

Published on Web 06/17/2004

Iridium Complex-Catalyzed Highly Enantio- and Diastereoselective [2+2+2] Cycloaddition for the Synthesis of Axially Chiral Teraryl Compounds

Takanori Shibata,*,† Takayoshi Fujimoto,‡ Kazuhisa Yokota,‡ and Kentaro Takagi‡

Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan, and Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama, 700-8530, Japan

Received April 1, 2004; E-mail: tshibata@waseda.jp

An axially chiral biaryl is an important structure among chiral ligands, and many catalytic and highly enantioselective reactions have been achieved by using axially chiral biaryl compounds possessing C_2 symmetry, as represented by BINOL and BINAP.¹ While various methods have been reported for the synthesis of axially chiral biaryl components, including optical resolution of racemic compounds and diastereoselective reactions using a stoichiometric amount of chiral auxiliaries, practical examples of the catalytic synthesis of axially chiral biaryls are limited. Hayashi and Ito reported a pioneering work on asymmetric Kumada coupling using a chiral nickel catalyst for the synthesis of 1,1'-binaphthyl compounds.² Hayashi further reported an enantioposition-selective cross-coupling using a chiral palladium catalyst³ and an asymmetric Kumada coupling of dinaphthothiophene based on the concept of dynamic kinetic resolution.⁴ Asymmetric Suzuki coupling using a chiral palladium catalyst is another approach for the catalytic synthesis of axially chiral biaryls.⁵ Oxidative coupling of 2-naphthol derivatives has also been reported for the synthesis of BINOL derivatives using chiral copper⁶ or oxovanadium complexes.^{7,8} However, all of these procedures involve the asymmetric coupling of aryl compounds.9

We report here an asymmetric [2+2+2] cycloaddition of an α,ω diyne and monoalkynes as a new approach for obtaining axially chiral compounds possessing C_2 symmetry.^{10,11} [2+2+2] Cycloaddition is a common protocol for the synthesis of substituted aromatic compounds, and various transition metal complexes, including those of cobalt, rhodium, and palladium, have been reported to be efficient catalysts.¹² We considered that the cycloaddition of an α,ω -diyne, possessing ortho-substituted aryls on its terminus, and a disubstituted alkyne would give an axially chiral teraryl compound due to steric hindrance between R¹ and R² (Scheme 1).¹³

We have previously reported an iridium complex-catalyzed [2+2+1] cycloaddition of an α, ω -diyne and carbon monoxide. As a minor product of this reaction, we obtained a polysubstituted benzene, which resulted from the [2+2+2] cycloaddition of the α, ω -diyne itself.^{14a} We anticipated that iridium complexes would show high catalytic activity in [2+2+2] cycloaddition for the synthesis of a congested polyaryl compound, and examined the cross-coupling of propargyl ether possessing naphthyl groups **1a** and methyl-protected 2-butyne-1,4-diol **2a** using an Ir-dppp complex.^{14,15} As a result, teraryl **3aa** was obtained as a mixture of *dl* and *meso* isomers, and the *dl* isomer was resolved by HPLC using a chiral column.

Next, we investigated the reaction conditions for asymmetric coupling (Table 1): while BINAP was the first choice as a chiral ligand, both the yield and the enantioselectivity of **3aa** were low

Scheme 1. Synthesis of Axially Chiral Teraryl Compound by [2+2+2] Cycloaddition

 Table 1.
 Asymmetric [2+2+2] Cycloaddition Using Chiral Iridium Complexes

entry	ligand	X/mol%	time/h	yield/%	d∥meso	ee/%
1	(S)-BINAP	10	4	31	60/40	6
2	(S,S)-BDPP	10	6	39	45/55	51
3	(S,S)-MeDUPHOS	10	1	83	>95/5	99.6
4	(S,S)-EtDUPHOS	10	1	75	>95/5	99.8
5	(R,R)-MeDUPHOS	10	1	88	>95/5	99.6 ^a
6	(S,S)-MeDUPHOS	5	1	83	>95/5	99.0
7	(S,S)-MeDUPHOS	2	1	89	>95/5	99.3
8	(S,S)-MeDUPHOS	0.5	3	84	98/2	99.1

^a An opposite enantiomer to the above structure of **3aa** was obtained.

(entry 1). BDPP gave moderate enantioselectivity, but the diastereoselectivity was low (entry 2). We found that MeDUPHOS (1,2bis-(2,5-dimethylphospholano)benzene) gave the best results: the *meso* isomer could not be detected in the NMR spectrum, and the enantioselectivity exceeded 99% (entry 3). EtDUPHOS gave almost the same results (entry 4), and (*R*,*R*)-MeDUPHOS provided the opposite enantiomer (entry 5).¹⁶ No decrease in selectivity was observed upon lowering the amount of catalyst to 2 mol %, and a high ee of 99.1% was achieved, even with 0.5 mol % catalyst (entries 6–8).

The asymmetric [2+2+2] cycloaddition of various α,ω -diynes and protected 2-butyne-1,4-diols (3 equiv) was examined using the Ir-MeDUPHOS catalyst, and extremely high enantio- and diastereoselectivities were achieved in each reaction (Table 2). THPand TBS-protected diols **2b,c** were also good coupling partners, and the ee was extremely high after deprotection to diol **4a**

[†] Waseda University. [‡] Okayama University.

Table 2. Asymmetric [2+2+2] Cycloaddition of Various α, ω -Diynes and Monoalkynes

entry	Ar	Z	diyne	R	yield/% ^a	ee/%
1	1-naphthyl	0	1 a	THP	76 (4a) ^b	99.5 ^b
2	1-naphthyl	0	1a	TBS	74 (3ac)	99.5 ^c
3	1-naphthyl	0	1a	MOM	76 (3ad) ^d	98.5
4	2-MeC ₆ H ₄	0	1b	Me	85 (3ba)	99.6
5	2-Cl C ₆ H ₄	0	1c	Me	85 (3ca)	97.7
6	4-MeO-1-	0	1d	Me	72 (3da)	99.4
	naphthyl					
7	1-naphthyl	NTs	1e	Me	92 (3ea)	99.4
8	1-naphthyl	NTs	1e	THP	97 (4e) ^b	99.1 ^b
9	1-naphthyl	$C(CO_2Et)_2$	1f	Me	77 (3fa)	>99.8
10	1-naphthyl	CH_2	1g	Me	96 (3ga)	>99.8
11	1-naphthyl	CH_2	1g	TBS	77 (3gc) ^e	98.6 ^c

^{*a*} Only *dl* isomer was detected by NMR spectrum, except entries 3 and 11. ^{*b*} Yield and ee were determined as diol **4a** or **4e** after deprotection using PPTS in EtOH. ^{*c*} Ee was determined as diol **4a** or **4g** after deprotection using TBAF in THF. ^{*d*} *dl/meso* = 93/7. ^{*e*} *dl/meso* = 91/9.

(entries 1 and 2). 2-Methyl-, 2-chlorophenyl, and 4-methoxy-1naphthyl were acceptable as substituents on the terminus of α, ω diynes (entries 4–6). Nitrogen-bridged diynes also reacted with alkynes **2a,b** in high ee and de (entries 7 and 8). In the reaction of carbon-bridged diynes **1f,g** and methyl ether **2a**, almost perfect enantioselectivity was achieved, and the peak of the minor enantiomer was below the level of detection by HPLC analyses (entries 9 and 10).

With a *cis*-olefinic tether, octa-1,7-diyne **1h** also reacted with alkyne **2a** under the same reaction conditions, and the subsequent aromatization by DDQ oxidation gave chiral ternaphthyl **5ha** in high ee and de (eq 1).¹⁶

The present asymmetric [2+2+2] cycloaddition was applied to the unsymmetrical diyne **6**, and the chiral biaryl compound **7** was obtained (eq 2). In this reaction, EtDUPHOS gave a significantly better enantioselectivity than MeDUPHOS.

In conclusion, we have reported an asymmetric [2+2+2] cycloaddition of diynes and alkynes with oxygen functionalities. This reaction proceeds with extremely high enantio- and diastereoselectivity to give various axially chiral compounds. The present procedure provides access to a new chiral pool of diol compounds possessing C_2 symmetry.

Acknowledgment. The authors thank Masaya Hirase for his experimental assistance. This research was supported by a Grantin-Aid for Scientific Research on Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental details and spectral data for α, ω -diynes and products. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed.; VCH: Weinheim, 2000. (b) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809.
 (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc.
- (2) (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153. (b) Hayashi, T.; Hayashizaki, K.; Ito, Y. Tetrahedron Lett. 1989, 30, 215
- (3) (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117, 9101. (b) Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55, 3455.
- (4) Shimada, T.; Cho, Y.-H.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 13396.
 (5) (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051. (b) Cammidge, A. N.; Crépy, K. V. L. Chem. Commun. 2000, 1723.
- (6) (a) Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S.-I. Tetrahedron Lett. 1995, 36, 9519. (b) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500 and references therein.
- (7) (a) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. 2001, 980. (b) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Chem. Commun. 2002, 914.
- (8) The coupling of phenol and aryllead using excess amounts of chiral amines: Saito, S.; Kano, T.; Muto, H.; Nakadai, H.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 8943.
- (9) A recent example of chiral transfer along with benzannulation for the synthesis of axially chiral biaryls: Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126, 5358.
 (10) Only one example of an intramolecular asymmetric [2+2+2] cycloaddition
- (10) Only one example of an intramolecular asymmetric [2+2+2] cycloaddition has been reported for the synthesis of a helically chiral compound (53%, 48% ee): Stará, I. G.; Stary, I.; Kollárovic, A.; Teply, F.; Vyskocil, S.; Saman, D. *Tetrahedron Lett.* **1999**, 40, 1993.
- (11) Nickel-catalyzed asymmetric [2+2+2] cycloaddition for the formation of benzylic chiral carbon centers: Sato, Y.; Nishimata, T.; Mori, M. *Heterocycles* 1997, 44, 443.
- Heterocycles 1997, 44, 443.
 (12) (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
- (13) Nickel-catalyzed non-asymmetric [2+2+2] cycloaddition for the synthesis of biaryl compounds: Sato, Y.; Ohashi, K.; Mori, M. *Tetrahedron Lett.* **1999**, 40, 5231.
- (14) (a) Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3, 1217. (b) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852. (c) Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi, K. Synlett 2002, 1681. (d) Shibata, T.; Kadowaki, S.; Hirase, M.; Takagi, K. Synlett 2003, 573.
- (15) Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.
- (16) The circular dichroism exciton chirality method was applied to determine the absolute configuration of product **3aa** prepared by (*S*,*S*)- and (*R*,*R*)-MeDUPHOS, respectively, and **3ha** prepared by (*S*,*S*)-MeDUPHOS (see Supporting Information).

JA048131D