³¹P NMR spectra were registered on a Bruker Avance-400 spectrometer (400, 100, and 162 MHz, respectively) against TMS as internal standard (¹H and ¹³C) and 85% H₃PO₄ in D₂O as external standard (³¹P). All reactions were carried out under dry argon in anhydrous solvents. The starting esters of organophosphorus acids were prepared as described.^[8,9] Sodium salts **6-10** are decomposed above 100°C and do not have clear melting points.

4.1 | Bis(trimethylsilyl) 2,3-dihydro-1*H*-inden-2-ylphosphonite (1)


A mixture of bis(trimethylsiloxy)phosphine (48 g 0.23 mol), 1H indene (21 g, 0.18 mol) and azobis(isobutyronitrile) (0.2 g, 0.0012 mol) was heated to 100°C. Then, the temperature of the reaction mixture was gradually raised to 120°C over the

SCHEME 3 Reagents and conditions: (a) S, C_6H_6 , 80°C; (b) XCHO, CH_2Cl_2 , 10°C

SCHEME 4 Reagents and conditions: (a) CH_2 =CHCOOSiMe₃, Et_2O , 20°C; (b) (EtO)₂P(O)H, Et_2O , 40°C

course of 1 hr. After that the reaction mixture was distilled in a vacuum to obtain 49 g of phosphonite I, yield 83%, bp 126°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.21 (s, 18H, 2 Me₃Si), 2.31 (d, 1H, ²J_{PH} = 3.6 Hz, ³J_{HH} = 8.8 Hz, C¹H), 2.90-3.05 (m, 4H, 2 C²H₂), 7.08-7.20 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 1.3 (d, ³J_{PC} = 4.6 Hz, Me₃Si), 32.0 (d, ²J_{PC} = 19.7 Hz, C²), 46.3 (d, ¹J_{PC} = 20.3 Hz, C¹), 124.2 (s, C_{Ar}), 126.0 (s, C_{Ar}), 143.1 (d, ³J_{PC} = 5.6 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 155.6 (s). Anal. Calcd for C₁₅H₂₇O₂PSi₂. C 55.18; H 8.33. Found: C 55.02; H 8.17.

4.2 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2yl(*N*,*N*-dimethylaminomethyl)phosphinate (2a)

A mixture of phosphonite 1 (6.5 g, 0.02 mol), bis(dimethylamino)methane (2.2 g, 0.022 mol), and zinc

chloride (0.1 g, 0.0007 mol) was heated at 110-130°C for 1.5 hr and then distilled to obtain 4.6 g of phosphinate **2a**, yield 74%, bp 141°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.34 (s, 9H, Me₃Si), 2.45 (s, 6H, Me₂N), 2.12 and 2.75 (C⁴H_AH_BN, 2H, ²J_{PHA} = 10.8 Hz, ²J_{PHB} = 8.4 Hz, ²J_{HAHB} = 14.8 Hz, H_A and H_B), 2.85-2.95 (m, 1H, C¹H), 3.10-3.40 (m, 4H, C²H₂), 7.20-7.30 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.1 (s, Me₃Si), 31.6 (s, C²), 32.2 (s, C²), 35.5 (d, ¹J_{PC} = 97.9 Hz, C¹), 46.5 (d, ³J_{PC} = 9.7 Hz, C⁵), 46.6 (d, ³J_{PC} = 10.5 Hz, C⁵), 56.7 (d, ¹J_{PC} = 9.1 Hz, C³), 140.5 (d, ³J_{PC} = 9.1 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 41.6 (s). Anal. Calcd for C₁₅H₂₆NO₂PSi. C 57.85; H 8.41. Found: C 57.68; H 8.29.

Phosphinates 2b-d were obtained similarly.

4.3 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2yl(piperidin-1-ylmethyl)phosphinate (2b)

Yield 78%, bp 169°C (1 mm Hg), mp 61°C. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.13 (s, 9H, Me₃Si), 1.40-1.43 (m, 6H, 2 C⁶H₂, C⁷H₂), 2.30-2.60 (m, 4H, 2 C²H₂), 2.68-2.85 (m, 2H, C¹H₂), 2.95-3.20 (m, 6H, C⁴H₂, 2 C⁵H₂), 7.00-7.10 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 1.0 (s, Me₃Si), 23.6 (s, C⁷), 25.8 (s, 2 C⁶), 32.7 and 33.4 (s, C²), 36.7 (d, ¹J_{PC} = 98.0 Hz, C¹), 56.4 (d, ³J_{PC} = 9.8 Hz, C⁵), 57.3 (d, ¹J_{PC} = 113.8 Hz, C⁴), 123.0 (s, C_{Ar}), 126.2 (s, C_{Ar}), 141.6 (d, ³J_{PC} = 9.9 Hz, C³), 141.8 (d, ³J_{PC} = 9.8 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 42.4 (s). Anal. Calcd for C₁₈H₃₀NO₂PSi. C 61.51; H 8.60. Found: C 61.26; H 8.52.

4.4 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2yl(azepan-1-ylmethyl)phosphinate (2c)

Yield 80%, bp 191°C (1 mm Hg), mp 48°C. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.17 (s, 9H, Me₃Si), 1.40-1.60 (m, 8H, 2 C⁶H₂, 2 C⁷H₂), 2.60-2.90 (m, 6H, C¹H₂, 2 C²H₂), 3.00-3.30 (m, 6H, C⁴H₂, 2 C⁵H₂), 7.00-7.20 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 1.2 (s, Me₃Si), 26.8 (s, C⁷), 28.1 (s, 2 C⁶), 32.8 (s, C²), 33.4 (s, C²), 36.6 (d, ¹J_{PC} = 97.8.0 Hz, C¹), 56.5 (d, ¹J_{PC} = 113.8 Hz, C⁴) 57.6 (d, ³J_{PC} = 7.8 Hz, C⁵), 124.2 (s, 2 C_{Ar}), 126.3 (s, 2 C_{Ar}), 141.8 (d, ³J_{PC} = 9.7 Hz, C³),142.0 (d, ³J_{PC} = 9.8 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 43.2 (s). Anal. Calcd for C₁₉H₃₂NO₂PSi. C 62.43; H 8.82. Found: C 62.28; H 8.75.

4.5 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2yl(morpholin-4-ylmethyl)phosphinate (2d)

Yield 81%, bp 175°C (1 mm Hg), mp 55°C. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: -0.01 (s, 9H, Me₃Si), 2.20-2.45 (m, 4H, 2 C²H₂), 2.52-2.60 (m, 1H, C¹H), 2.80-3.10 (m, 6H, C⁴H₂, 2 C⁵H₂), 3.36 (s, 4H, 2 C⁶H₂), 6.84-6.94 (m, 4H, 4

C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), *δ*, ppm: 0.6 (s, Me₃Si), 32.3 and 32.8 (s, C²), 36.3 (d, ¹J_{PC} = 97.9 Hz, C¹), 54.9 (d, ³J_{PC} = 8.7 Hz, C⁵), 56.1 (d, ¹J_{PC} = 111.3 Hz, C⁴), 66.1 (s, C⁶), 123.6 (s, C_{Ar}), 125.8 (s, C_{Ar}), 141.1(d, ³J_{PC} = 6.5 Hz, C³) and 141.2 (d, ³J_{PC} = 8.0 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), *δ*, ppm: 41.2 (s). Anal. Calcd for C₁₇H₂₈NO₃PSi. C 57.77; H 7.98. Found: C 57.68; H 7.89.

4.6 | Trimethylsilyl 2,3-dihydro-1*H*inden-2-yl(*N*-methyl-*N*-formylaminomethyl) phosphinate (2e)

To a solution of phosphonite 1 (5.4 g, 0.017 mol) in methylene chloride (10 mL), a solution of N-chloromethyl-N-methylformamide (1.8 g, 0.017 mol) in methylene chloride (5 mL) was added dropwise with stirring at 10°C. The solvent was then removed, and the residue was distilled in a vacuum to obtain 3.8 g of phosphinate 2e, yield 70%, bp 187°C (1 mm Hg). The first isomer, 75%. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: -0.05 (s, 9H, Me₃Si), 2.36-2.48 (m, 1H, C¹H), 2.82-3.00 (m, 4H, 2 C²H₂), 2.87 (s, 3H, MeN), 3.18-3.68 (m, 2H, C^4H_2), 6.80-6.92 (m, 4H, 4 $C_{Ar}H$), 7.78 (s, 1H, CHO). ¹³C NMR (CDCl₃, 100 MHz), δ, ppm: 0.6 (s, Me₃Si), 31.8 (s, C²), 32.80 (s, C²), 35.3 (s, MeN), 36.1 (d, ${}^{1}J_{PC} = 96.7 \text{ Hz}, \text{ C}^{1}$), 42.5 (d, ${}^{1}J_{PC} = 101.0 \text{ Hz}, \text{ C}^{4}$), 123.6 (s, 2 C_{Ar}), 125.9 (s, 2 C_{Ar}), 140.8 (d, ${}^{3}J_{PC} = 8.9$ Hz, C³), 140.9 (d, ${}^{3}J_{PC} = 8.6$ Hz, C³), 161.7 (s, CO). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 38.8 (s). The second isomer, 25%. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: -0.05 (s, 9H, Me₃Si), 2.36-2.48 (m, 1H, C¹H), 2.82-3.00 (m, 4H, 2 C²H₂), 2.77 (s, 3H, MeN), 3.18-3.68 (m, 2H, C^4H_2), 6.80-6.92 (m, 4H, 4 $C_{\Delta r}H$), 7.72 (s, 1H, CHO). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.6 (s, Me₃Si), 32.0 (s, C²), 32.5 (s, C²), 35.3 (s, MeN), 35.9 (d, ${}^{1}J_{PC} = 96.1 \text{ Hz}, \text{ C}^{1}$), 46.9 (d, ${}^{1}J_{PC} = 99.5 \text{ Hz}, \text{ C}^{4}$), 123.6 (s, 2 C_{Ar}), 125.9 (s, 2 C_{Ar}), 140.3 (d, ${}^{3}J_{PC} = 8.8$ Hz, C³), 140.5 (d, ${}^{3}J_{PC} = 8.4 \text{ Hz}, \text{ C}^{3}$), 162.1 (s, CO). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 38.3 (s). Anal. Calcd for C₁₅H₂₄NO₃PSi. C 55.36; H 7.43. Found: C 55.23; H 7.35.

Phosphinates **2f-j** were obtained similarly.

4.7 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2-yl(*N*-ethyl-*N*-acetylaminomethyl)phosphinate (2f)

Yield 73%, bp 187°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.15 (s, 9H, Me₃Si), 0.84 (t, 3H, ³J_{HH} = 7.2 Hz, C⁶H₃), 1.76 (s, 3H, C⁷H₃), 2.32-2.41 (m, 1H, C¹H), 2.74-2.98 (m, 4H, 2 C²H₂), 3.10-3.36 (m, 3H, C⁴H_B, C⁵H₂), 3.71 (dd, 2H, ²J_{HAHB} = 15.2 Hz, ²J_{PHA} = 5.6 Hz, C⁴H_B), 6.70-6.85 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.4 (s, Me₃Si), 12.2 (s, C⁶), 20.1 (s, C⁷), 31.6 (s, C⁷), 32.9 (s, C²), 36.1 (d, ¹J_{PC} = 95.5, C¹), 42.1 (d, ¹J_{PC} = 102.0 Hz, C⁴), 43.2 (s, 2 C⁵), 123.4 (s, 2 C_{Ar}), 125.7 (s, 2 C_{Ar}), 140.8 (d, ${}^{3}J_{PC} = 9.1$ Hz, C³), 140.9 (d, ${}^{3}J_{PC} = 9.9$ Hz, C³), 169.0 (s, CO). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 39.9 (s). Anal. Calcd for C₁₇H₂₈NO₃PSi. C 57.77; H 7.98. Found: C 57.52; H 7.90.

4.8 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2-yl[(2-oxopyrrolidin-1-yl)methyl]phosphinate (2g)

Yield 76%, bp 186°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: -0.12 (s, 9H, Me₃Si), 1.55-1.70 (m, 2H, C⁶H₂), 1.90-2.00 (m, 2H, C⁷H₂), 2.38-2.39 (m, 1H, C¹H), 2.75-2.92 (m, 6H, 2 C²H₂, C⁵H₂), 3.00-3.44 (m, 2H, C⁴H₂), 6.74-6.85 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.38 (s, Me₃Si), 17.1 (s, C⁶), 29.3 (s, C⁷), 31.6 (s, C²), 32.5 (s, C²), 35.7 (d, ¹J_{PC} = 95.9 Hz, C¹), 41.1 (d, ¹J_{PC} = 104.4 Hz, C⁴), 47.6 (s, C⁵), 123.4 (s, 2C_{Ar}), 125.7 (s, 2 C_{Ar}), 140.6 (d, ³J_{PC} = 7.2, C³), 140.6 (d, ³J_{PC} = 7.2 Hz, C³), 140.7 (d, ³J_{PC} = 9.1 Hz, C³), 173.8 (s, CO). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 39.1 (s). Anal. Calcd for C₁₇H₂₆NO₃PSi. C 58.10; H 7.46. Found: C 57.98; H 7.28.

4.9 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2yl[(2-oxoazepan-1-yl)methyl]phosphinate (2h)

Yield 72%, bp 205°C (1 mm Hg), mp 72°C. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.53 (s, 9H, Me₃Si), 1.25-1.55 (m, 6H, C⁶H₂, C⁷H₂, C⁸H₂), 2.20-2.30 (m, 2H, C⁹H₂), 2.35-2.50 (m, 1H, C¹H), 2.85-3.15 (m, 4H, 2 C²H₂), 3.25-3.50 (m, 4H, C⁴H₂, C⁵H₂), 6.82-7.15 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: -0.24 (s, Me₃Si), 22.0 (s, C⁷), 22.6 (s, C⁸), 27.2 (s, C⁶), 28.4 (s, C⁹), 31.1 (s, C²), 32.1 (s, C²), 35.3 (d, ¹J_{PC} = 95.7 Hz, C¹), 45.1 (d, ¹J_{PC} = 103.2 Hz, C⁴), 49.3 (s, C⁵), 122.8 (s, 2 C_{Ar}), 125.0 (s, 2 C_{Ar}), 140.2 (d, ³J_{PC} = 9.3 Hz, C³), 140.4 (d, ³J_{PC} = 9.3 Hz, C³), 175.0 (s, CO). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 39.4 (s). Anal. Calcd for C₁₉H₃₀NO₃PSi. C 60.13; H 7.97. Found: C 60.01; H 7.88.

4.10 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2-yl[*N*-ethoxycarbonyl-*N*-(ethoxycarbonylmethyl)aminomethyl] phosphinate (2i)

Yield 78%, bp 200°C (1 mm Hg). The first isomer, 70%. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.19 (s, 9H, Me₃Si), 1.16-1.30 (m, 6H, 2 CH₃), 2.35-2.50 (m, 1H, C¹H), 2.70-2.90 (m, 4H, 2 C²H₂), 3.20-3.68 (m, 2H, C⁴H₂), 3.65-3.75 (m, 4H, 2 CH₂O), 3.91 (s, 2H, C⁵H₂), 6.85-6.95 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.01 (s, Me₃Si), 13.5 (s, 2 Me), 32.4 (s, C²), 32.5 (s, C²), 35.1 (d, ¹J_{PC} = 95.9 Hz, C¹), 44.8 (d, ¹J_{PC} = 105.0 Hz, C⁴), 48.0 (s, C⁵), 59.8 (s, CH₂O), 123.2 (s, C_{Ar}), 125.5 (s, C_{Ar}), 140.5 (d, ³J_{PC} = 8.7 Hz, C³),

140.7 (d, ${}^{3}J_{PC} = 8.7$ Hz, C³), 155.0 (d, ${}^{3}J_{PC} = 3.0$ Hz, C⁷), 168.1 (s, CO). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 39.6 (s). The second isomer, 30%. ${}^{1}H$ NMR (CDCl₃, 400 MHz), δ , ppm: 0.23 (s, 9H, Me₃Si), 1.16-1.30 (m, 6H, 2 CH₃), 2.35-2.50 (m, 1H, C¹H), 2.70-2.90 (m, 4H, 2 C²H₂), 3.20-3.68 (m, 2H, C⁴H₂), 3.65-3.75 (m, 4H, 2 CH₂O), 4.02 (s, 2H, C⁵H₂), 6.85-6.95 (m, 4H, 4 C_{Ar}H). ${}^{13}C$ NMR (CDCl₃, 100 MHz), δ , ppm: 0.01 (s, Me₃Si), 13.1 (s, 2 Me), 31.3 (s, C²), 31.4 (s, C²), 35.2 (d, ${}^{1}J_{PC} = 94.9$ Hz, C¹), 44.4 (d, ${}^{1}J_{PC} = 102.8$ Hz, C⁴), 47.8 (s, C(5)), 61.0 (s, CH₂O), 123.3 (s, C_{Ar}), 125.6 (s, C_{Ar}), 140.2 (d, ${}^{3}J_{PC} = 8.7$ Hz, C³), 140.3 (d, ${}^{3}J_{PC} = 8.7$ Hz, C³), 154.6 (s, C⁷), 168.1 (s, CO). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 39.1 (s). Anal. Calcd for C₂₀H₃₂NO₆PSi. C 54.40; H 7.31. Found: C 54.15; H 7.22.

4.11 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2-yl[*N*,*N*-bis(trimethylsilyl)aminomethyl] phosphinate (2j)

Yield 74%, bp 171°C (1 mm Hg). The first isomer, 65%. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: -0.35-0.02 (m, 27H, Me₃Si), 2.30-2.45 (m, 1H, $C^{4}H_{B}$), 2.55-2.65 (m, 1H, $C^{1}H$), 2.85-3.05 (m, 5H, C⁴H_A, 2 C²H₂). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: -1.0 (s, Me₃SiO), 0.68 (s, Me₃SiN), 33.0 (s, C²), 33.6 (s, C²), 34.8 (d, ${}^{1}J_{PC} = 94.1$ Hz, C¹), 39.7 (d, ${}^{1}J_{PC} = 103.3$ Hz, C⁴), 123.6 (s, 2 C_{Ar}), 125.9 (s, 2 C_{Ar}), 141.3 (d, ${}^{3}J_{PC} = 10.5 \text{ Hz}, \text{C}^{3}$). ${}^{31}\text{P} \text{ NMR} (\text{CDCl}_{3}, 162 \text{ MHz})$, δ , ppm: 44.0 (s). The second isomer, 35%. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: -0.35-0.02 (m, 27H, Me₃Si), 2.30-2.45 $(m, 1H, C^{4}H_{B}), 2.55-2.65 (m, 1H, C^{1}H), 2.85-3.05 (m, 5H)$ $C^{4}H_{A}$, 2 $C^{2}H_{2}$). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: -0.9 (s, Me₃SiO), 1.8 (s, Me₃SiN), 32.7 (s, C²), 33.2 (s, C²), 35.0 (d, ${}^{1}J_{PC} = 93.8 \text{ Hz}, \text{C}^{1}$), 43.0 (d, ${}^{1}J_{PC} = 103.0 \text{ Hz}, \text{C}^{4}$), 123.6 (s, 2 C_{Ar}), 126.0 (s, 2 C_{Ar}), 141.8 (d, ${}^{3}J_{PC} = 5.1 \text{ Hz}$, C³). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 41.3 (s). Anal. Calcd for C₁₉H₃₈NO₂PSi₃. C 53.35; H 8.95.Found: C 53.20; H 8.87.

4.12 | Bis(trimethylsilyl) 2,3-dihydro-1*H*-inden-2-ylthiophosphonate (3)

To a solution of phosphonite **1** (4 g, 0.012 mol) in benzene (10 mL) of sulfur (0.4 g, 0.013 mol) was added. After exothermic reaction had been complete, the mixture was heated for 15 min on a water bath and cooled. Excess sulfur was filtered off, the solvent was removed, and the residue was distilled in a vacuum to obtain 4 g (91%) of thiophosphonate **3**, bp 142°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.34 (s, 18H, 2 Me₃Si), 2.75-2.90 (m, 1H, C¹H), 3.10-3.40 (m, 4H, 2 C²H₂), 7.10-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 1.1 (s, Me₃Si), 34.3 (s, C²), 44.8 (d, ¹*J*_{PC} = 117.7 Hz, C¹), 124.0 (s, C_{Ar}), 126.2 (s, C_{Ar}), 141.5 (d, ³*J*_{PC} = 10.6 Hz, C³). ³¹P NMR (CDCl₃, 162 MHz), δ ,

ppm: 75.1 (s). Anal. Calcd for $C_{15}H_{27}O_2PSSi_2$. C 50.24; H 7.59. Found: C 50.03; H 7.50.

4.13 | Trimethylsilyl 2,3-dihydro-1*H*inden-2-yl[phenyl(trimethylsiloxy)methyl] phosphinate (4a)

To a solution of phosphonite 1 (4 g, 0.012 mol) in methylene chloride (10 mL), a solution of benzaldehyde (1.2 g, 0.011 mol) in methylene chloride (5 mL) was added dropwise with stirring at 10°C. The solvent was then removed, and the residue was distilled in a vacuum to obtain 4 g of phosphinate 4a, yield 83%, bp 182°C (1 mm Hg), mp 92°C. The first isomer, 60%. ¹H NMR (CDCl₃, 400 MHz), δ , ppm:): 0.04 (s, 9H, Me₃Si), 0.08 (s, 9H, Me₃Si), 2.75-2.95 (m, 1H, $C^{1}H$), 3.05-3.40 (m, 4H, 2 $C^{2}H_{2}$), 4.91 (d, 1H, ${}^{2}J_{PH} = 9.6$ Hz, C⁴H), 7.10-7.55 (m, 9H, 4 C_{Ar}H, C₆H₅). ¹³C NMR (CDCl₃, 100 MHz), δ, ppm:): 0.17 (s, Me₃Si), 1.07 (s, Me₃Si), 32.9 (s, C²), 33.4 (s, C²), 34.7 (d, ${}^{1}J_{PC} = 95.4$ Hz, C¹), 74.1 (d, ${}^{1}J_{PC} = 114.9 \text{ Hz}, \text{ C}^{4}\text{H}$), 124.4 (s, C_{Ar}), 126.5 (s, C_{Ar}), 127.3 (s, C_{Ph}), 127.8 (s, C_{Ph}), 128.1 (s, C_{Ph}), 137.2 (s, C_{Ph}), 142.0 $(d, {}^{3}J_{PC} = 9.3 \text{ Hz}, \text{C}^{3}), 142.1 (d, {}^{3}J_{PC} = 8.2 \text{ Hz}, \text{C}^{3}). {}^{31}\text{P} \text{ NMR}$ (CDCl₃, 162 MHz), δ , ppm: 40.5 (s). The second isomer, 40%. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.02 (s, 9H, Me₃Si), 0.09 (s, 9H, Me₃Si), 2.75-2.95 (m, 1H, C¹H), 3.05-3.40 (m, 4H, 2 $C^{2}H_{2}$), 5.03 (d, 1H, ${}^{2}J_{PH}$ = 7.6 Hz, C^{4} H), 7.10-7.55 (m, 9H, 4 $C_{Ar}H$, $C_{6}H_{5}$). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.96 (s, Me₃Si), 1.99 (s, Me₃Si), 33.7 (s, C²), 34.1 (s, C²), 35.2 (d, ${}^{1}J_{PC} = 96.3$ Hz, C¹), 74.0 (d, ${}^{1}J_{PC} = 115.3$ Hz, C⁴H), 141.8 (d, ${}^{3}J_{PC} = 9.2$ Hz, C³), 142.0 (d, ${}^{3}J_{PC} = 9.3$ Hz, C³). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ, ppm: 39.4 (s). Anal. Calcd for C₂₂H₃₃O₃PSi₂. C 61.08; H 7.69. Found: C 60.92; H 7.55.

4.14 | Trimethylsilyl 2,3-dihydro-1*H*inden-2-yl[fur-2-yl(trimethylsiloxy)methyl] phosphinate (4b)

Yield 82%, bp 169°C (1 mm Hg). The first isomer, 60 %. ¹H NMR (CDCl₃, 400 MHz), δ , ppm: -0.11 (s, 9H, Me₃Si), -0.10 (s, 9H, Me₃Si), 2.60-2.75 (m, 1H, C¹H), 2.85-3.15 (m, 4H, 2 $C^{2}H_{2}$), 4.79 (d, 1H, ${}^{2}J_{PH} = 10.0$ Hz, C^{4} H), 6.17-6.37 (m, 2H, 2 $C_{Fur}H$), 7.52 (s, 2H, 2 $C_{Fur}HO$). ¹³C NMR (CDCl₃, 100 MHz), *b*, ppm: 0.83 (s, Me₃Si), 0.47 (s, Me₃Si), 32.3 (s, C(2)), 32.8 (s, C(2)), 35.0 (d, ${}^{1}J_{PC} = 96.7$ Hz, C¹), 66.9 (d, ${}^{1}J_{PC} = 119.8 \text{ Hz}, C^{4}\text{H}$), 109.7 (s, C_{Fur}), 110.4 (s, C_{Fur}), 123.6 (s, C_{Ar}), 125.9 (s, C_{Ar}), 141.3 (d, ${}^{3}J_{PC} = 10.6$ Hz, C^{3}), 141.4 (d, ${}^{3}J_{PC} = 11.3 \text{ Hz}$, $C_{Fur}HO$), 149.8 (s, $C_{Fur}O$). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 37.4 (s). The second isomer, 40%. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: 0.02 (s, 9H, Me₃Si), -0.07 (s, 9H, Me₃Si), 2.35-2.50 (m, 1H, C¹H), 2.85-3.15 (m, 4H, 2 C²H₂), 4.82 (d, 1H, ${}^{2}J_{PH} = 10.8$ Hz, C⁴H), 6.17-6.37 (m, 2H, 2 C_{Fur}H), 7.51 (s, 2H, 2 C_{Fur}HO). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.36 (s, Me₃Si), 0.62 (s, Me₃Si), 32.8 (s, C²), 33.1 (s, C²), 37.4 (d, ${}^{1}J_{PC} = 97.4$ Hz, C¹), 67.8 (d, ${}^{1}J_{PC} = 118.6$ Hz, C⁴H), 109.0 (s, C_{Fur}), 110.2 (s, C_{Fur}), 123.5 (s, C_{Ar}), 126.2 (s, C_{Ar}), 141.0 (d, ${}^{3}J_{PC} = 8.9$ Hz, C³), 141.1 (d, ${}^{3}J_{PC} = 8.9$ Hz, C³), 141.9 (s, C_{Fur}HO). 150.0 (s, C_{Fur}O). 31 P NMR (CDCl₃, 162 MHz), δ , ppm: 36.7 (s). Anal. Calcd for C₂₀H₃₁O₄PSi₂. C 56.84; H 7.39. Found: C 56.73; H 7.23.

4.15 | Trimethylsilyl 2,3-dihydro-1*H*-inden-2-yl[pyridin-3-yl(trimethylsiloxy)methyl] phosphinate (4c)

Yield 83%, bp 188°C (1 mm Hg), mp 83°C. The first isomer, 65 %. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: 0.05 (s, 18H, Me₃Si), 2.50-2.65 (m, 1H, C¹H), 2.70-3.00 (m, 4H, 2 C²H₂), 4.68 (d, 1H, ${}^{2}J_{PH} = 9.2$ Hz, C⁴H), 6.70-6.95 (m, 4H, 4 C_{Ar}H), 7.15-8.60 (m, 4H, 4 C_{Pv} H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: 0.2 (s, 2 Me₃Si), 31.1 (s, C²), 31.4 (s, C²), 37.3 (d, ${}^{1}J_{PC} = 98.1$ Hz, C^{1}), 70.7 (d, ${}^{1}J_{PC} = 114.4 \text{ Hz}$, C^{4} H), 123.6 (s, C_{Ar}), 125.8 (s, C_{Ar}), 132.3 (s, C_{Pv}), 140.4 (d, ${}^{3}J_{PC} = 9.0 \text{ Hz}$, C^{3}), 140.5 (d, ${}^{3}J_{\text{PC}} = 11.0 \text{ Hz}, \text{ C}^{3}$, 140.6 (d, ${}^{3}J_{\text{PC}} = 8.6 \text{ Hz}, \text{ C}_{\text{Pv}}$), 147.7 (d, ${}^{3}J_{PC} = 4.4 \text{ Hz}, C_{Pv}$, 153.8 (s, C_{Pv}). ${}^{31}PNMR$ (CDCl₃, 162 MHz), δ , ppm: 38.8 (s). The second isomer, 35%. ¹H NMR (CDCl₃, 400 MHz), δ, ppm: -0.19 (s, 9H, Me₃Si), -0.02 (s, 9H, Me₃Si), 2.25-2.40 (m, 1H, C¹H), 2.70-3.00 (m, 4H, 2 C²H₂), 4.79 (d, 1H, ${}^{2}J_{PH} = 7.2$ Hz, C⁴H), 6.70-6.95 (m, 4H, 4 C_{Ar}H), 7.15-8.60 (m, 4H, 4 C_{Pv} H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: -0.7 (s, Me₃Si), -0.6 (s, Me₃Si), 32.1 (s, C(2)), 32.5 (s, C(2)), 34.2 (d, ${}^{1}J_{PC} = 96.6$ Hz, C¹), 71.2 (d, ${}^{1}J_{PC} = 112.5$ Hz, C⁴H), 123.5 (s, C_{Ar}), 126.0 (s, C_{Ar}), 132.6 (s, C_{Py}), 140.8 (d, ${}^{3}J_{PC} = 9.3$ Hz, C^{3}), 140.9 (d, ${}^{3}J_{PC} = 9.0 \text{ Hz}, C^{3}$), 141.0 (d, ${}^{3}J_{PC} = 8.0 \text{ Hz}, C_{Pv}$), 147.8 (d, ${}^{3}J_{PC} = 5.4$ Hz, C_{Py}), 151.0 (s, C_{Py}). ${}^{31}P$ NMR (CDCl₃, 162 MHz), δ , ppm: 39.5 (s). Anal. Calcd for C₂₁H₃₂NO₃PSi₂. C 58.17; H 7.44. Found: C 58.01; H 7.30.

4.16 | Trimethylsilyl 2,3-dihydro-1*H*inden-2-yl[2-(trimethylsiloxycarbonyl)ethyl] phosphinate (5)

A solution of trimethylsilyl acrylate (3.1 g, 0.02 mol) in methylene chloride (5 mL) was added dropwise with stirring to a solution of phosphonite 1 (6.5 g, 0.02 mol) in methylene chloride (15 mL). The mixture was kept for 2 hr with stirring, then diethyl phosphite (4.1 g, 0.03 mol) was added to the mixture. The solvent was removed, and the residue was distilled to obtain 6.7 g of phosphinate **5**, yield 84%, bp 178°C (1 mm Hg). ¹H NMR (CDCl₃, 400 MHz), δ , ppm: 0.02 (s, 9H, Me₃Si), 0.10 (s, 9H, Me₃Si), 1.70-1.85 (m, 1H, C¹H), 2.30-2.45 (m, 2H, C⁴H₂), 2.85-3.00 (m, 6H, 2 C²H₂, C⁵H₂), 6.85-7.00 (m, 4H, 4 C_{Ar}H). ¹³C NMR (CDCl₃, 100 MHz), δ , ppm: -0.9 (s, Me₃Si), 0.04 (s, Me₃Si), 23.1 (d, ¹J_{PC} = 93.0 Hz, C⁴), 27.6 (d, ²J_{PC} = 2.0 Hz, C⁵), 32.3 (s, C²), 32.8 (s, C²), 123.7 (s, 2C_{Ar}), 126.1 (s, 2C_{Ar}), 140.9 (s, C³), 171.9 (d, ³J_{PC} = 15.3 Hz,

C⁶). ³¹P NMR (CDCl₃, 162 MHz), δ , ppm: 45.4 (s). Anal. Calcd for C₁₈H₃₁O₄PSi₂. C 54.24; H 7.84. Found: C 54.03; H 7.74.

4.17 | Sodium 2,3-dihydro-1*H*-inden-2ylphosphonite (6)

A solution of phosphonite **1** (4.9 g, 0.015 mol) in diethyl ether (5 mL) was added with stirring at 10°C to a solution of sodium methylate (0.81 g, 0.015 mol) in methanol (20 mL). The resulting mixture was refluxed, the solvent was removed, and the residue was kept in a vacuum (1 mm Hg) for 1 hr to obtain 3 g of salt **10a**, yield 97%. ¹H NMR (D₂O, 400 MHz), δ , ppm: 2.35-2.50 (m, 1H, C¹H), 2.90-3.15 (m, 4H, 2 C²H₂), 6.83 (dd, ¹*J*_{PH} = 500.7, ³*J*_{HH} 2.2 Hz, PH), 7.10-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, 100 MHz), δ , ppm: 32.2 (s, C²), 38.8 (d, ¹*J*_{PC} = 94.5 Hz, C¹), 124.6 (s, C_{Ar}), 126.7 (s, C_{Ar}), 142.7 (d, ³*J*_{PC} = 9.1 Hz, C³). ³¹P NMR (D₂O, 162 MHz), δ , ppm: 32.8 (d, ¹*J*_{PH} = 500.7 Hz). Anal. Calcd for C₉H₁₀NaO₂P. C 52.95; H 4.94. Found: C 52.68; H 5.03.

Salts 7-10 were obtained analogously.

4.18 | Sodium 2,3-dihydro-1*H*-inden-2yl(*N*,*N*-dimethylaminomethyl)phosphinate (7a)

Yield 95%. ¹H NMR (D₂O, 400 MHz), *δ*, ppm: 2.35 (s, 6H, Me₂N), 2.55-2.70 (m, 2H, C¹H, C⁴H_A), 3.00-3.15 (m, 5H, C²H₂, C⁴H_B), 7.10-7.30 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, 100 MHz), *δ*, ppm: 33.1 (s, C²), 37.7 (d, ¹J_{PC} = 96.6 Hz, C¹), 46.8 (d, ³J_{PC} = 4.2 Hz, Me₂N), 57.5 (d, ¹J_{PC} = 99.1 Hz, C⁴), 124.6 (s, C_{Ar}), 126.6 (s, C_{Ar}), 142.9 (d, ³J_{PC} = 9.9 Hz, C³). ³¹P NMR (D₂O, 162 MHz), *δ*, ppm: 37.8 (s). Anal. Calcd for $C_{12}H_{17}NNaO_2P$. C 55.17; H 6.54. Found: C 54.94; H 6.65.

4.19 | Sodium 2,3-dihydro-1*H*-inden-2yl(piperidin-1-ylmethyl)phosphinate (7b)

Yield 94 %. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.30-1.50 (m, 6H, 2 C⁶H₂, C⁷H₂), 2.50-2.65 (m, 5H, C¹H, 2 C²H₂), 2.95-3.20 (m, 6H, C⁴H₂, 2 C⁵H₂), 7.10-7.20 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 22.4 (s, C⁷), 24.6 (s, 2 C⁶), 33.8 (s, C²), 38.6 (d, ¹J_{PC} = 97.0 Hz, C¹), 56.9 (d, ³J_{PC} = 9.2 Hz, C⁵), 57.8 (d, ¹J_{PC} = 112.3 Hz, C⁴), 122.0 (s, C_{Ar}), 125.4 (s, C_{Ar}), 142.7 (d, ³J_{PC} = 10.0 Hz, C³). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 31.9 (s). Anal. Calcd for C₁₅H₂₁NNaO₂P. C 59.80; H 7.03. Found: C 59.69; H 7.07.

4.20 | Sodium 2,3-dihydro-1*H*-inden-2yl(azepan-1-ylmethyl)phosphinate (7c)

Yield 96 %. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.40-1.60 (m, 8H, 2 C⁶H₂, 2 C⁷H₂), 2.45-2.65 (m, 5H, C¹H, 2

C²H₂), 2.90-3.00 (m, 6H, C⁴H₂, 2 C⁵H₂), 7.00-7.15 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ, ppm: 22.5 (s, 2 C⁷), 27.8 (s, 2 C⁶), 34.5 (s, C²), 38.7 (d, ¹J_{PC} = 97.1 Hz, C¹), 57.7 (d, ¹J_{PC} = 102.4 Hz, C⁴), 58.0 (d, ³J_{PC} = 5.1 Hz, 2 C⁵), 125.4 (s, 2 C_{Ar}), 127.2 (s, 2 C_{Ar}), 144.4 (d, ³J_{PC} = 9.7 Hz, C³). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ, ppm: 36.0 (s). Anal. Calcd for C₁₆H₂₃NNaO₂P. C 60.94; H 7.35. Found: C 60.80; H 7.39.

4.21 | Sodium 2,3-dihydro-1*H*-inden-2yl(morpholin-4-ylmethyl)phosphinate (7d)

Yield 95 %. ¹H NMR (D₂O, 400 MHz), δ , ppm: 2.50-2.60 (m, 4H, 2 C²H₂), 2.70-2.75 (m, 1H, C¹H), 3.00-3.10 (m, 6H, C⁴H₂, 2 C⁵H₂), 3.64 (s, 4H, 2 C⁶H₂), 7.10-7.21 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, 100 MHz), δ , ppm: 34.2 (s, C²), 38.9 (d, ¹J_{PC} = 96.7 Hz, C¹), 55.7 (d, ³J_{PC} = 4.5 Hz, 2 C⁵), 58.2 (d, ¹J_{PC} = 110.5 Hz, C⁴), 66.5 (s, 2C⁶), 125.0 (s, 2C_{Ar}), 126.9 (s, 2C_{Ar}), 144.1 (d, ³J_{PC} = 10.1 Hz, C³). ³¹P NMR (D₂O, 162 MHz), δ , ppm: 31.7 (s). Anal. Calcd for C₁₄H₁₉NNaO₃P. C 55.45; H 6.31. Found: C 55.29; H 6.28.

4.22 | Sodium 2,3-dihydro-1*H*-inden-2-yl(*N*-methyl-*N*-formylaminomethyl)phosphinate (7e)

Yield 95%. The first isomer, 55%.¹H NMR (D₂O, 400 MHz), δ , ppm: 2.30-2.50 (m, 1H, C¹H), 2.90-3.00 (m, 4H, 2 C²H₂), 3.10 (s, 3H, MeN), 3.29-3.50 (m, 2H, C⁴H₂), 7.10-7.25 (m, 4H, 4 C_{Ar}H), 7.71 (s, CHO). ¹³C NMR (D₂O, 100 MHz), δ , ppm: 33.1 (s, C²), 36.7 (s, MeN), 37.2 (d, ${}^{1}J_{PC} = 96.4 \text{ Hz}, \text{C}^{1}$, 43.7 (d, ${}^{1}J_{PC} = 94.2 \text{ Hz}, \text{C}^{4}$), 124.6 (s, $2C_{Ar}$), 126.7 (s, $2C_{Ar}$), 142.7 (d, ${}^{3}J_{PC} = 9.3$ Hz, C^{3}), 165.4 (s, CO). ³¹P NMR (D₂O, 162 MHz), δ , ppm: 35.9 (s). The second isomer, 55%. ¹H NMR (D₂O, 400 MHz), δ , ppm: 2.30-2.50 (m, 1H, C¹H), 2.90-3.00 (m, 4H, 2 C²H₂), 3.05 (s, 6H, Me₂N), 3.20-3.50 (m, 2H, C⁴H₂), 7.10-7.25 (m, 4H, 4 C_{Ar} H), 7.91 (s, CHO). ¹³C NMR (D₂O, 100 MHz), δ , ppm: 33.1 (s, C²), 36.6 (s, MeN), 37.7 (d, ${}^{1}J_{PC} = 97.6$ Hz, C^{1}), 43.5 (d, ${}^{1}J_{PC} = 94.4 \text{ Hz}, C^{4}$), 124.5 (s, $2C_{Ar}$), 126.6 (s, $2C_{Ar}$), 142.4 (d, ${}^{3}J_{PC} = 8.6$ Hz, C^{3}),164.5 (s, CO). ³¹P NMR (D₂O, 162 MHz), δ, ppm:36.3 (s). Anal. Calcd for C₁₂H₁₅NNaO₃P. C 52.37; H 5.49. Found: C 52.02; H 5.57.

4.23 | Sodium 2,3-dihydro-1*H*-inden-2-yl(*N*-ethyl-*N*-acetylaminomethyl)phosphinate (7f)

Yield 96%. The first isomer, 70%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.03 (t, 3H, ³J_{HH} = 6.4 Hz, C⁶H₃), 1.97 (s, 3H, C⁷H₃), 2.18-2.38 (m, 1H, C¹H), 2.80-3.10 (m, 4H, 2 C²H₂), 3.37 (d, 2H, ²J_{PH} = 9.6 Hz, C⁴H₂), 6.95-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 13.4 (s, C⁶), 21.5 (s, C⁷), 34.2 (s, C²), 37.7 (d, ¹J_{PC} = 96.8 Hz,

C¹), 39.1 (d, ¹*J*_{PC} = 101.7 Hz, C⁴), 44.8 (s, C⁵), 125.2 (s, C_{Ar}), 127.1 (s, C_{Ar}), 144.2 (d, ³*J*_{PC} = 9.9 Hz, C³), 171.5 (s, CO). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 33.5 (s). The second isomer, 30%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 0.93 (t, 3H, ³*J*_{HH} = 6.6 Hz, C⁶H₃), 2.05 (s, 3H, C⁷H₃), 2.18-2.38 (m, 1H, C¹H), 2.80-3.05 (m, 4H, 2 C²H₂), 3.49 (d, 2H, ²*J*_{PH} = 6.8 Hz, C⁴H₂), 6.95-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 12.7 (s, C⁶), 22.7 (s, C⁷), 33.5 (s, C²), 36.9 (d, ¹*J*_{PC} = 96.4 Hz, C¹), 40.4 (d, ¹*J*_{PC} = 100.4 Hz, C⁴), 42.4 (s, C⁵), 125.3 (s, C_{Ar}), 127.2 (s, C_{Ar}), 143.9 (d, ³*J*_{PC} = 8.0 Hz, C³), 172.6 (s, CO). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 31.0 (s). Anal. Calcd for C₁₄H₁₉NNaO₃P. C 55.45; H 6.31. Found: C 55.32; H 6.35.

4.24 | Sodium 2,3-dihydro-1*H*-inden-2-yl[(2oxopyrrolidin-1-yl)methyl]phosphinate (7g)

Yield 95%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.85-1.90 (m, 2H, C⁶H₂), 2.17-2.22 (m, 2H, C⁷H₂), 2.24-2.32 (m, 1H, C¹H), 2.85-2.98 (m, 4H, 2 C²H₂), 3.23 (d, 2H, ²J_{PH} = 9.2 Hz, C⁴H₂), 3.50-3.56 (m, 2H, 2 C⁵H₂), 7.01-7.14 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 18.2 (s, C(6)), 31.2 (s, C(7)), 34.0 (s, C(2)), 38.9 (d, ¹J_{PC} = 94.8 Hz, C¹), 43.5 (d, ¹J_{PC} = 94.1 Hz, C⁴),49.3 (s, C⁵), 124.9 (s, C_{Ar}), 126.8 (s, C_{Ar}), 144.7 (d, ³J_{PC} = 10.2 Hz, C³). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 30.7 (s). Anal. Calcd for C₁₄H₁₇NNaO₃P. C 55.82; H 5.69. Found: C 55.68; H 5.74.

4.25 | Sodium 2,3-dihydro-1*H*-inden-2-yl[(2oxoazepan-1-yl)methyl]phosphinate (7h)

Yield 96%.¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.22-1.45 (m, 6H, C⁶H₂, C⁷H₂, C⁸H₂), 2.15-2.20 (m, 2H, C⁹H₂), 2.32-2.45 (m, 1H, C¹H), 2.75-3.05 (m, 4H, 2 C²H₂), 3.30-3.45 (m, 4H, C⁴H₂, C⁵H₂), 6.80-7.10 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 20.2 (s, C⁷), 21.9 (s, C⁸), 26.9 (s, C⁶), 28.0 (s, C⁹), 31.8 (s, C²), 35.8 (d, ¹J_{PC} = 96.8 Hz, C¹), 44.5 (d, ¹J_{PC} = 99.5 Hz, C⁴), 47.5 (s, C⁵), 123.5 (s, C_{Ar}), 125.2 (s, C_{Ar}), 142.6 (d, ³J_{PC} = 10.1 Hz, C³). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 31.8 (s). Anal. Calcd for C₁₆H₂₁NNaO₃P. C 58.36; H 6.43. Found: C 58.18; H 6.39.

4.26 | Sodium 2,3-dihydro-1*H*-inden-2-yl [*N*-ethoxycarbonyl-*N*-(ethoxycarbonylmethyl) aminomethyl]phosphinate (7i)

Yield 94%. The first isomer, 60%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), *δ*, ppm: 1.40-1.60 (m, 6H, 2 CH₃), 2.36-2.40 (m, 1H, C¹H), 2.84-3.05 (m, 4H, 2 C²H₂), 3.31 (д, 2H, ${}^{2}J_{PH} = 8.4$ Hz, C⁴H₂), 4.12 (s, 2H, C⁵H₂), 6.95-7.20 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), *δ*, ppm: 12.9 (s, 2 Me), 32.3 (s, C²), 36.4 (d, ${}^{1}J_{PC} = 96.5$ Hz, C¹),

42.6 (d, ${}^{1}J_{PC} = 102.3 \text{ Hz}$, C⁴), 47.1 (s, C⁵), 60.2 (s, CH₂O), 124.0 (s, C_{Ar}), 125.9 (s, C_{Ar}), 140.1 (d, ${}^{3}J_{PC} = 8.9 \text{ Hz}$, C³), 154.9 (s, C⁷), 167.8 (s, C⁶). 31 P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 31.7 (s). The second isomer, 40%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.40-1.60 (m, 6H, 2 CH₃), 2.36-2.40 (m, 1H, C¹H), 2.84-3.05 (m, 4H, 2 C²H₂), 3.49 (d, 2H, ${}^{2}J_{PH} = 7.2 \text{ Hz}$, C⁴H₂), 4.2 (s, 2H, C⁵H₂), 6.95-7.20 (m, 4H, 4 C_{Ar}H). 13 C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 12.9 (s, 2 Me), 30.9 (s, C²), 35.0 (d, ${}^{1}J_{PC} = 95.2 \text{ Hz}$, C¹), 42.1 (d, ${}^{1}J_{PC} = 101.3 \text{ Hz}$, C⁴), 46.9 (s, C⁵), 61.5 (s, CH₂O), 123.8 (s, C_{Ar}), 125.1 (s, C_{Ar}), 139.7 (d, ${}^{3}J_{PC} = 8.9 \text{ Hz}$, C³), 154.2 (s, C⁷), 167.8 (s, C⁶). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 31.1 (s). Anal. Calcd for C₁₇H₂₃NNaO₆P. C 52.18; H 5.92. Found: C 52.02; H 5.98.

4.27 | Sodium 2,3-dihydro-1*H*-inden-2yl(aminomethyl)phosphinate (7j)

¹H NMR (D₂O, 400 MHz), δ, ppm: 2.72 (d, 2H, ${}^{2}J_{PH} = 8.7$ Hz, C⁴H₂), 2.90-3.00 (m, 1H, C¹H), 3.10-3.25 (m, 4H, 2 C²H₂), 7.10-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, 100 MHz), δ, ppm: 30.5 (s, C²), 35.4 (d, ${}^{1}J_{PC} = 96.3$ Hz, C¹), 52.7 (d, ${}^{1}J_{PC} = 97.8$ Hz, C⁴), 124.2 (s, C_{Ar}), 126.4 (s, 2C_{Ar}), 140.8 (d, ${}^{3}J_{PC} = 9.8$ Hz, C³). ³¹P NMR (D₂O, 162 MHz), δ, ppm: 39.2 (s). Anal. Calcd for C₁₀H₁₃NNaO₂P. C 51.51; H 5.62.Found: 51.39; H, 5.54.

4.28 | Disodium 2,3-dihydro-1*H*-inden-2-ylthiophosphonate (8)

Yield 97%. ¹H NMR (D₂O, 400 MHz), δ , ppm: 2.65-2.75 (m, 1H, C¹H), 3.60-3.80 (m, 4H, 2 C²H₂), 7.09-7.25 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, 100 MHz), δ , ppm: 35.3 (d, ²J_{PC} = 6.4 Hz, C²), 45.4 (d, ¹J_{PC} = 105.9 Hz, C¹), 124.5 (s, C_{Ar}), 126.3 (s, C_{Ar}), 143.7 (d, ³J_{PC} = 11.4 Hz, C³). ³¹P NMR (D₂O, 162 MHz), δ , ppm: 61.8 (s). Anal. Calcd for C₉H₉Na₂O₂PS. C 41.87; H 3.51. Found: C 41.71; H 3.56.

4.29 | Sodium 2,3-dihydro-1*H*-inden-2yl[hydroxy(phenyl)methyl]phosphinate (9a)

Yield 96%. ¹H NMR ((CD₃)₂SO, 400 MHz), δ , ppm: 2.10-2.60 (m, 1H, C¹H), 2.72-3.18 (m, 4H, 2 C²H₂), 4.75 (d, 1H, ²J_{PH} = 13.2 Hz, C⁴H), 6.90-7.25 (m, 9H, 4 C_{Ar}H, C₆H₅). ¹³C NMR ((CD₃)₂SO, 100 MHz), δ , ppm: 33.6 (s, C²), 33.9 (s, C²), 35.9 (d, ¹J_{PC} = 96.1 Hz, C¹), 73.6 (d, ¹J_{PC} = 97.3 Hz, C⁴), 123.8 (s, C_{Ar}), 125.6 (s, C_{Ar}), 126.6 (s, C_{Ph}), 127.2 (s, C_{Ph}), 142.0 (s, C_{Ph}), 143.4 (d, ³J_{PC} = 4.0 Hz, C³), 143.5 (d, ³J_{PC} = 4.0 Hz, C³). ³¹P NMR ((CD₃)₂SO, 162 MHz), δ , ppm: 34.8 (s). Anal. Calcd for C₁₆H₁₆NaO₃P. C 61.94; H 5.20. Found: C 61.72; H 5.26.

4.30 | Sodium 2,3-dihydro-1*H*-inden-2yl[hydroxy(fur-2-yl)methyl]phosphinate (9b)

Yield 97%. ¹H NMR ((CD₃)₂SO, 400 MHz), δ , ppm: 2.25-2.40 (m, 1H, C¹H), 2.70-3.20 (m, 4H, 2 C²H₂), 4.65 (d, 1H, ²J_{PH} = 10.0 Hz, C⁴H), 6.29 (s, 1H, C_{Fur}H), 6.34 (s, 1H, C_{Fur}H), 7.01-7.07 (m, 5H, C₆H₅), 7.49 (s, 1H, C_{Fur}HO). ¹³C NMR ((CD₃)₂SO, 100 MHz), δ , ppm: 33.5 (s, C²), 33.4 (s, C²), 36.8 (d, ¹J_{PC} = 97.3 Hz, C¹), 65.8 (d, ¹J_{PC} = 110.0 Hz, C⁴), 106.9 (s, C_{Fur}H), 110.2 (s, C_{Fur}H), 123.8 (s, C_{Ar}), 125.7 (s, C_{Ar}), 141.5 (s, C_{Fur}HO), 143.4 (d, ³J_{PC} = 10.1 Hz, C³), 154.9 (s, C_{Fur}O). ³¹P NMR ((CD₃)₂SO, 162 MHz), δ , ppm: 33.1 (s). Anal. Calcd for C₁₄H₁₄NaO₄P. C 56.01; H 4.70. Found: C 55.89; H 4.66.

4.31 | Sodium 2,3-dihydro-1*H*-inden-2yl[hydroxy(pyridin-3-yl)methyl]phosphinate (9c)

Yield 95%. ¹H NMR ((CD₃)₂SO, 400 MHz), δ , ppm: 2.32-2.55 (m, 1H, C¹H), 2.70-3.10 (m, 4H, 2 C²H₂), 4.75 (d, 1H, ²J_{PH} = 12.0 Hz, C⁴H), 6.90-7.10 (m, 4H, 4 C_{Ar}H), 7.20-8.67 (m, 4H, 4 C_{Py}H). ¹³C NMR ((CD₃)₂SO, 100 MHz), δ , ppm: 33.5 (s, C²), 39.9 (s, C²), 35.7 (d, ¹J_{PC} = 95.8 Hz, C¹), 70.5 (d, ¹J_{PC} = 108.7 Hz, C⁴), 122.5 (s, C_{Py}), 134.1 (s, C_{Py}), 137.2 (s, C_{Py}), 143.2 (s, C³), 143.3 (s, C³), 146.9 (s, C_{Py}), 146.1 (s, C_{Py}). ³¹P NMR ((CD₃)₂SO, 162 MHz), δ , ppm: 34.5 (s). Anal. Calcd for C₁₅H₁₅NNaO₃P. C 57.88; H 4.86. Found: C 57.73; H 4.91.

4.32 | Disodium 2,3-dihydro-1*H*-inden-2yl(2-carboxyethyl)phosphinate (10)

Yield 95%. ¹H NMR (D₂O, (CD₃)₂SO, 400 MHz), δ , ppm: 1.50-1.65 (m, 1H, C¹H), 2.15-2.40 (m, 2H, C⁴H₂), 2.80-3.00 (m, 6H, 2 C²H₂, C⁵H₂), 6.00-7.15 (m, 4H, 4 C_{Ar}H). ¹³C NMR (D₂O, (CD₃)₂SO, 100 MHz), δ , ppm: 26.3 (d, ¹J_{PC} = 89.8 Hz, C⁴), 30.9 (d, ²J_{PC} = 6.1 Hz, C⁵), 33.7 (d, ¹J_{PC} = 98.1 Hz, C¹), 34.1 (s, C²), 125.0 (s, 2 C_{Ar}), 126.9 (s, 2 C_{Ar}), 143.9 (d, ³J_{PC} = 9.8 Hz, C³), 180.2 (d, ³J_{PC} = 15.7 Hz, C⁶). ³¹P NMR (D₂O, (CD₃)₂SO, 162 MHz), δ , ppm: 39.1 (s). Anal. Calcd for . C₁₂H₁₃Na₂O₄P. C 48.34; H 4.39. Found: C 48.26; H 4.44.

ACKNOWLEDGMENTS

We thank the Russian Foundation for Basic Research for financial support (grant number 17-03-00169).

ORCID

Andrey A. Prishchenko D http://orcid. org/0000-0002-1302-5317

REFERENCES

- [1] O. I. Kolodiazhnyi, Russ. Chem. Rev. 2006, 75, 227.
- [2] V. P. Kukhar, H. R. Hudson, Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity, Wiley, New York, New York 2000, 634.
- [3] S. C. Fields, Tetrahedron 1999, 55, 12237.
- [4] F. H. Ebetino, Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144-146, 9.
- [5] A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, G. M. Averochkin, V. S. Petrosyan, *Heteroat. Chem.* 2015, 26, 405.
- [6] a) A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, *Heteroat. Chem.* 2016, 27, 381. b) A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, Y. N. Koval', E. V. Grigor'ev, *Russ. J. Gen. Chem.* 2003, 73, 1658. c) A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, *Heteroat. Chem.* 2008, 19, 345. d) A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, *Heteroat. Chem.* 2008, 19, 352. e) A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, *Heteroat. Chem.* 2008, 19, 418.
- [7] A. A. Prishchenko, M. V. Livantsov, V. S. Petrosyan, *Russ. J. Gen. Chem.* 1994, 64, 1316(in Russian).
- [8] V. D. Romanenko, M. V. Shevchuk, V. P. Kukhar, *Current. Org. Chem.* 2011, 15, 2774.
- [9] L. Wozniak, J. Chojnowski, Tetrahedron 1989, 45, 2465.

How to cite this article: Prishchenko AA, Livantsov MV, Novikova OP, Livantsova LI, Petrosyan VS. Synthesis of new functionalized hydroxy- and aminomethylphosphinates with indan moieties. *Heteroatom Chem.* 2018;e21419. https://doi.org/10.1002/hc.21419